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Abstract—The paper describes an approach for defining of k-best 
night vision devices based on multi-criteria mixed-integer 
optimization modeling. The parameters of night vision devices are 
considered as criteria that have to be optimized. Using different user 
preferences for the relative importance between parameters different 
choice of k-best devices can be defined. An ideal device with all of 
its parameters at their optimum is used to determine how far the 
particular device from the ideal one is. A procedure for evaluation of 
deviation between ideal solution and k-best solutions is presented. 
The applicability of the proposed approach is numerically illustrated 
using real night vision devices data. The proposed approach 
contributes to quality of decisions about choice of night vision 
devices by making the decision making process more certain, rational 
and efficient.  

 

Keywords—K-best devices, mixed-integer model, multi-criteria 

problem, night vision devices.  

I. INTRODUCTION 

HE night vision devices (NVDs) offer significant benefits 

for night time performed tasks over unaided vision. They 

allow viewing in night time during numerous applications as 

military, security, rescue actions, navigation, hidden-object 

detection, wildlife observation, hunting, tourism, 

entertainment, etc. [1]-[4]. As a result of technological 

developments there exist a constantly growing number of 

different NVDs types and models with different parameters 

values. The existing wide variety of NVDs puts the problem of 

proper selection of most appropriate device conforming to 

given user requirements.  

The performance evaluation and optimal selection of 

engineering systems have multi-level and multi-factor 

features. This defines essential difficulties that can be 

approached by multiple criteria decision-making methods [5]. 

Most decision making problems deals with multiple objectives 

which cannot be optimized simultaneously due to the inherent 

incommensurability and conflict between these objectives. 

Making a trade-offs between these objectives becomes a major 

subject to get the best compromise solution. A variety of 

methodologies for solving multiple objective decision-making 

problems have been proposed [6]-[15]. There are no better or 

worse techniques, but some techniques better suit to particular 

decision problems than others do [6]. The advantage of these 
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methods is that they can account for different impacts. The 

most popular multiple criteria decision-making methods 

include such models as scoring models [7], analytic hierarchy 

process (AHP) [8], analytic network process (ANP) [9], 

ELECTRE [10], PROMETHEE [11] utility models [12], 

TOPSIS [13], and axiomatic design [14]. The preference 

structure of PROMETHEE is based on pairwise comparisons. 

In this case the deviation between the evaluations of two 

alternatives on a particular criterion is considered. The 

AHP/ANP is fundamentally a process of laying out a structure 

of all the essential factors that influence the outcome of a 

decision. Numerical pairwise comparison judgments are then 

elicited to express people’s understanding of the importance or 

likely influence of these elements on the final outcome [15]. 

The ELECTRE is a comprehensive evaluation approach that 

tries to rank a number of alternatives, each one of which is 

described in terms of a number of criteria. The main idea of 

ELECTRE approach is usage of proper utilization called 

“outranking relations” [10]. A variant of the ELECTRE 

approach is the TOPSIS method. It is based on the concept 

that the chosen alternative should have the shortest geometric 

distance from the positive ideal solution and the longest 

geometric distance from the negative ideal solution. 

In contrast to these methods where pairwise comparisons 

and deviation between the evaluations of two alternatives on a 

particular criterion is considered, the proposed approach 

defines k-best devices as a solution of a single multi-criteria 

optimization task. The basic idea is to reduce a given set of 

alternatives to k-best accordingly the user point of view and 

taking into account given relations and restrictions. The 

proposed optimization model allows definition of k-best 

solution instead determination of a single Pareto-optimal 

solution.  

The aim of current paper is to propose an approach to assist 

the user by selection of k-best devices in accordance to the 

importance of NVDs performance parameters. The obtained 

subset of k-best devices can be a basis for more rational and 

efficient decision-making. A procedure for evaluation of 

deviation between ideal solution and each of k-best devices is 

presented.  

II. PROBLEM DESCRIPTION  

When choosing a NVD the user acts as a decision-maker 

(DM) and should consider all the relevant costs and benefits of 

the options for the set of devices to choose from. The 

preferred device should be that which comes close to the 

decision maker’s objectives, which may often conflict. The 

performance of the NVDs depends on many parameters where 
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the most essential are: 

• working range (R) of NVD depends on ambient light 

illumination, atmospheric transmittance, contrast between 

target and background, target area, diameter of the inlet 

pupil, objective focal length, objective transmittance, 

image intensifier tube (IIT) luminous sensitivity, IIT 

limiting resolution, IIT photocathode limiting light flow 

and signal-to-noise ratio;  

• field of view (FOV) is parameter defining the amount of 

visual information provided via the device. In principle, 

the larger the FOV is the more information is available; 

• objective focus range (FR) define the minimum focusing 

range of near objects; 

• battery life (BL) determine the operational time duration 

of devices accordingly used battery types and capacity 

and the current of image intensifier tube;  

• weight – currently the most of NVDs are portable devices 

and the weight is an important parameter that should be 

minimized. 

