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Complex Dynamic Behaviors in an Ivlev-type
Stage-structured Predator-prey System Concerning

Impulsive Control Strategy
Shunyi Li, Zhifang He, Xiangui Xue

Abstract—An Ivlev-type predator-prey system and stage-structured
for predator concerning impulsive control strategy is considered.
The conditions for the locally asymptotically stable prey-eradication
periodic solution is obtained, by using Floquet theorem and small am-
plitude perturbation skills——when the impulsive period is less than
the critical value. Otherwise, the system is permanence. Numerical
examples show that the system considered has more complicated dy-
namics, including high-order quasi-periodic and periodic oscillating,
period-doubling and period-halving bifurcation, chaos and attractor
crisis, etc. Finally, the biological implications of the results and the
impulsive control strategy are discussed.

Keywords—Stage-structured predator-prey system, Impulsive, Per-
manence, Bifurcation, Chaos.

I. INTRODUCTION

IN the natural world, there are many species whose individ-
ual members have a life history that takes them through two

stages—immature and mature. Wang and Chen [1] introduced
single-species stage-structured model without time delay in
1997, and found that an orbitally asymptotically stable periodic
orbit exists in that model. Furthermore, the stage-structured
population model without time delay are investigated by many
authors [2]. But, there are few papers study the predator-
prey system with stage-structured model without time delay
and impulsive effect. Song and Xiang [3] considered a two-
prey one-predator models with stage structure for the predator
and impulsive effects. They show that there exists a globally
asymptotically stable pest-eradication periodic solution when
the impulsive period is less than some critical value, other-
wise, the system is uniformly permanence. Wang, Xu and
Feng [4], [5] studied a stage-structured predator-prey system
with Holling type-II functional response concerning impulsive
control strategy, and the sufficient conditions for existence
of a globally stable pest-eradication periodic solution and
permanence of the system, numerical simulations are given.

In this paper, we consider an Ivlev-type stage-structured
predator-prey system with a constant periodic releasing for
the predator and spraying pesticide for prey at fixed moment
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[6]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)(a − bx(t)) − (1 − e−αx(t))y2(t)
y′
1(t) = k(1 − e−αx(t))y2(t) − (m + d1)y1(t)

y′
2(t) = my1(t) − d2y2(t)

⎫⎬
⎭ t �= nT,

Δx(t) = −px(t),
Δy1(t) = q1,
Δy2(t) = q2,

⎫⎬
⎭ t = nT,

(1)
where x, y1, y2 represent the prey, immature and mature
predator populations, respectively; a, b, α, k, d are positive. a
is the intrinsic rates of increase of the prey, d1 and d2 are the
death rate of the immature and mature predator populations,
a/b is the carrying capacity of the prey, k(0 < k < 1) is
the rate of conversing prey into predator. m(0 < m < 1)
is the maturity rate of the predator population. Δx(t) =
x(t+) − x(t), Δyi(t) = yi(t+) − yi(t)(i = 1, 2), T is the
periodic of the impulsive. n ∈ N, N = {1, 2, · · ·}, 0 < p < 1
is the proportionality constant which represents the rate of
mortality due to the applied pesticide. qi ≥ 0(i = 1, 2) is the
number of predator released each time.

The paper arranged as follows. Some notations and lemmas
are given in the next Section. In Section 3, using the Floquet
theory of impulsive equation and small amplitude perturbation
skills, we prove the local stability of prey-eradication periodic
solution, and give the condition of permanence. The numerical
examples and analysis are given in Section 4, moreover, these
results are discussed briefly in Section 5.

II. PRELIMINARIES

Let R+ = [0,∞), R3
+ = {x ∈ R3|x ≥ 0}. Denote f =

(f1, f2, f3) the map defined by the right hand of the first three
equations of system (1), and N be the set of all non-negative
integers. Let V : R+ × R

3
+ → R+, then V is said to belong

to class V0 if
(1) V is continuous in (t, x) ∈ (nT, (n+1)T ]×R

3
+ and for

each x ∈ R3
+, n ∈ N, lim(t,y)→(nT+,x) V (t, y) = V (nT+, x)

exists.
(2) V is locally Lipschitzian in x.

Definition 1 Let V ∈ V0 then for (t, x) ∈ (nT, (n + 1)T ] ×
R

3
+, the upper right derivative of V (t, x) with respect to the

impulsive differential system (1) is defined as D+V (t, x) =
limh→0+ sup 1

h [V (t + h, x + hf(t, x)) − V (t, x)].
Definition 2 System (1) is said to be permanent if there exist
two positive constants m,M and T0 such that each positive
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solution (x(t), y1(t), y2(t)) of the system (1) satisfies m ≤
x(t) ≤ M ,m ≤ yi(t) ≤ M(i = 1, 2), for all t > T0.

