
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

436

Some new inequalities for eigenvalues of the
Hadamard product and the Fan product of matrices

Jing Li and Guang Zhou

Abstract—Let A and B be nonnegative matrices. A new upper
bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new
lower bound on the smallest eigenvalue q(A�B) for the Fan product,
and a new lower bound on the minimum eigenvalue q(B ◦A−1) for
the Hadamard product of B and A−1 of two nonsingular M -matrices
A and B are given. Some results of comparison are also given in
theory. To illustrate our results, numerical examples are considered.
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I. INTRODUCTION

RN×M and N denote the set of all n×m real matrices and
the {1, 2, · · · , n}, respectively. If A = (aij) ∈ Rn×m,

B = (bij) ∈ Rn×m and aij−bij ≥ 0, we say that A ≥ B, and
if aij ≥ 0, we say that A is nonnegative. If A ∈ Rn×n is a
nonnegative matrix, the Perron-Frobenius theorem guarantees
that ρ(A) ∈ σ(A), where the set σ(A) denotes the spectrum
of A, ρ(A) denotes the spectral radius of A. ∅ denotes the
empty set.

A matrix A is irreducible if there does not exist a permu-
tation matrix P such that

PAPT =

(
A11 A12

0 A22

)
,

where A11 and A22 are square matrices, then A is called
irreducible. The set Zn ⊂ Rn×n is defined by

Zn = {A = (aij) ∈ Rn×n : aij ≤ 0, if i �= j, i, j = 1, · · · , n}.
Let A = (aij) ∈ Zn and suppose A = sI − B with s ∈ R
and B ≥ 0. Then s − ρ(B) is an eigenvalue of A, every
eigenvalue of A lies in the disc {z ∈ C :| z−s |≤ ρ(B)}, and
hence every eigenvalue λ of A satisfies Reλ ≥ s − ρ(B). In
particular, a matrix A ∈ Zn is called an M -matrix if s ≥ ρ(B).
If s > ρ(B) we call A is nonsingular M -matrix, and denote
the class of nonsingular M -matrices by Mn.

Let A = (aij) ∈ Zn, we denote min{Re(λ) : λ ∈ σ(A)}
by q(A), q(A) is called the minimum eigenvalue of A.

The Hadamard product of A = (aij) ∈ Rn×n and B =
(bij) ∈ Rn×n is defined by A ◦ B = (aijbij) ∈ Rn×n. Let
A = (aij), B = (bij) ∈ Rn×n, the Fan product of A and B
is denoted by A � B = C = (cij) ∈ Rn×n, and is defined by

cij =

{
−aijbij , if i �= j,

aiibii, if i = j.
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Let A = (aij) be an n× n matrix with all diagonal entries
being nonzero throughout. For any i, j, k ∈ N , denote

Ri =

n∑
k �=i
|aik|

di =
Ri
aii

rji =
|aji|

|ajj | −
∑
k �=j,i
|ajk|

, j �= i

ri = max
j �=i
{rji}

sji =

|aji|+
∑
k �=j,i
|ajk|ri

|ajj | , j �= i

sj = max
i�=j
{sji}

Denote the set of all simple circuits in the digraph ΓA
of A by Ψ(A). A circuit of length k in ΓA is an ordered
sequence γ = (i1, · · · , ik, ik+1), where i1, · · · , ik ∈ N
are all distinct, and ik+1 = i1. The set {i1, · · · , ik} is
called the support of γ and is denoted by γ̄. The length
of the circuit γ is denoted by |γ|, η is the greatest com-
mon divisor of 2 and s, τ = s

η . E(A) = {ei,j |ai,j �=
0, i, j ∈ N} is the set of directed edge of Γ(A). We say
{ei1,i2 , ei1+η,i2+η, · · · , ei2+(τ−1)η,i3+(τ−1)η} is the odd 1-
path cover; {ei2,i3 , ei2+η,i3+η, · · · , ei2+(τ−1)η,i3+(τ−1)η} is
the even 1-path cover; The certain 1-path cover of γ recorded
as p1(γ). When s is an positive odd number, the odd and
even 1-path cover is the same, namely, only one 1-path cover
contains all the directed edge of γ. We denote p1(A) =⋃
γ∈Ψ(A)

p1(γ) is a 1-path cover of Γ(A). For any i, j ∈ N ,

denote, α = {i ∈ N |i ∈ γ ∈ Ψ(A)}, ΘA = {aii|i ∈ N \ α},

A◦ =

⎛
⎜⎜⎜⎝

Ai1i1 Ai1i2 · · · Ai1im
Ai2i1 Ai2i2 · · · Ai2im

...
...

. . .
...

Aimi1 Aimi2 · · · Aimim

⎞
⎟⎟⎟⎠ , {i1, i2, · · · , im} = α

mr
c(A) = max{ max

γ∈Ψ(A)
rA(γ),maxΘA},

Mr
c (A) = max{ min

γ∈Ψ(A)
rA(γ),maxΘA},

rA(γ) denotes the real roots of the equation∏
i∈γ̄

(x− aii) =
∏
i∈γ̄

Ri(A
◦),



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

437

which greater than max
i∈γ̄
{aii}.

II. MAIN RESULTS

For convenience, we give some lemmas which are useful
for obtaining the main results.

Lemma 2.1 [1]. Let A ∈ Rn×n be an irreducible nonnegative
matrix. Then

1) A has a positive real eigenvalue equals to its spectral
radius;

2) To ρ (A) there corresponds an eigenvector x > 0.

