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Abstract—A filtering problem of almost incompressible liquid
chemical compound in the porous inhomogeneous 3D domain is
studied. In this work general approaches to the solution of two-
dimensional filtering problems in ananisotropic, inhomogeneous and
multilayered medium are developed, and on the basis of the obtained
results mathematical models are constructed (according to Ollendorff
method) for studying the certain engineering and technical problem
of filtering the almost incompressible liquid chemical compound in
the porous inhomogeneous 3D domain. For some of the formulated
mathematical problems with additional requirements for the structure
of the porous inhomogeneous medium, namely, its isotropy, spatial
periodicity of its permeability coefficient, solution algorithms are
proposed. Continuation of the current work titled ”On one mathemat-
ical model for filtration of weakly compressible chemical compound
in the porous heterogeneous 3D medium. Part II: Determination of
the reference directions of anisotropy and permeabilities on these
directions” will be prepared in the shortest terms by the authors.

I. INTRODUCTION

L IQUID filtering processes occur in porous environment,
which, depending on its physical, chemical and mechan-

ical properties, belongs to the group of anisotropic (filtering
properties at each point of environment are equal in all direc-
tions, i.e. the corresponding functions in mathematical models
are scalar functions) or ananisotropic (filtering properties at
each point of environment are different in each direction,
i.e. the corresponding functions in mathematical models are
vector functions) materials. Likewise, porous environment
layers can be divided into two types - ”active/productive” and
”passive/non-productive” layers. In addition, in real processes
(objects, phenomena) ”active/productive” layers do not only
show anisotropic or ananisotropic, homogeneous or inhomo-
geneous filtering properties, but are always flexuous and with
variable thickness.

Similar problems appear in the processes of acquiring liquid
energy feedstock (oil, gas; for instance, see [1], [2]); when op-
erating hydro-technical and hydro-ameliorative constructions
(for instance, see [3]-[7]), as well as when designing and
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constructing them; in the fight against the problem of pollution
and salification of agricultural areas by ground waters (for
instance, see [8], and in other dynamic processes, described
by 2D elliptic equations. Solution of such problems requires
elaboration of filtering process theory in those models of
porous medium, which are most adequate to the natural
conditions.

II. FORMULATION OF THE DIRECT LINEAR FILTERING
PROBLEM IN THE ANISOTROPIC POROUS ENVIRONMENT

Suppose that our studied inhomogeneous porous domain
is an anisotropic structure having a periodic volume (not
compulsory with a constant period), and the main element
of the structure is a rectangular prism. The coefficient of
permeability written as a product

k (x, y, z) = K (α, β, γ) = K{1} (α)K{2} (β)K{3} (γ) ,
(1)

where α = α (x, y, z) , β = β (x, y, z) , γ = γ (x, y, z) are
auxiliary functions of arguments, which, firstly, define the
geometry of the periodic structure of the porous environment,
and periods by α, β and γ are dimensions of periodic
structure elements (rectangular prisms), which form a porous
region; and secondly, satisfies these conditions:

1.
〈∇α,∇β〉 = 〈∇α,∇γ〉 = 〈∇β,∇γ〉 ≡ 0, (2)

where 〈·, ·〉 denotes a scalar derivative;

2.

max

{
α(x,y,z)+Tper.(α(x,y,z))∫

α(x,y,z)

∣∣∣ ∂
∂α(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dα,
β(x,y,z)+Tper.(β(x,y,z))∫

β(x,y,z)

∣∣∣ ∂
∂β(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dβ,
γ(x,y,z)+Tper.(γ(x,y,z))∫

γ(x,y,z)

∣∣∣ ∂
∂γ(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dγ} � L.

(3)
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where Tper. (ω (x, y, z)) is a period of an argument function
ω = {α;β; γ} , and if along one of directions of ω = {α;β; γ}
the coefficient of permeability k (x, y, z) is constant, then
the period Tper. (ω (x, y, z)) can be equal to Tper. (ω̄) , ω̄ =
{α;β; γ}/ω; L is a descriptive size of a filtering domain;
ω (α, β, γ) = σ−1 (x, y, z) , ω (x, y, z) = σ (α, β, γ).