The solution of system (1) is a piecewise continuous
function x : R+ �→ R

3
+, x(t) is continuous on

(nT, (n + 1)T ], n ∈ N and x(nT+) = limt→nT+ x(t)
exists, the smoothness properties of f guarantee the global
existence and uniqueness of solutions of system (1), for
details see [7], [8].
Lemma 1 [7], [8] Let X(t) is a solution of system (1)
with X(0+) ≥ 0, then X(t) ≥ 0 for all t ≥ 0 and further
X(t) > 0 for all t ≥ 0 if X(0+) > 0.

Finally, we give some basic properties about the following
subsystem of system (1)⎧⎨

⎩
y′
1(t) = −(m + d)y1(t),

y′
2(t) = my1(t) − dy2(t),

}
t �= nT,

Δy1(t) = q1,Δy2(t) = q2, t = nT,
(2)

Clearly, system (2) has a periodic solution [4], [5], t ∈
(nT, (n + 1)T ],

ỹ1(t) =
q1 exp[−(d1 + m)(t − nT )]

1 − exp[−(d1 + m)T ]
,

ỹ2(t) =

[
q2

1 − e−d2T
+

md1

(d1 + m − d2)
(
1 − e−(d1+m)T

)
×
(

1 +
e−d2T − e−(d1+m)T

1 − e−d2T

)]
e−d2(t−nT )

− m

d1 + m − d2
ỹ1(t),

where

ỹ1(0+) =
p1

1 − e−(d1+m)T
,

ỹ2(0+) =
q2

1 − e−d2T
+

mq1

(
e−d2T − e−(d1+m)T

)
(d1 + m − d2) (1 − e−d2T )

(
1 − e−(d1+m)T

) ,

Lemma 2 [4], [5] Let (ỹ1(t), ỹ2(t)) be a positive periodic
solution of (2) and every solution (y1(t), y2(t)) of (2) with
yi(0) > 0(i = 1, 2), we have |yi(t) − ỹi(t)| → 0(i = 1, 2)
when t → ∞.

Therefore, we obtain the pest-eradication periodic solution
(0, ỹ1(t), ỹ2(t)) for t ∈ (nT, (n + 1)T ].

III. EXTINCTION AND PERMANENCE

Theorem 1 Let (x(t), y1(t), y2(t)) be any solution of system
(1), then (0, ỹ1(t), ỹ2(t)) is locally asymptotically stable pro-
vided that

T <
α[mq1 + (m + d1)q2]

ad2(d1 + m)
+

1
a

ln
(

1
1 − p

)
:= Tmax.

Proof. Define x(t) = u(t), yi(t) = vi(t) + ỹi(t)(i = 1, 2),

there may be written⎛
⎝ u(t)

v1(t)
v2(t)

⎞
⎠ = Φ(t)

⎛
⎝ u(0)

v1(0)
v2(0)

⎞
⎠ , 0 ≤ t < T,

where Φ(t) satisfies

dΦ
dt

=

⎛
⎝ a − αỹ2(t) 0 0

kαỹ2(t) −(m + d) 0
0 m −d

⎞
⎠Φ(t)

and Φ(0) = I , the identify matrix. The linearization of the
last three equation of (1) become⎛

⎝ u(nT+)
v1(nT+)
v2(nT+)

⎞
⎠ =

⎛
⎝ −p 0 0

0 1 0
0 0 1

⎞
⎠
⎛
⎝ u(nT )

v1(nT )
v2(nT )

⎞
⎠

Hence, if each eigenvalues of

M =

⎛
⎝ −p 0 0

0 1 0
0 0 1

⎞
⎠Φ(T )

have absolute values less than one, then the periodic solution
(0, ỹ1(t), ỹ2(t)) is locally stable. Since all eigenvalues of M
are

μ1 = exp(−d2T ) < 1,

μ2 = exp[−(d1 + m)T ] < 1,

μ3 = (1 − p) exp

(∫ T

0

(a − αỹ2(t))dt

)
,

|μ3| < 1 if and only if T < Tmax. According to Floquet theory
of impulsive differential equation [7], [8], the prey-eradication
solution (0, ỹ1(t), ỹ2(t)) is locally stable. This completes the
proof.
Theorem 3.2. There exists a constant M > 0, such that
x(t) ≤ M, yi(t) ≤ M(i = 1, 2) for each solution X(t) =
(x(t), y1(t), y2(t)) of system (1) with all t large enough.
Proof. Let V (t) = kx(t) + y1(t) + y2(t). We calculate the
upper right derivative of V (t) along a solution of system (1.4)
and get the following impulsive differential equation⎧⎨
⎩