• price – a parameter that depends on used NVDs modules 

that is always worth to consider when making some 

choice decision. 

The most essential NVDs parameter taken into account 

when choosing a particular night vision device is its working 

range. A distinguish feature of working range is its 

dependency not only on the device modules parameters, but 

also on the external surveillance conditions as ambient light 

illumination, atmospheric transmittance, contrast between 

target and background, and not at last on the target area. In 

practice, it is unlikely that some device will perform best 

against all objectives and parameters to be clearly preferred. 

Each one will demonstrate different advantages and 

disadvantages. Describing the balance between objectives, and 

identifying the preferred option is a complex problem. The 

choice is usually done intuitively based on the decision-maker 

experience. The choice of a NVD adjusted to the user 

requirements is an example of complex combinatorial problem 

characterized by the presence of many conflicting preferences 

(criteria) about the NVDs parameters values. For example, 

choosing of the NVD using the latest technological solutions 

reflects on higher prices to pay. It is reasonable to look for the 

“user best” device among the offered NVDs, i.e. whose 

parameters values are best accordingly to the user point of 

view.  

There are considerable advantages in making an explicit 

decision-aiding framework ensuring that all concerns are 

identified and addressed and the reasons behind a particular 

choice are made clear. The advantages of such a structured 

approach are particularly apparent where there are many 

alternative devices with numerous different parameters values. 

Moreover, often user is interesting in more than one 

alternative to make his final selection. To define k-best 

alternatives conforming to the given user preferences toward 

NVDs parameters a proper mathematical model is developed. 

III. MULTI-CRITERIA MODEL FORMULATION OF K-BEST 

NVDS PROBLEM 

The purpose of multi-criteria problem is to support users in 

exploring solutions that correspond best to their preferences, 

i.e. multi-criteria approach fits to the situations in which users 

are not able to define a single goal function. On the other 

hand, mixed-integer optimization provides a powerful 

framework for mathematically modeling of many optimization 

problems that involve discrete and continuous variables. 

Therefore, the NVDs performance could be modeled as multi-

criteria mixed-integer optimization problem for determining of 

k-best selection of devices taking into account NVDs 

parameters (working range, field of view, battery life, focus 

range, weight and price) and external surveillance conditions 

as follows: 
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where R is the NVD working range [16], E – ambient light 

illumination in lx, τа – atmospheric transmittance, C – contrast, 
*
tA  – reduced target area in m2 [16], Din – diameter of the inlet 

pupil in m, fob – objective focal length in mm, τоb – objective 

transmittance, S  – IIT luminous sensitivity in A/lm, δ – IIT 

limiting resolution in lp/mm, Фmin. – IIT photocathode limiting 

light flow in lm, М – IIT signal-to-noise ratio; FOV – field of 

view, FR – objective focus range, BL – battery life 

(operational time duration of NVD), weight and price of NVD, 
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xi are binary integer variables corresponding to each device, k 

is integer decision variable determining the number of k-best 

solutions, and n is the number of devices to choose from.  

The k-best solutions/alternatives are modeled by means of 

the decision variables xi. The relation (9) of the decision 

variables is generalization of the classical optimization 

problem of finding a single solution. It contains as a special 

case the single-choice case for k = 1.  

In relative ratio method for the multiple attributes decision 

making problems, a compromise solution/alternative is 

determined based on the concept that the chosen alternative 

should be as close to the ideal solution as possible [17]. The 

selection process is based on evaluation of the alternatives 

with respect to the set of relevant criteria.  

The problem of evaluation of alternatives in terms of their 

distance to the ideal solution can be seen as a “second-order” 

decision problem. After determining of k-best devices, if the 

user is interested to evaluate each of the chosen devices, the 

relative estimation between ideal device and devices from the 

k-best set can be performed by following the procedure: 

1) determine the objective function value for an ideal device 

with all of its parameters at their optimal values; 

2) determine the objective function values for each device 

within the k-best set; 

3) determine the relative estimation for each device of k-best 

set compared to the ideal device.  

IV. NUMERICAL RESULTS AND DISCUSSION  

To illustrate the applicability of the proposed approach real 

parameters data for ten night vision goggles are used as input 

data shown in Table I.  