3.

min

{
α(x,y,z)+Tper.(α(x,y,z))∫

α(x,y,z)

∣∣∣ ∂
∂α(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dα,
β(x,y,z)+Tper.(β(x,y,z))∫

β(x,y,z)

∣∣∣ ∂
∂β(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dβ,
γ(x,y,z)+Tper.(γ(x,y,z))∫

γ(x,y,z)

∣∣∣ ∂
∂γ(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dγ}

� max {Δ1,Δ2,Δ3} .

(4)

where Δi

(
i = 1, 3

)
is a distance between the arc end of

the ω = {α;β; γ}-th coordinate line and the end of the
corresponding i-th

(
i = 1, 3

)
edge of the structure ele-

ment (rectangular prism), i.e. if each point O (x, y, z) of
the structure element (rectangular prism) is considered as
a local reference point and, if the ends of three edges
OAi

(
i = 1, 3

)
of the rectangular prism are marked by points

Ai (x, y, z)
(
i = 1, 3

)
, and the ends of three arcs

(
i = 1, 3

)
of the corresponding curvilinear prism are marked by points
Ai (α, β, γ)

(
i = 1, 3

)
, then the value of Δi

(
i = 1, 3

)
is

determined as Δi

def≡ ∣∣Ai − Āi

∣∣ (
i = 1, 3

)
.

The condition 1 means that in the porous region surfaces of
the level α (x, y, z) = α0 ≡ const, β (x, y, z) = β0 ≡ const
and γ (x, y, z) = γ0 ≡ const create a system of triorthogonal
surfaces; the condition 2 means that in the whole filtering
domain the arc length

ω(x,y,z)+Tper.(ω(x,y,z))∫
ω(x,y,z)

∣∣∣ ∂
∂ω(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dω
of the ω = {α, β, γ}−th coordinate line, which corresponds
to the period Tper. (ω) , ω = {α;β; γ}, is infinitesimal in
comparison to its descriptive size L; the condition 3 means
that in the curvilinear prism, limited by surfaces α = α0 ≡
const and α = α0 + Tper. (α (x, y, z)); β = β0 ≡ const
and β = α0 + Tper. (α (x, y, z)); γ = α0 ≡ const and γ =

γ0 + Tper. (γ (x, y, z)), are lengths with the length

ω(x,y,z)+Tper.(ω(x,y,z))∫
ω(x,y,z)

∣∣∣ ∂
∂ω(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dω
are slightly deviated from the corresponding ends of the
tangent lines (to be more exact – line segments).

Simplifying conditions (2)-(4) allow considering an elemen-
tary curvilinear prism as elementary rectangular prism with
edges OAi

(
i = 1, 3

)
, with lengths equal to

L (ω)
def≡

ω(x,y,z)+Tper.(ω(x,y,z))∫
ω(x,y,z)

∣∣∣ ∂
∂ω(x,y,z)

[
x (α, β, γ)�i1

+y (α, β, γ)�i2 + z (α, β, γ)�i3

]∣∣∣ dω, ω = {α;β; γ} .
(5)

Let us denote this elementary rectangular prism as an
elementary approximately-averaged prism.