D+V (t)|(1) + λV (t) = kx(t)(a + λ − bx(t))
−(d − λ)(y1(t) + y2(t)), t �= nT

V (t+) ≤ V (t) + q1 + q2, t = nT

Let 0 < λ < d = min{d1, d2}, then the first equation of above
equations is bounded. Select λ0 and M0 such that{

D+V (t) ≤ −λ0V (t) + M0, t �= nT
V (t+) ≤ V (t) + q1 + q2, t = nT,

where λ0 and M0 are two positive constant. According to
comparison theorem of impulsive differential equation [7], [8],
we have

V (t) ≤ M0

λ0
+
(

V (0+) − M0

λ0

)
exp(−λ0t)

− q1 + q2

1 − exp(−λ0T )
exp(−λ0T )

+
q1 + q2

1 − exp(−λ0T )
exp[−λ0(t − nT )]
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where t ∈ (nT, (n + 1)T ]. Hence

lim
t→∞V (t) ≤ M0

λ0
+

q1 + q2

1 − exp(−λ0T )
.

Therefore V (t) is ultimately bounded. We obtain that each
positive solution of (1) is uniformly ultimately bounded. This
completes the proof.
Theorem 3 System (1) is permanent if

T >
α[mq1 + (m + d1)q2]

ad2(d1 + m)
+

1
a

ln
(

1
1 − p

)
:= Tmax.

Proof. Suppose X(t) = (x(t), y1(t), y2(t)) is a solution of
system (1) with X(0) > 0. From theorem 2, we may assume
x(t) < M, yi(t) < M(i = 1, 2) and M > a/b, t ≥ 0. Let
εi(i = 2, 3) small enough and

m2 =
q1[−(d1 + m)T ]

1 − exp[−(d1 + m)T ]
− ε2,

m3 =
q2 exp(−d2T )
1 − exp(−d2T )

− ε3, εi > 0(i = 1, 2)

According to lemma 2, we have yi−1(t) > mi(i = 2, 3) for
all t large enough. We will find m1 > 0 such that x(t) > m1

for all t large enough in following two steps.
Step 1. Since T > Tmax, we can select m4 > 0, ε1 > 0

small enough such that

0 < m4 <
(a − αε1)T − Tmax

(b + kα2mMC)T
,

η = (1 − p) exp

(∫ T

0

[a − bm4 − α(ỹ2(t) + mδC + ε1)dt]

)

> 1,

where δ = kαMm4 and

C =
2 − e−d2T

d2(d1 + m) (1 − e−d2T )

+
3
(
1 − e−d2T

)
+ e−(d1+m)T

(d1 + m − d2)(d1 + m) (1 − e−d2T )
,

We will prove there exists t1 > 0 such that x(t1) > 0.
Otherwise, according to the above assumption, we get y′

1(t) <
δ − (m + d)y1(t). Consider the comparison system,⎧⎨

⎩
y′
1(t) = δ − (m + d1)y1(t),

y′
2(t) = my1(t) − d2y2(t),

}
t �= nT,

Δy1(t) = q1,Δy2(t) = q2, t = nT,
(3)

By comparison theorem of impulsive differential equation [7],
[8] and the lemma 2, we have y2(t) ≤ ỹ2(t)+δmC+ε1 when
t large enough, t ∈ (nT, (n + 1)T ].

Hence, we can obtain{
x′(t) ≥ x(t)[a − bm4 − α(ỹ2(t) + δmC + ε1)], t �= nT,
Δx(t) = −px(t), t = nT.

(4)

Integrating (4) on (nT, (n + 1)T ], we have

x((n + 1)T )
≥ x(nT )(1 − p)

× exp

(∫ T

0

[a − bm4 − α(ỹ2(t) + mδC + ε1)dt]

)

= ηx(nT )

Then x((n+h)T ) ≥ x(nT )ηh → +∞ as h → +∞, which is
a contradiction to the boundedness of x(t). Hence, there exists
a t1 > 0 such that x(t1) > m4.

Step 2. If x(t1) ≥ m4 for all t > t1, then our aim is
obtained. Hence, we only need to consider those solution
which leave the region {X(t) ∈ R

+
3

∣∣x(t) < m4} and re-
enter again. Let t∗ = inft>t1{x(t) < m4}. Then t∗ would
be impulsive point or non-impulsive point.