 
TABLE I  

NIGHT VISION DEVICES PARAMETERS  

No NVDs type 
δ, 

lp/mm 

fob, 
mm 

τоb M 
S, 

A/lm 
FOV, 

degree 
Battery life, 

hours 
Min. focus 
range, cm 

Weight, 
gr 

Price, 
$ 

1 Night Optics D-2MV, Gen 1+ 40 26 0.78 12 0.00024 40 40 25 482 650 

2 Rigel 3250, Gen 1+ 30 35 0.78 12 0.00022 30 30 25 430 699 

3 ATN Cougar 2, Gen 2 32-40 35 0.78 16 0.00031 30 10-20 100 500 3071 

4 ATN Cougar CGTI, Gen 2+ 45-54 35 0.78 15 0.00035 30 10-20 100 500 3696 

5 ATN Night Cougar-3, Gen 3 64 35 0.78 20 0.00087 30 10-20 100 500 4884 

6 ATN Night Cougar-4, Gen 4 64-72 35 0.80 25 0.00115 30 10-20 100 500 9932 

7 ATN PS23-2, Gen 2 36-45 24 0.80 13 0.00070 40 60 25 700 3550 

8 ATN PS23-CGT, Gen. 2+ 45-54 24 0.80 17 0.00110 40 60 25 700 4195 

9 ATN PS23-3, Gen 3 55-72 24 0.80 22 0.00160 40 35 25 700 5895 

10 ATN PS23-4, Gen 4 64-72 24 0.80 24 0.00190 40 35 25 700 12995 

Note: The values in Table I are taken from Internet resources [18]-[27] 

 

To solve the formulated multi-criteria problem (1)-(9), the 

following normalization [28], [29] scheme is used: 
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Distinguish feature of this normalization scheme is 

providing the values for parameters between 0 and 1 based on 

the maximal and minimal objective values of each parameter. 

This normalization not only transforms data to have 

comparable values but also transforms the problem to a 

maximizing problem.  

The widely used approach for solving multi-objective 

optimization problems is to transform a multiple objective 

(vector) problem into single-objective (scalar) problems. 

Among decision methods, weighted-sum aggregation of 

preferences is by far the most common, as it is a direct 

specification of importance weights. The weighted sum 

method transforms multiple objectives into an aggregated 

scalar objective function by multiplying each objective 

function by a weighting coefficient and summing up all 

contributors to look for the Pareto solution [30]. The 

transformed scalar optimization problem determining the k-

best solution is defined as follows: 

 

maximize {w1R*(x)+w2 FOV*(x)+w3 BL*(x) + 

                           w4 FR*(x)+w5Weight*(x)+w6Price*(x)}     (12) 

 

subject to 

 kx
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where wi, i = (1, 2,…, 6) are weighting coefficients for each of 

the normalized objective functions.  

The proposed model defines k-best Pareto optimal solutions 

considering the importance of each criteria expressed by DM 

preferences. The applicability of the proposed approach is 

demonstrated by four different sets of weighting coefficients 

reflecting four different DM preferences about importance of 

criteria shown in Table II.  
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TABLE II 
WEIGHTING COEFFICIENTS  

DM preferences 
Weighting coefficients 

w1 w2 w3 w4 w5 w6 

DM-1 0.17 0.17 0.16 0.16 0.17 0.17 

DM-2 0.30 0.03 0.04 0.03 0.30 0.30 

DM-3 0.20 0.20 0.10 0.10 0.20 0.20 

DM-4 0.30 0.00 0.00 0.10 0.30 0.30 

 

First set of weighting coefficients (DM-1) expresses 

equivalent importance toward all criteria – detection range, 

field of view, battery life, focus range, price and weight. The 

second set (DM-2) simulate the DM preferences emphasizing 

on working range, weight and price; the corresponding set for 

DM-3 reflect the preferences on working range, field of view, 

weight and price and DM-4 expresses DM preferences about 

working range, focus range, weight and price. The solutions 

of task (12) – (14) for different sets of weighting coefficients 

considering all 10 devices of Table I for k=3 and k=5 best 

devices selections are illustrated in Fig. 1. 
 

 

Fig. 1 K-best NVDs selections for different DM preferences:  

a) for k = 3; b) for k = 5 

 

These groups of devices satisfy DM preferences expressed 

by defined weighted coefficients sets in Table III. These k-

best selections of devices could be the base from which the 

user can make final choice decision. From the formal point of 

view, every Pareto-optimal solution is equally acceptable as 

the solution to the multi-objective optimization problem. In 

practice, only one solution has to be chosen as final decision 

and this is realized by involvement of decision maker. A 

procedure is proposed for helping the DM in taking of his final 

decision, for defining how far each of these k-best devices is 

from the “ideal” device:  

Step 1: Definition of an “ideal” device with “ideal” 

parameters i.e. device whose parameters values have their 

optimal (maximal/minimal) values. Having in mind the 

normalization scheme, the objective function value of (12) – 

(14) for the “ideal” device is equal to 1.  

Step 2: Calculation of the objective function value for each 

of the selected k-best devices. 

Step 3: Subtract calculated value of objective function for 

each k-best device from objective function value of “ideal” 

device and determine in percentage the relative distance of 

devices from “ideal” one.  