III. CONSTRUCTION OF A SIMPLIFIED MODEL ON THE
BASIS OF OLLENDORFF METHOD (SEE [2], [9], [10])

It is necessary to construct a simplified model, which
describes the main filtering properties in anisotropic environ-
ments with a coefficient of permeability found by the formula
(1), and where the functional coefficients in filtering equations
are continuous with respect to space variable functions, which
are not compulsory periodic. The general fluid filtering model
in inhomogeneous environments with a periodically changing
permeability contains filtering equations, where functional
coefficients are fast oscillating functions and, in general,
are piecewise continuous functions. So, finding of analytical
solution for the corresponding initial and boundary problem
gets more sophisticated (see fundamental monograph [1] and
also [7], [8]. Since in relation to all three homogeneous
flows, which are perpendicular to the surfaces of the level
α (x, y, z) = α0 ≡ const, β (x, y, z) = β0 ≡ const and
γ (x, y, z) = γ0 ≡ const, the porous medium with the
permeability coefficient (1) has various filtering properties,
then the approximating porous medium with curvilinear layers
in the model has to be replaced with a ”fictive” ananisotropic
environment, which has to have fully identical filtering prop-
erties in relation to all three above mentioned flows (generally
speaking, not anymore one-dimensional). Depending on such
filtering flow approximation level – at a structure element level
(i.e. within the limits of an elementary approximately-averaged
rectangular prism) or at a filtering level in general - it is
possible to talk about approximation methods, namely, about
Ollendorff local homogeneously-ananisotropic approximation
method (obviously, at first [2], see also [1], [9], [10]) or
about Leibenzon integral homogeneously-ananisotropic ap-
proximation method (presumably, at first [3], see also [1], [4]-
[6], [9]-[11]). Notice that local and integral homogenously-
ananisotropic approximation methods set various permeability
values in ananisotropic models along ω = {α;β; γ} coordinate
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lines (see [1], [6]). Taking into account the assumptions (3)-
(5), we will apply Ollendorff method for our problem to con-
struct a filtering model in porous curvilinear layer environment
with permeability, which changes periodically in space and
the coefficient of which is set by the formula (1). For this
purpose let us compare all three one-dimensional flows, which
are perpendicular to the surfaces of the level α (x, y, z) =
α0 ≡ const, β (x, y, z) = β0 ≡ const, γ (x, y, z) = γ0 ≡
const in an elementary approximately-averaged rectangular
prism (a single structure element), which is filled by a liquid
(inhomogeneous environment) with permeability coefficients
in the form (1), and in the same elementary approximately-
averaged rectangular prism, which is filled by a homogeneous
environment with rectilinear anisotropy. Because of the con-
dition (3) it is possible to consider that within the boundaries
of an elementary structure unit (elementary approximately-
averaged rectangular prism) density ρ (α, β, γ; t), dynamic
viscosity μ (α, β, γ; t) and other physical characteristics of the
liquid are constant, and, moreover, filtering process within the
boundaries of this elementary structure unit is done at one
moment, i.e. all physical characteristics within the boundaries
of an elementary approximately-averaged rectangular prism do
not depend on time (more precise mathematical interpretation
of this statement/assumption by using Dirac’s delta function
is stated in the work [12]; see also [13], [14]). So, in the local
Cartesian coordinate system α×β× γ (locality is understood
this way: for each elementary structure unit its own Cartesian
coordinate system is introduced) we can write such widely
known liquid filtering equations (see, for example, [1], [12]):

∂
∂α

{
K (α, β, γ) ∂p(α,β,γ)

∂α

}
+ ∂

∂β

{
K (α, β, γ) ∂p(α,β,γ)

∂β

}

+ ∂
∂γ

{
K (α, β, γ) ∂p(α,β,γ)

∂γ

}
= 0,

(6)
where p (α, β, γ) is pressure, and

�ϑ = −K (α, β, γ)

μ (α, β, γ)
· ∇p, (7)

is the Darcy’s law, where �ϑ = �ϑ (α, β, γ) defines a filtering
velocity field within the elementary approximately-averaged
rectangular prism.

Then for a one-dimensional filtering flux, which flows
along the coordinate line within the elementary approximately-
averaged rectangular prism, from (6) we can write
∂
∂α

{
K{1} (α) · ∂p(α,β,γ)

∂α

}
= 0, and after integration it gives

p (α, β, γ) =
[
K{1} (α) ∂p(α,β,γ)

∂γ

]∣∣∣
α=0

×
α∫
0

dα1

K{1}(α1)
+ p (α, β, γ)|α=0.

Assuming that a function p (α, β, γ)|α=L(α) is defined, from

the last formula we can find that[
K{1} (α) ∂p(α,β,γ)

∂γ

]∣∣∣
α=0

=
p(α,β,γ)|α=L(α)+p(α,β,γ)|α=0

L(α)∫
0

dα1

K{1}(α1)

Thus, we have got

p (α, β, γ) = 1
L(α)∫
0

dα1

K{1}(α1)

{
p (α, β, γ)|α=L(α)

+p (α, β, γ)|α=0

[
α∫
0

dα1

K{1}(α1)
−

L(α)∫
0

dα1

K{1}(α1)

]} (8)

where L (α) = |OA1| is determined by the formula (5) and
denotes the length of the elementary approximately-averaged
rectangular prism edge OA1 (we remind the according to the
above mentioned construction/assumption the edge OA1 is
located at α-coordinate line; the edge OA2 is located at β-
coordinate line; the edge OA3 is located at γ-coordinate line);
K{1} (·) is a function from (1).