1) If t∗ an impulsive point, t∗ = n1T, n1 ∈ N. Then x(t) ≥
m4 for t ∈ [t1, t∗] and (1− p)m4 < x(t∗+) = (1− p)x(t∗) <
m4. Select n2, n3 ∈ N, such that

n2T > −1
d

ln
ε4

C1
, (1 − p)n2 exp(Tσ)ηn3 > 1,

where σ = a − bm4 − αM < 0 and

C1 =

∣∣∣∣∣y2(0) − q2

1 − e−d2T
− mq1

(
e−d2T − e−(d1+m)T

)
(1 − e−d2T )

(
1 − e−(d1+m)T

)
+ m

(
y1(0) − y1(0+)

)
×
[

1 − e−(d1+m)T

(d1 + m − d2) (1 − e−d2T )
− e−d2T − e−(d1+m)T

1 − e−d2T

]∣∣∣∣
Let T = (n2 + n3)T . Then, there exist a t2 ∈ [t∗, t∗ + T ]
such that x(t2) ≥ m4. Otherwise x(t) < m4, t2 ∈ [t∗, t∗ +T ].
Similarly to (3), when t ∈ [t∗+n2T, t∗+T ], we have |y2(t)−
ỹ2(t)−mδC| ≤ C1e

−n2d2T . Hence y2(t) ≤ ỹ2(t)+mδC+ε4,
which implies (4) holds for t∗ + n2T ≤ t ≤ t∗ + T . As in
step 1, we have x(t∗ + T ) ≥ x(t∗ + n2T )ηn3 . On the other
hand, the first and the fourth equation of (1) give{

x′(t) ≥ x(t)(a − bm4 − cM) = σx(t), t �= nT,
Δx(t) = −px(t), t = nT,

Integrating the above equation on [t∗, t∗ + n2T ], we can get
x(t∗ + n2T ) ≥ m4(1 − p)n2 exp(n2Tσ), thus x(t∗ + T ) ≥
m4(1 − p2)n2 exp(n2Tσ)ηn3 > m4, a contradiction.

Let t̄ = inft≥t∗{x(t) ≥ m4}, then x(t) < m4 and
x(t̄) ≥ m4 for t ∈ [t∗, t̄], by x′(t) ≥ σx(t), we have
x(t) ≥ m4(1 − p)n2+n3 exp(σ(n2 + n3)T )=̇m1. For t > t̄,
the same arguments can be continued since x(t̄) ≥ m4.

2) t∗ �= nT, n ∈ N. Then x(t) ≥ m4 for t ∈ (t1, t∗) and
x(t∗) = m4. Suppose t∗ ∈ (n′

1T, (n′
1 + 1)T ), there are two

possible case for t ∈ (t∗, (n′
1 + 1)T ].

(i) x(t) ≤ m4 for all t ∈ (t∗, (n′
1 + 1)T ]. Similar to case

1), we can prove that there must be a t′2 ∈ ((n′
1 + 1)T, (n′

1 +
1)T + t], such that x(t′2) > m4. Let t̃ = inft>t∗{x(t) > m4},
then x(t) ≤ m4 for t ∈ (t∗, t̃) and x(t̃) = m4. For t ∈ (t∗, t̃),
we have x(t) ≥ m4(1 − p)n2+n3 exp[(n2 + n3 + 1)σT ] :=
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m1 < m′
1. For t ≥ t̃, the same arguments can be continued

since x(t̃) ≥ m4.
(ii) There exists a t ∈ (t∗, (n′

1 + 1)T ], such that x(t) >
m4. Let t̂ = inft>t∗{x(t) ≥ m4}, then x(t) < m4 for
t ∈ [t∗, t̂) and x(t̂) = m4. For t ∈ [t∗, t̂), we have
x(t) ≥ x(t∗) exp[σ(t − t∗)] ≥ m4 exp(σT ) > m1. Since
x(t̂) ≥ m4 for t > t̂, the same arguments can be continued.
Hence, x(t) ≥ m1 for t > t1. The proof is completed.

Note 1. Let

f(T ) = T − 1
a

ln
(

1
1 − p

)
− α[mq1 + (m + d1)q2]

ad2(d1 + m)
,

since

f(0) = −1
a

ln
(

1
1 − p

)
− α[mq1 + (m + d1)q2]

ad2(d1 + m)
< 0,

f(T ) → ∞ as T → ∞, and f ′(T ) = 1 > 0, so f(T ) = 0
has a unique positive root, denoted by Tmax. From theorems 1
and 3 we know Tmax is a threshold. If T < Tmax, then pest-
eradication periodic solution (0, ỹ1(t), ỹ2(t)) is asymptotically
stable. If T > Tmax, then system (1) is permanent.