The results of execution of the described procedure for each 

of selected k-best devices are shown in Tables III-VI.  
 

TABLE III 
RELATIVE DISTANCES FOR DM-1 K-BEST DEVICES 

5-best devices selection Objective function value  Relative distance in %  

#1 0.629 37.02 

#2 0.457 54.27 

#7 0.584 41.56 

#8 0.589 41.01 

#9 0.494 50.60 

 
TABLE IV 

RELATIVE DISTANCES FOR DM-2 K-BEST DEVICES  

5-best devices selection Objective function value  Relative distance in %  

#1 0.4545 54.55 

#7 0.3300 67.00 

#8 0.3538 64.62 

#9 0.3567 64.33 

 #10 0.3541 64.59 

 
TABLE V 

RELATIVE DISTANCES FOR DM-3 K-BEST DEVICES 

5-best devices selection Objective function value  Relative distance in %  

#1 0.6037 39.63 

#2 0.4204 57.96 

#7 0.5110 48.90 

#8 0.5175 48.25 

#9 0.4539 54.61 

 
TABLE VI 

RELATIVE DISTANCES FOR DM-4 K-BEST DEVICES 

5-best devices selection Objective function value  Relative distance in %  

#1 0.4723 52.77 

#2 0.5306 46.94 

#3 0.3116 68.84 

#4 0.3550 64.50 

#5 0.3578 64.22 

 

Imposing the DM-1 preferences, where all NVDs 

parameters are considered as of equal importance, the results 

show that the device #1 has a minimal deviation from the ideal 

solution followed by devices #8, #7 and #2. In case of DM-2 

preferences minimal deviation from the ideal solution also has 

device #1 followed by devices #9, #10, #8 and #7. For DM-3 

preferences the order of devices is #1, #8, #7, #9 and #2 and 

for DM-4 set of weightings the devices are ranked as #2, #1, 

#5, #4 and #3. 

The relative distances for determined k-best devices for 

different sets of weighting coefficients (different DM 

preferences) comparing the alternatives in terms of their rank 

acceptability are shown on Fig. 2. 
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Fig. 2 Relative estimations of K-best NVDs for different DM 

preferences 

 

As it is seen from Fig. 2, the proximity of devices to the 

“ideal” depends on given DM preferences. Some of the 

devices in particular k-best selections are close to the “ideal” 

then others and could be considered as a good reasonable 

choice. For example, in DM-1 selection of devices 1, 7, 8, the 

device #1 is closest to the “ideal” and devices #7 and #8 have 

almost same deviation from the “ideal”. The same is valid for 

DM-3 k-best selections. Using the information of relative 

estimations for NVDs k-best selections to analyze the results, 

the DM could make the final choice in more informed and 

reasonable way.  

Increasing the number of devices and their diversity will 

increase the variety of choices but will also increase the tasks 

sizes and their computational complexity. Despite the fact that 

mixed integer nonlinear problems are difficult to solve (NP-

complete), the formulated optimization problem and its 

numerical results show quite acceptable solution times. The 

branch and bound algorithms implemented in LINGO solver 

[31] proved to be quite effective for those kinds of sparse 

restrictions matrixes that are typical for the formulated 

optimization problems. Further investigations with large scale 

problems are needed to define the computational complexity 

of the proposed approach. 

V. CONCLUSION 

The multi-criteria optimization approach is the most natural 

way to support users in exploring solutions that correspond 

best to their preferences when multiple criteria should be 

optimized simultaneously. The described NVD choice 

problem concerns devices optimal selection when a given 

number of alternatives have to be selected from a finite set of 

alternatives with different parameters. The proposed approach 

is based on solving of mixed integer nonlinear optimization 

task. In contrast to the multi-criteria decision making where 

the solution is single Pareto optimal choice from all of the 

feasible alternatives, the proposed approach defines k-best 

alternatives as a result of single run of the optimization task.  

Four different scenarios for DM preferences are 

numerically tested to demonstrate the applicability of the 

proposed approach: 1) equivalent importance toward all 

defined device criteria; 2) emphasizing on working range, 

weight and price; 3) interesting in working range, field of 

view, weight and price 4) emphasizing on working range, 

focus range, weight and price. 

The problem of comparing the alternatives in terms of their 

rank is considered as a “second-order” decision problem. After 

determining the k-best solutions, they are arranged using the 

relative estimation between “ideal” device and devices from 

particular k-best selection. A proper procedure is proposed for 

this goal.  

The described approach for k-best choice by multi-criteria 

mixed-integer optimization modeling is suitable for other real-

life problems to support users in exploring solutions that 

correspond best to their preferences. Using such an approach 

would contribute to improving the quality of decisions by 

making the decision-making process more comprehensible, 

efficient and rational.  
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