The full liquid filtering flux, which flows through the side
surface of the elementary approximately-averaged rectangular
prism, which is perpendicular to α-coordinate line can be
calculated by the formula

Qα

def≡ − p(α,β,γ)|α=L(α)−p(α,β,γ)|α=0

L(α)∫
0

dα1

K{1}(α1)

×
L(β)∫
0

K{2} (β1) dβ1

L(γ)∫
0

K{3}(γ1)
μ(α,β1,γ1)

dγ1.

By repeating this assumption, we can find full fluid filtering
fluxes, which flow through other two side surfaces of the ele-
mentary approximately-averaged rectangular prism, which are
perpendicular to the β- and γ-coordinate lines, respectively:

Qβ

def≡ − p(α,β,γ)|β=L(β)−p(α,β,γ)|β=0

L(β)∫
0

dβ1

K{2}(β1)

×
L(α)∫
0

K{1} (α1) dα1

L(γ)∫
0

K{3}(γ1)
μ(α1,β,γ1)

dγ1,

Qγ

def≡ − p(α,β,γ)|γ=L(γ)−p(α,β,γ)|γ=0

L(γ)∫
0

dγ1

K{3}(γ1)

×
L(α)∫
0

K{1} (α1) dα1

L(β)∫
0

K{2}(β1)
μ(α1,β1,γ)

dβ1.

Moreover, if our assumption that within the elementary
approximately-averaged rectangular prism the dynamic vis-
cosity of the liquid is constant (as well as other physical
characteristics of the liquid) is valid, then in the last three
formulae μ (α, β, γ) = μconst ≡ const, and therefore this
value can be taken out of the integral sign and in addition,
in the right sides of these formulae the multiple integrals are
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reduced to repeated integrals:

Qα

def≡ − p(α,β,γ)|α=L(α)−p(α,β,γ)|α=0

μconst.

L(α)∫
0

dα1

K{1}(α1)

×
L(β)∫
0

K{2} (β1) dβ1

L(γ)∫
0

K{3} (γ1) dγ1,

(9)

Qβ

def≡ − p(α,β,γ)|β=L(β)−p(α,β,γ)|β=0

μconst.

L(β)∫
0

dβ1

K{2}(β1)

×
L(α)∫
0

K{1} (α1) dα1

L(γ)∫
0

K{3} (γ1) dγ1,

(10)

Qγ

def≡ − p(α,β,γ)|γ=L(γ)−p(α,β,γ)|γ=0

μconst.

L(γ)∫
0

dγ1

K{3}(γ1)

×
L(α)∫
0

K{1} (α1) dα1

L(β)∫
0

K{2} (β1) dβ1.

(11)

As it is shown in [1], [15], [16], in the local Cartesian
coordinate system α×β×γ within small volumes (in our case
it is an elementary approximately-averaged rectangular prism)
it is possible to consider that rectilinear ananisotropic porous
environment permeability coefficients along the local Cartesian
coordinate axis are constant: kα ≡ const, kβ ≡ const,
kγ ≡ const. Then fluid filtering equation within small volume
of such rectilinear ananisotropic porous environment looks like
this (see [1], [15]-[17]):

3∑
i=1

kωi

∂2p (ω1, ω2, ω3)

∂ω2
i

= 0; {ω1;ω2;ω3}
def≡ {α;β; γ} .

(12)
Moreover, the fluid filtering velocity field is found by the

tensor Darcy’s law:

ϑωi = − kωi

μconst.

∂p

∂ωi
; {ω1;ω2;ω3}

def≡ {α;β; γ} . (13)

For a one-dimensional filtering flux, which flows along
coordinate line within the elementary approximately-averaged
rectangular prism, from (12) we obtain that

p (α, β, γ) = p (α, β, γ)|α=0

+α
p(α,β,γ)|α=L(α)−p(α,β,γ)|α=0

L(α) .

