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Abstract—Remote sensing image processing, spatial data 

analysis through GIS approach, and analytical hierarchy process were 

introduced in this study for assessing the vulnerability area and 

inundation area due to tsunami hazard in the area of Rikuzentakata, 

Iwate Prefecture, Japan. Appropriate input parameters were derived 

from GSI DEM data, ALOS AVNIR-2, and field data. We used the 

parameters of elevation, slope, shoreline distance, and vegetation 

density. Five classes of vulnerability were defined and weighted via 

pairwise comparison matrix. The assessment results described that 

14.35km2 of the study area was under tsunami vulnerability zone. 

Inundation areas are those of high and slightly high vulnerability. The 

farthest area reached by a tsunami was about 7.50km from the 

shoreline and shows that rivers act as flooding strips that transport 

tsunami waves into the hinterland. This study can be used for 

determining a priority for land-use planning in the scope of tsunami 

hazard risk management. 

 

Keywords—AHP, GIS, remote sensing, tsunami vulnerability.  

I. INTRODUCTION 

ATURAL hazards are natural phenomena whose 

occurrence is almost impossible to reduce. We only can 

minimize the impact of these events by performing an initial 

assessment in order to map the vulnerable areas. Vulnerability 

is one of the parameters used to determine disaster risk, 

together with hazard probability, exposure, and capacity 

measures [1], [2]. 

The development of remote sensing technology enables the 

use of satellite imagery for mapping the damage area due to a 

disaster and for assessing the vulnerable areas. Satellite 

images have the advantage of observing large areas in both 

high spatial and high temporal resolution [3]-[5]. Moreover, a 

geographical information system (GIS) is useful for analyzing 

spatial data due to disaster mitigation planning. 

Spatial data analysis via spatial multicriteria analysis helps 

prioritize the decision-making process using georeference data 

to manage different spatial information and combine them for 

better decision making. Spatial multi-criteria analysis uses 

information on both the criterion values and the geographical 

positions of alternatives in addition to the decision maker’s 

preferences with respect to a set of evaluation parameters [6], 

[7]. 
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Remote sensing data of moderate-resolution optical satellite 

images has been used to identify the inundation area and to 

assess the vulnerability and risk in coastal area. GIS is also 

applied to evaluate the strategy for coastal vegetation belts 

against tsunami risk and to analyze tsunami risk using a 

multiscenario approach [8]-[11]. 

A previous study analyzed vulnerability using remote 

sensing data and integrated analysis using the GIS with regard 

to physical infrastructure (i.e., buildings) and identified the 

inundation area based on contours and the highest recorded 

tsunami event related to building vulnerability and human 

vulnerability [5], [12]-[14]. Another study developed the 

Papathoma Tsunami Vulnerability Assessment (PTVA) to 

provide first-order assessments of building vulnerability to 

tsunami [15], [13]. The use of multi-criteria analysis and the 

analytic hierarchy process (AHP) was introduced in 

vulnerability mapping and assessing tsunami vulnerability, 

which have been done at the regional scale using ASTER 

imagery and digital elevation models of 3 arc-seconds SRTM-

version 3 data [16], [17]. 

In this study, we tried to apply input parameters of 

elevation, slope, shoreline distance, and vegetation density and 

analyze them via AHP and GIS in terms of spatial multi 

criteria to map the tsunami vulnerability area. This study was 

applied in the area of Rikuzentakata in Iwate Prefecture, Japan 

(see Fig. 1). The general steps adopted in this study are shown 

in Fig. 2. 

 

 

Fig. 1 Study area 
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Fig. 2 Framework of the study 

 

The parameters of elevation and slope were extracted from 

a digital elevation model (DEM) obtained from the Geospatial 

Information Authority of Japan (hereafter referred to as GSI 

DEM), while the vegetation density is extracted from an 

ALOS AVNIR-2 image. We measured shoreline distance from 

a vector map of the study area. 

II. SURFACE ANALYSIS FOR SPATIAL DATA 

A. Elevation 

We created a digital elevation model from elevation data 

obtained from GSI. GSI DEM was downloaded from 

http://fgd.gsi.go.jp/download/GsiDLSelFileServlet. We used 

5m mesh elevation data (0.2 seconds). The 5m mesh elevation 

was created based on the airborne laser survey of the center 

point grid (mesh) and the data obtained by the 

photogrammetry with a longitude difference at the surface 

separated by an interval of 0.2 seconds latitude difference. The 

height accuracy of the 5m mesh elevation from the airborne 

laser is 0.3m and the standard deviation of the elevation point 

from the photogrammetry is 0.7m. The data was in JPGIS 

format. We needed several JPGIS data that covered our study 

area.  