Note 2. If system (1) without stage-structured, then the
unique threshold

T ′
max =

α(q1 + q2)
ad

+
1
a

ln
(

1
1 − p

)
,

and

T ′
max−Tmax =

α

a

[
q1

(
1
d
− 1

d2

(
1 + d1

m

)
)

+ q2

(
1
d
− 1

d2

)]
,

which is little more than Tmax when d = d2.

IV. NUMERICAL EXAMPLES

Let a = 5.65, b = 1.45, α = 1.12, k = 0.71, d1 =
0.25, d2 = 0.2,m = 0.62, q1 = 0.25, q2 = 0.3, p = 0.75
with X(0) = (1.0, 1.0, 1.0). From theorem 1 we know that
the prey-eradication periodic solution is asymptotically stable
provided that T = 0.71 < Tmax = 0.7193. A typical prey-
eradication periodic solution of the system (1) is shown in Fig.
1, where we observe how the variable y1(t) and y2(t) oscillates
in a stable cycle. In contrast, the prey x(t) rapidly decreases
to zero. According to theorem 3, if the impulsive periodic
T = 0.73 > Tmax = 0.7193, the prey eradication solution
becomes unstable, then the prey and predator can coexist on
a stable positive periodic solution (see Fig. 2).

We have displayed bifurcation diagrams (See Fig. 3) for
the pest population x and the predator population y1, y2 for
impulsive period T over [0.8, 8], one can easily see that the
dynamical behavior is very complicated, which includes: (1)
high-order quasi-periodic and periodic oscillating, (2) period-
doubling and period-halving bifurcation, (3) chaos and attrac-
tor crisis, etc. That is to say, the presence of pulses make
the dynamical behaviors of system (1) more complex, and
impulsive periodic T has very important influence on system
(1).

0 5 10 15 20
0

1

2

3

4

t

x(
t)

300 305 310 315 320
0.26

0.35

0.44

0.53

0.60

t
y 1(t

)

300 305 310 315 320
3.16

3.26

3.36

3.46

3.56

t

y 2(t
)

Fig. 1. Time-series of system (1): prey population x(t) eradication and
predator population y1(t), y2(t) periodic oscillation when T = 0.71 <
Tmax = 0.7193.

V. CONCLUSION

In this paper, we have investigated an Ivlev-type predator-
prey system with stage-structured and concerning impulsive
control strategy for pest control in detail. We have shown that
there exists a asymptotically stable pest-eradication periodic
solution if the impulsive period is less than the critical value
Tmax. If we choose our impulsive control strategy, in order to
drive the pest to extinction, we can determine the impulsive
period T according to the effect of the chemical pesticides on
the populations and the cost of releasing natural enemies such
that T < Tmax. But, in a real world, complete eradication of
pest populations is generally not possible, nor is it biologically
or economically desirable. A good pest control program should
reduce pest population to levels acceptable to the public.

System (1) is permanent and there exists a nontrivial peri-
odic solution when T > Tmax close to Tmax (See Fig. 2).
The smaller the period, the fewer the pest. And, in order
to keep a small quantity of pests such that below some
economic threshold (ET is defined as the pest population
level that produces damage equal to the costs of preventing
damage) by choosing appropriate impulsive period T and the
number of mature predator released q2, making integrated
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300 305 310 315 320
0.0

0.5

1.0

1.5

2.0

t

x(
t)

300 305 310 315 320
0.26

0.35

0.44

0.53

0.60

t

y 1(t
)

300 305 310 315 320
3.16

3.26

3.36

3.46

3.54

t

y 2(t
)

× 10−2

Fig. 2. Time-series of system (1): prey population x(t) periodic oscillation
co-existence with predator population y1(t), y2(t) when T = 0.73 >
Tmax = 0.7193.

pest management strategy every impulsive period. Therefore,
the periodic releasing natural enemies and spraying pesticides
change the properties of the system without impulses and our
results suggest an effective approach in the pest control.

There are some interesting problems: If constant periodic
release of predator (natural enemy) and sprays pesticide (or
harvests of pest) at different fixed time, how will the period
of impulsive effect affect the complexity in the stage-structured
predator-prey model Ivlev-type functional response? In a real
world, the numbers of releasing natural enemies often change,
if we release natural enemies stochastically [9], how does this
stochastic noise affect the permanence and extinction of this
system? We will continue to study these problems in the future.
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