So, we can calculate the full fluid filtering flux, which flows
through the side surface of the elementary approximately-
averaged rectangular prism, which is perpendicular to the
coordinate line:

Qα

def≡ − kα

μconst

L(β)∫
0

dβ1

L(γ)∫
0

∂p(α,β1,γ1)
∂α dγ1

= − kα

μconst

L(β)∫
0

dβ1

L(γ)∫
0

{
p(α,β,γ)|α=L(α)−p(α,β,γ)|α=0

L(α)

}
dγ1

= − kα

μconst

L(β)L(γ)
L(α)

{
p (α, β, γ)|α=L(α) − p (α, β, γ)|α=0

}
.

(14)

Absolutely likewise, we can find full fluid filtering fluxes,
which flow through other two side surfaces of the elementary
approximately-averaged rectangular prism, which are perpen-
dicular to the β− and γ− coordinate lines, respectively:

Qβ

def≡ − kβ

μconst

L(α)∫
0

dα1

L(γ)∫
0

∂p(α1,β,γ1)
∂β dγ1

= − kβ

μconst

L(α)∫
0

dα1

L(γ)∫
0

{
p(α,β,γ)|β=L(β)−p(α,β,γ)|β=0

L(β)

}
dγ1

= − kβ

μconst

L(α)L(γ)
L(β)

{
p (α, β, γ)|β=L(β) − p (α, β, γ)|β=0

}
,

(15)

Qγ

def≡ − kγ

μconst

L(α)∫
0

dα1

L(β)∫
0

∂p(α1,β1,γ)
∂γ dβ1

= − kγ

μconst

L(α)∫
0

dα1

L(β)∫
0

{
p(α,β,γ)|γ=L(γ)−p(α,β,γ)|γ=0

L(γ)

}
dβ1

= − kγ

μconst

L(α)L(β)
L(γ)

{
p (α, β, γ)|γ=L(γ) − p (α, β, γ)|γ=0

}
.

(16)
As it was mentioned above, our considered porous region

with permeability 1 has various filtering properties in relation
to one-dimensional fluxes, which are perpendicular to the
surfaces of the level α (x, y, z) = α0 ≡ const, β (x, y, z) =
β0 ≡ const, and γ (x, y, z) = γ0 ≡ const. Therefore, when
modelling, it is necessary to substitute the porous region
with curvilinear surfaces with such ”fictive” ananisotropic
environment, in order to save identical filtering characteristics
in relation to the same fluxes. So, it is necessary to find the
corresponding approximating ”fictive” ananisotropic environ-
ment parameters, so that the filtering properties of the modeled
porous anisotropic region, the periodic permeability of which
is set by the formula (1), would be identical in relation to all
three one-dimensional fluxes. For this purpose let us compare
the each formula from formulas (9)-(11) to the corresponding
formula from formulas (14)-(16):
• from (9) and (14) we obtain that in the local Cartesian
coordinate system α × β × γ within small volumes the
rectilinear permeability coefficient kα of the ananisotropic
porous environment along the local Cartesian axis has to be
chosen (found, calculated) as

kα =
L (β)L (γ)

L (α)

L(β)∫
0

K{2} (β1) dβ1

L(γ)∫
0

K{3} (γ1) dγ1

L(α)∫
0

dα1

K{1}(α1)

,

(17)
• from (10) and (15) we obtain that the permeability of this
environment has to be chosen as

kβ =
L (α)L (γ)

L (β)

L(α)∫
0

K{1} (α1) dα1

L(γ)∫
0

K{3} (γ1) dγ1

L(β)∫
0

dβ1

K{2}(β1)

,

(18)
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• from (11) and (16) we obtain that the permeability of the
kγ-th porous environment has to be chosen as

kγ =
L (α)L (β)

L (γ)

L(α)∫
0

K{1} (α1) dα1

L(β)∫
0

K{2} (β1) dβ1

L(γ)∫
0

dγ1

K{3}(γ1)

.

(19)
Let us denote that by putting the expressions (12) and

(13) directly into the expressions (9)-(11) for each elementary
approximately-averaged rectangular prism, we will obtain the
following expressions for calculation of Qα, Qβ , Qγ :

Qα = − p(α,β,γ)|α=L(α)−p(α,β,γ)|α=0

μconst.