We converted each JPGIS data to shapefile in point format 

using base map viewer converter software version 3.10 

(FGDV) provided by GSI. The shapefile data were then 

combined using the merge function of ArcGIS 10 based on the 

area of study, and finally, we converted this point format to 

raster for creating the digital elevation model. The steps are 

shown in Fig. 3.  

 

 

Fig. 3 Elevation data process 
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GSI : Japan’s Geographical Survey Institute, DEM : Digital Elevation Model, XML : Extensible Markup Language, ALOS : Advanced Land Observation 

Satellite, AVNIR-2 : the Advanced Visible And Near Infrared Radiometer type 2, NDVI : Normalized Difference Vegetation Index, SAVI : Soil-Adjusted 

Vegetation Index, MSAVI : a Modified Soil-Adjusted Vegetation Index,  AHP : Analytical Hierarchy Process, CR : Consistency Ratio.  
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B. Slope 

The slope is the rate of maximum change in z-value from 

each cell of the image. The use of a z-value is essential for 

correct slope calculations when the surface z units are 

expressed in units different from the ground x, y units. The 

range of values in the output depends on the type of 

measurement units. We created a slope map using the surface 

analyst tools of the ArcGIS 10 software using the third-order 

finite-difference method [18].  

C. Shoreline Distance 

We created shoreline in polyline file for buffering the 

distance from shoreline to the land. We calculated the distance 

using a multiring buffer under the proximity tool in the 

ArcGIS 10 software. The distance is based on the historical 

report of the maximum run-up in the area of study. Equation 

(1) used for shoreline distance buffering [10]. 

 

            0
m a x

Y3 lo g
4 1 0

L o g X lo g 1 4 0 0  
 
 

= +         (1) 

 

in which Xmax is the maximum reach of the tsunami over land, 

and Y0 is the tsunami height at the coast.  

The maximum run-up of the tsunami in the study area due 

to the 2011 Tohoku earthquake was 18.8m. Based on the 

algorithm above, five classes of distance buffers were used in 

order to create a tsunami vulnerability map. It describes that 

9.40m to 11.28m of run-up can reach a distance of 1,289.14m 

from the coastline, 11.28m to 13.16m of run-up can reach 

1,643.89m, 13.16m to 15.04m of run-up can reach 2,019m, 

15.04m to 16.92m of run-up can reach 2,412.45m, and 16.92m 

to 18.80m of run-up can reach more than 2,412.45m. 

We classified elevation, slope, and shoreline distance into 

five classes of vulnerability using the Jenks natural breaks 

method. This classification method identifies breaks in the 

ordered distribution of values that minimizes within class sum 

of squared. We classified elevation, slope, and shoreline 

distance based on the values described in Table I. The tsunami 

vulnerability map based on elevation is shown in Fig. 4, one 

based on slope is shown in Fig. 5, and one based on shoreline 

distance is shown in Fig. 6. 
 

TABLE I 
TSUNAMI VULNERABILITY CLASSES BASED ON ELEVATION, SLOPE, AND                  

SHORELINE DISTANCE 

Elevation 

(meter)[19] 

Slope 

(%) [20] 

Distance 

(meter) 

Vulnerability 

class 

< 5 0 – 2 0 – 1,289.14 High 

5 –10 2 – 6 1,289.14 – 1,643.89 Slightly high 

10 – 15 6 – 13 1,643.89 – 2,019 Medium 

15 – 20 13 – 20 2,019 – 2,412.45 Slightly low 

> 20 > 20 > 2,412.45 Low 

 

 

Fig. 4 Vulnerability map based on elevation  

 

 

Fig. 5 Vulnerability map based on slope 

 

 

Fig. 6 Vulnerability map based on shoreline distance 
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TABLE II 

RESCALING GAINS AND BIASES USED FOR DN TO SPECTRAL RADIANCE 

CONVERSION FOR ALOS AVNIR-2 

Band Grescale Brescale 

1 0.5888 0 

2 0.5730 0 

3 0.5020 0 

4 0.8350 0 

III. ALOS AVNIR-2 PROCESSING 

ALOS AVNIR-2 was used to generate vegetation density. 

We calculated normalized difference vegetation index 

(NDVI), soil-adjusted vegetation index (SAVI), and a 

modified soil-adjusted vegetation index (MSAVI) instead of 

vegetation density. The digital numbers (DNs) of ALOS 

AVNIR-2 were converted to reflectance values before 

generating the synthetic NDVI and SAVI images [21], [22]. 

The steps to create vegetation density map are as follows: 

A. DN to Radiance Conversion 

Equation (2) describes the algorithm for DN to radiance 

conversion [23]. 

 

               λ × += r e s c a le r e s c a leQ C A L BL G            (2) 

 

in which Lλ is the spectral radiance at the sensor’s aperture 

(W/m
2
/sr/µm), Grescale is the rescaled gain, QCAL is the DN, 

and Brescale is the rescaled bias. Table II describes rescaled 

gains and biases for ALOS AVNIR-2.  

B. Radiance to Reflectance Conversion 

Equation (3) describes the algorithm for radiance to 

reflectance conversion [24]. 

 

          2

c o sλ λ
λ

θρ π × × ×= s
dL

E S U N
                 (3) 

 

in which ρλ is the unitless planetary reflectance, Lλ is the 

spectral radiance at the sensor’s aperture, d
2
 is the Earth-sun 

distance in astronomical units from a nautical handbook, 

ESUNλ is the mean solar exoatmospheric irradiances, and θs is 

the solar zenith angle in degrees. 

C. NDVI, SAVI, and MSAVI Calculation 

NDVI is a measure of the difference in reflectance between 

these wavelength ranges that takes values between −1 and 1, 

with values > 0.5 indicating dense vegetation and values < 0 

indicating no vegetation including water. Equation (4) was 

used for NDVI calculation [25]. 

 

                         ( )
( )

−

+
=

N IR V IS
N D V I

N IR V IS
                       (4) 

 

in which NIR is near an infrared band and VIS is a visible band 

of red band of ALOS AVNIR-2. Band 3 is red, and band 4 is 

NIR. Moreover, SAVI is one of the algorithms developed to 

generate vegetation index by eliminating soil factor [26]. 

Although the SAVI model is not significant in the intraclass 

analysis, in the similar spectral space, this model presents a 

reasonable performance in the characterization of forested and 

nonforested areas [22]. SAVI was developed to minimize soil-

brightness, including shadow, influences found in the NDVI 

by accounting for first-order soil-vegetation spectral 

interactions as in (5) [27].  

 

             ( )
( )

( )1
−

× +
+ +

=
N IR R

S A V I L
N IR R L

                     (5) 

 
in which NIR is the near infrared band, R is the red band, and 

L is the soil calibration factor. L = 0.5 [28]. 

A correction factor (L) was used to minimize the secondary 

backscattering effect of canopy-transmitted soil background 

reflected radiation. The L value of 1 was optimal in semiarid 

environments. 

MSAVI is a modified version of SAVI, which replaces the 

constant soil adjustment factor, L, with a self-adjusting L. 

SAVI uses a manual adjustment L, while MSAVI uses a self-

adjusting L. The former requires prior knowledge about 

vegetation densities in order to use an optimal L value in the 

SAVI equation, while the latter automatically adjusts its L 

values to optimal [29]. Equation (6) describes the algorithm 

for MSAVI calculation. 

 

( ) ( )21 2 B 4 1 2 B 4 1 8 B 4 B 3
2

M S A V I  + − + − − 
 

=      (6) 

 

The regression between NDVI and MSAVI values 

describes that R
2
 was 0.9658 (see Fig. 7). We used MSAVI for 

vegetation density mapping because it provides a vegetation 

index where soil factors are eliminated. MSAVI values ranged 

between −0.058 to 0.537. We classified MSAVI values into 

five classes of vulnerability for generating a tsunami 

vulnerability map based on vegetation density using the Jenks 

natural breaks method. The classification was based on the 

maximum and minimum values of MSAVI as shown in Table 

III.   
 