L(α)∫
0

dα1
kα

L(β)∫
0

kβdβ1

L(γ)∫
0

kγdγ1 =

= −kαkβkγ

μconst.

L(β)L(γ)
L(α)

{
p (α, β, γ)|α=L(α) − p (α, β, γ)|α=0

}
,

(20)

Qβ = − p(α,β,γ)|β=L(β)−p(α,β,γ)|β=0

μconst.

L(β)∫
0

dβ1
kβ

L(α)∫
0

kαdα1

L(γ)∫
0

kγdγ1 =

= −kαkβkγ

μconst.

L(α)L(γ)
L(β)

{
p (α, β, γ)|β=L(β) − p (α, β, γ)|β=0

}
,

(21)

Qγ = − p(α,β,γ)|γ=L(γ)−p(α,β,γ)|γ=0

μconst.

L(γ)∫
0

dγ1
kγ

L(α)∫
0

kαdα1

L(β)∫
0

kβdβ1 =

= −kαkβkγ

μconst.

L(α)L(β)
L(γ)

{
p (α, β, γ)|γ=L(γ) − p (α, β, γ)|γ=0

}
.

(22)
Obviously, the formulas (20)-(22) substantially differ from

the formulas (14)-(16).
Similarly to the assumptions taken prior to the acquisition

of the formulas (17)-(19), it is necessary to compare the each
of formulas (9)-(11) to the corresponding formulas (20)-(22).
Such comparison gives us the following interesting result:

kαkβkγ = L(α)
L(β)L(γ)

L(β)∫
0

K{2}(β1)dβ1

L(γ)∫
0

K{3}(γ1)dγ1

L(α)∫
0

dα1

K{1}(α1)

= L(β)
L(α)L(γ)

L(α)∫
0

K{1}(α1)dα1

L(γ)∫
0

K{3}(γ1)dγ1

L(β)∫
0

dβ1

K{2}(β1)

= L(γ)
L(α)L(β)

L(α)∫
0

K{1}(α1)dα1

L(β)∫
0

K{2}(β1)dβ1

L(γ)∫
0

dγ1

K{3}(γ1)

.

From here it is obvious that

1
L2(α)

L(α)∫
0

K{1} (α1) dα1

L(α)∫
0

dα1

K{1}(α1)

= 1
L2(β)

L(β)∫
0

K{2} (β1) dβ1

L(β)∫
0

dβ1

K{2}(β1)

= 1
L2(γ)

L(γ)∫
0

K{3} (γ1) dγ1
L(γ)∫
0

dγ1

K{3}(γ1)
.

IV. CONCLUSIONS

In this work the filtering process is studied in non-
homogeneous porous environment, which is anisotropic and
periodic in space. Assuming that the coefficient of permeabil-
ity of the porous environment is a multiplicative function, the
following results are obtained:
• a mathematical model is elaborated, which describes a
process of linear filtering in the anisotropic environment, the
geometric form of which is a region curvilinear surfaces;
• a simplifying model is constructed on the basis of Ollendorff
method (simplifying Ollendorff procedure), where in the filter-
ing equation the functions-coefficients of the special variables
are supposed to be continuous and not definitely periodic;
• for the simplifying model an analytic formula is found de-
scribing the full filtering flow of the fluid, which flows through
wall surfaces of an elementary approximately averaged prism;
• for a one-dimensional filtering flow, which flows along the
horizontal coordinate line within the limits of the elementary
approximately averaged prism an analytical formula is found,
which determines pressure by knowing the full filtering flow
of the fluid;
• coefficients of permeability for the direct ananisotropic
porous environment are defined in the analytical form along
the local lines of the Cartesian coordinate system.

Continuation of the current work titled ”On one mathe-
matical model for filtration of weakly compressible chemical
compound in the porous heterogeneous 3D medium. Part II:
Determination of the reference directions of anisotropy and
permeabilities on these directions” will be prepared in the
shortest terms by the authors.

Moreover, in the further research, by using the results
obtained in this work, the authors are going to formulate
and investigate the inverse problem of stable determination
of the permeability coefficient for the porous anisotropic and
ananisotropic environments.
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