TABLE III 

TSUNAMI VULNERABILITY CLASSES BASED ON VEGETATION DENSITY 

Vegetation density Vegetation index Vulnerability class 

Rarely (−)0.05761 – 0.046204 High 

Slightly rarely 0.046204 – 0.091981 Slightly high 

Medium 0.091981 – 0.133113 Medium 

Slightly high 0.133113 – 0.178984 Slightly low 

High 0.178984 – 0.537292 Low 
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Fig. 7 Scatterplot of NDVI and MSAVI values 

 

A vulnerability map based on vegetation density, as shown 

in Fig. 8, described that most of high-vulnerability areas were 

found in the coastal areas of Rikuzentakata and indicated as 

bare areas.  

 

 

Fig. 8 Vulnerability map based on vegetation density 

IV. GIS AND AHP FOR VULNERABILITY MAPPING  

We used cell-based modeling in spatial analysis to 

determine the vulnerability area due to tsunami hazard. Cells 

are classified into five classes of vulnerability in the numbers 

of 1, 2, 3, 4, and 5, which represent low, slightly low, medium, 

slightly high, and high vulnerability classes.  

We then overlay the entire parameter of tsunami 

vulnerability by using a weighting and scoring system. 

Weighting is based on the dominant influences of these 

parameters in determining the class of tsunami vulnerability. 

For this step, we applied AHP.  

AHP helps in creating a scaled set of preferences and 

describing the importance of each parameter relative to other 

parameters through pairwise comparisons [30]-[32]. We 

established priorities among the parameters of the hierarchy 

by creating a series of judgments based on pairwise 

comparisons of the parameters, where a number from 1 to 9 is 

used in the matrix cell value for scoring the importance of 

each parameter. Table IV describes the Saaty nine-point 

comparison scale. This number depends on the relative 

importance of each parameter.  
 

TABLE IV 

THE SAATY NINE-POINT COMPARISON SCALE [34] 

Score Definition Explanation 

1 Equal importance Two parameters contribute equally 
to the objective. 

3 Weak importance of 

one over another 

The judgment is to favor one 

parameter over another, but it is not 
conclusive. 

5 Essential or strong 

importance 

The judgment is to strongly favor 

one parameter over another. 
7 Demonstrated 

importance 

Conclusive judgment as to the 

importance of one parameter over 

another. 
9 Absolute importance The judgment in favor of one 

parameter over another is of the 
highest possible order of 
affirmation. 

2, 4, 6, 8 Intermediate values 

between the two 
adjacent judgments 

Compromise is needed. 

 
TABLE V 

PAIRWISE COMPARISON 

 Elevation Slope 
Shoreline 

distance 

Vegetation 

density 

Elevation 1 2 3 3 

Slope 1/2 1 2 2 1/2 

Shoreline distance 1/3 1/2 1 3 

Vegetation density 1/3 2/5 1/3 1 

 

The relative weights of each parameter will be produced via 

pairwise comparison as shown on Table V. We calculated 

hierarchical interactions based on the respective importance of 

each parameter by assessing the numerical score. These values 

are generated by the subjective determination of the 

investigator in determining the importance of each factor [32], 

[33]. 

We calculated the eigenvector based on the pairwise 

comparison matrix in five iterations. The normalized principal 

eigenvector in five iterations describes that elevation has the 

highest weight (45.94%), followed by slope (25.53%), 

shoreline distance (16.71%), and vegetation density (11.81%), 

as shown in Fig. 9. 
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Fig. 9 Normalized eigenvector calculation 
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TABLE VI 

RANDOM CONSISTENCY INDEX 

Matrix size 1 2 3 4 5 6 7 8 

Random CI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 

 

AHP tolerates inconsistency by providing a measure of 

inconsistency assessment, which is shown by consistency ratio 

(CR). An acceptable CR is less than or equal to 10%, although 

in some cases a consistency ratio greater than 10% can be 

considered acceptable [35]. CR is defined as the ratio between 

the consistency index (CI) and random consistency index (RI). 

CR indicates the probability that the matrix judgments were 

randomly generated [30]. Equation (7) describes the algorithm 

for CR and CI calculation. 

 

      ( )
( )

m a x
,

1

λ −
=

−
=

NC I
C R a n d C I

R I N

                 (7) 

 

in which λmax represents the largest eigenvalue and N is the 

size of the the comparison matrix. In this study, N = 4.  

λmax is calculated from the sum of all parameters and is 

multiplied by its eigenvector. The RI is based on the random 

consistency index as shown in Table VI. We used an RI of 

0.90 for four parameters. Five iterations of normalized matrix 

in Fig. 9 produces the value of CI was 0.057 and CR was 

6.4%. 

In order to create the vulnerability map, we calculated each 

raster cell of the parameter to its weight. A weighted linear 

combination is very straightforward in a raster GIS, and 

factors are combined by applying a weight value to each, 

followed by a summation of the results [36]. We used a raster 

calculator in map algebra menu using the spatial analyst tools 

of ArcGIS 10 to generate vulnerability mapping by applying 

(8). The tsunami vulnerability map in the Rikuzentakata area 

as result of this calculation is shown in Fig. 10. 

 

                                       ( )⋅∑ i iW X                                 (8) 

 

in which Wi  is the weight values of the parameter i and Xi  is 

the potential rating of the factor. 
 

 

 

Fig. 10 Tsunami vulnerability map of Rikuzentakata 
 

TABLE VII 

VULNERABILITY CLASSIFICATION 

Vulnerability 

classes 

Vulnerability  

(grid) value 

Vulnerability 

index 

Area 

(km2) 
(%) 

Low 1 − 1.8 1 117.88 49.55 

Slightly low 1.8 − 2.6 2 67.16 28.23 

Medium 2.6 − 3.4 3 38.52 16.19 

Slightly high 3.4 − 4.2 4 10.05 4.22 

High 4.2 − 5 5 4.30 1.81 

 

The vulnerability class is shown in Table VII. We 

calculated the statistics of the vulnerability map, which shows 

that the vulnerability index of 822,634.39 grid cells ranged 

between 1 to 5, with a standard deviation of 0.766. 

We compared our results with the historical data of the 

impact of the 2011 Japan tsunami from GSI (see Fig. 11) and 

the 2011 Earthquake Tsunami Joint Survey Group. The 

comparison describes that most of inundation areas are areas 

of high and slightly high vulnerability.  

The inundation area, as result of our study, was 14.35km
2
 as 

shown in Fig. 12, while GSI reported that the inundation area 

in Rikuzentakata because of the 2011 Japan tsunami was 13 

km
2
.  

The maximum run-up in Rikuzentakata based on the 2011 

Earthquake Tsunami Joint Survey Group was 18.81m and 

found in the area of Yamanawashiro (in the latitude of 39.021 

and longitude of 141.647). This area was identified as a bare 

area and in the class of slightly high vulnerability. The farthest 

area reached by the tsunami during the 2011 Japan tsunami 

was about 7.50km from the shoreline, with an inundation 

height of 11.08m (in the latitude of 39.063 and longitude of 

141.589). This area was close to the river and identified in the 

class of slightly high vulnerability. 
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Fig. 11 Map of the impact of the 2011 Japan tsunami in 

Rikuzentakata, published by GSI [37] 

 

 

Fig. 12 Map of possible inundation areas in Rikuzentakata 

 

In addition, Table VIII describes the value of some data that 

were used as the parameters in this study. Based on the 

vulnerability class that is described in the previous section (see 

Tables I and III), in general, these values are included in the 

class of high vulnerability. 

V.  DISCUSSION  

Vulnerability describes the potential area that can be 

damaged by natural hazards. Vulnerability class could be 

based on a physical parameter, such as elevation, slope, 

shoreline distance, and vegetation density. Moreover, 

inundation can be defined as the result of a tsunami traveling a 

long distance inland and is a horizontal measurement of the 

path of the tsunami. The analysis of satellite remote sensing 

data, elevation data, and survey data followed by multi-criteria 

analysis through AHP and raster overlay in GIS processing 

can be used as the basic information for vulnerability mapping 

and inundation assessment due to tsunami hazard. The use of 

the AHP method helps in the analysis of spatial multi-criteria 

where all the parameters used in this study were calculated 

based on their weight factors to create a vulnerability map. 

This study is a first attempt to assess tsunami vulnerability 

by using the parameter of MSAVI instead of vegetation index 

mapping besides elevation, slope, and shoreline distance and 

applying AHP methods combined with raster overlay through 

GIS processing in the Rikuzentakata area. A simple method 

for inundation prediction that was performed in this study can 

be a valuable step for carrying out a preliminary tsunami 

vulnerability mapping and impact assessment when the high 

resolution of digital elevation model data and detailed 

topographic data are not available.  

Remote sensing can be effective for deriving information 

about the input parameters for tsunami vulnerability mapping 

and impact assessment. For the large area of study, several 

indicators of vulnerability can be obtained using a middle-

resolution satellite. ALOS AVNIR-2 is useful for preparing 

the input parameters of vegetation density. Although obtaining 

the digital elevation model from GSI DEM needs some 

processing, it was very useful to derive information about the 

digital elevation model in high spatial resolution, especially 

for areas of study around Japan. GIS is a powerful tool for 

processing and combining spatial data of each parameter and 

analyzing the result of AHP in order to generate a 

vulnerability map.   

In this research, five classes of vulnerability were used.  

The tsunami vulnerability map describes that 117.88km
2
 of the 

area was in low vulnerability, 67.16 km
2
 was in slightly low 

vulnerability, 38.52 km
2 

was in medium vulnerability, 10.05 

km
2
 was in slightly high vulnerability, and 4.30 km

2 
was in 

high vulnerability. The high-vulnerability areas were mostly 

found in the coastal areas of the sloping coast type. Inundation 

areas were predicted in areas identified as high-vulnerability 

and rather-high-vulnerability areas. In addition, we assumed 

that vegetation may play an important role as tsunami barriers 

to reduce the impact of tsunami destruction, and a river or 

another water channel can act as a flooding strip that 

transports inundation into the hinterland. The run-up of the 

tsunami comes up to the hinterland not only through the flat 

surface of the area but also because of the river. This is shown 

in the inundation map, which described that the farthest area 

reached by tsunami was about 7.50km from the shoreline, and 

this area was close to the river. The tsunami vulnerability map 

and inundation map generated in this study can be used for 

determining the priority for land-use planning related to 

tsunami hazard risk management. 

In this study, we introduced the combination analysis of 

digital elevation data, middle-resolution of satellite images, 

tsunami historical data, AHP, and spatial multi-criteria 
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processing via GIS to provide a tsunami vulnerability map and 

inundation map. As a preliminary study, we calculated the 

reflectance value of an ALOS AVNIR-2 image before and 

after the 2011 Japan tsunami. In the next study, we will 

analyze satellite images to assess the characteristics of the 

inundation area by comparing the before and after images of 

the disaster event.   
 

TABLE VIII 

PARAMETERS VALUE IN THE AREA OF INUNDATION 

Parameters Average value 

Eelevation (meter) 4.425 

Slope (%) 8.052 

NDVI 0.089 

SAVI 0.048 

MSAVI 0.040 

ALOS AVNIR-2 reflectance (18 March 2009) 0.244 

ALOS AVNIR-2 reflectance (14 March 2011) 0.137 

VI. CONCLUSION  

GIS application followed by satellite image processing and 

AHP method in multi-criteria analysis is useful for tsunami 

vulnerability mapping and impact assessment. GIS indicate 

the vulnerability area due to tsunami and describe the 

possibility areas that could be affected by tsunami waves. In 

the scope of disaster mitigation planning, this study can be 

used for the evacuation and reconstruction plan due to tsunami 

hazards. In this study, we applied four parameters in order to 

create a tsunami vulnerability map and to map the inundation 

areas in the area of Rikuzentakata, Iwate Prefecture, Japan. 

The vulnerability map showed that most of the coastal areas 

are vulnerable to tsunami hazard. The inundation pattern, as 

the result of this study, showed similarities to the inundation 

areas of the 2011 Tohoku earthquake in the area of 

Rikuzentakata. This study used high resolution of DEM for 

the input parameters of elevation and slope. We also 

calculated MSAVI for the parameter of vegetation index.  

In the case of data limitation, the use of other DEM is 

needed. By adding other parameters, such as coastal type, 

relative direction of tsunami, and coastal bathymetry, better 

tsunami vulnerability mapping can be done. We recommend to 

the user to be aware of the assumptions made as well as the 

limitations within this study. Environmental vulnerability 

assessment as well as social and economic data can be applied 

for further works.  

In conclusion, the use of remote sensing data followed by 

AHP processing and spatial multi-criteria analysis via the GIS 

approach can be applied not only for tsunami vulnerability 

mapping but also for the assessment of the areas that could be 

affected by tsunami hazard. 
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