Lemma 2.2 [2]. Let A,B ∈ Rn×n. If E,F are diagonal
matrices of order n, then

E(A ◦B)F = (EAF ) ◦B = (EA) ◦ (BF )
= (AF ) ◦ (EB) = A ◦ (EBF )

and

E(A � B)F = (EAF ) � B = (EA) � (BF )
= (AF ) � (EB) = A � (EBF ).

Lemma 2.3 [1]. Let A ∈ Rn×n, with n ≥ 2. Then, if λ is an
eigenvalue of A, there is a pair (i, j) of positive integers with
i �= j, (1 ≤ i, j ≤ n) such that

| λ− aii || λ− ajj |≤ RiRj .
Lemma 2.4 [2]. Let A = (aij) ∈ Rn×n be diagonally
dominant M -matrix. Then, for A−1 = (βij), we have

βji ≤
|aji|+

∑
k �=j,i
|ajk|rk

ajj
βii, for all j �= i.

Lemma 2.5 [2]. Let A = (aij) ∈ Rn×n be a strictly row
diagonally dominant M -matrix. Then, for A−1 = (βij), we
have

βji ≤ sjiβii, for all j �= i.

Lemma 2.6 [3]. Let A = (aij) ∈ Mn be a strictly row
diagonally dominant M -matrix. Then, for A−1 = (βij), we
have

βii ≥ 1

aii
.

Lemma 2.7 [4]. Let A = (aij) ∈ Rn×n be nonnegative
matrix, then

mr
c(A) ≤ ρ(A) ≤Mr

c (A).

Theorem 2.1 [5]. Let A = (aij) ∈ Mn be a strictly row
diagonally dominant M -matrix. Then, for A−1 = (βij), B =
(bij) ∈Mn, we have

q(B ◦A−1) ≥ q(B)min
i
βii. (1)

Theorem 2.2 [6]. Let A = (aij) ∈ Mn be a strictly row
diagonally dominant M -matrix. Then, for A−1 = (βij), B =
(bij) ∈Mn, we have

q(B ◦A−1) ≥ 1− ρ(JA)ρ(JB)
1 + ρ2(JB)

min
i

bii
aii
. (2)

Theorem 2.3 [7]. Let A = (aij) ∈ Mn be a strictly row
diagonally dominant M -matrix. Then, for A−1 = (βij), B =
(bij) ∈Mn, we have

q(B ◦A−1) ≥ min
1≤i≤n

{bii − si∑
j �=i
|bji|

aii

}
. (3)

Theorem 2.4 Let A = (aij) ∈Mn be a strictly row diagonally
dominant M -matrix. Then, for A−1 = (βij), B = (bij) ∈Mn,
we have

q(B ◦A−1) ≥ min
i�=j

1
2

{
biiβii + bjjβjj −

[
(biiβii

−bjjβjj)2 + 4sisjβiiβjj
∑
j �=i
|bji|

∑
l �=j
|blj |

] 1
2
}
.

(4)

Proof: If A is irreducible, then 0 < si < 1, for any i ∈ N .
Since q(B ◦A−1) is an eigenvalue of B ◦A−1. From Lemma
2.2 and Lemma 2.5, q(B ◦ A−1) = q(D−1(B ◦ A−1)D) =
q(D(BT ◦ (A−1)T )D−1). Let D = (s1, s2, · · · , sn) > 0

Ri(B ◦A−1) = Ri(D
−1(B ◦A−1)D)

= Ri(D(BT ◦ (A−1)T )D−1)

=
∑
j �=i
|bjiβji| sisj

≤ si
∑
j �=i

1
sj
|bji|sji|βii|

≤ si
∑
j �=i

1
sj
|bji|sj |βii|

= si|βii|
∑
j �=i
|bji|.

Thus, by Lemma 2.3, there exists a pair (i, j) of positive
integers with i �= j (1 ≤ i, j ≤ n) such that

|q(B ◦A−1)− biiβii||q(B ◦A−1)− bjjβjj |
≤ siβii

∑
j �=i
|bji|sjβjj

∑
l �=j
|blj |.

From the above inequality and 0 ≤ q(B ◦ A−1) ≤ aiibii,
∀i ∈ N , we have

(q(B ◦A−1)− biiβii)(q(B ◦A−1)− bjjβjj)
≤ siβii

∑
j �=i
|bji|sjβjj

∑
l �=j
|blj |. (5)

Thus, from (5), we have

q(B ◦A−1) ≥ 1
2

{
biiβii + bjjβjj −

[
(biiβii − bjjβjj)2

+4sisjβiiβjj
∑
j �=i
|bji|

∑
l �=j
|blj |

] 1
2
}

≥ min
i�=j

1
2

{
biiβii + bjjβjj −

[
(biiβii − bjjβjj)2

+4sisjβiiβjj
∑
j �=i
|bji|

∑
l �=j
|blj |

] 1
2
}
.

If A is reducible, it is well known that a matrix in Zn is a
nonsingular M -matrix if and only if all its leading principle
minors are positive. If we denote by D = (dij) the n×n per-
mutation matrix with d12 = d23 = · · · = dn−1n = dn1 = 1,
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the remaining dij zero, then A− tD is irreducible nonsingular
M -matrices for any chosen positive real number t, sufficiently
small such that all the leading principle minors of A− tD is
positive. Now we substitute A−tD for A in the previous case,
and then letting t→ 0, the result follows by continuity.

Remark 2.1 We next give a simple comparison between the
lower bound in (4) and the lower bound in (3). Without loss
of generality, for i �= j, assume that

biiβii − siβii
∑
j �=i
|bji| ≤ bjjβjj − sjβjj

∑
l �=j
|blj |. (6)

Thus, we can write (6) equivalently as

sjβjj
∑
l �=j
|blj | ≤ bjjβjj − biiβii + siβii

∑
j �=i
|bji|.

From (4) and the above inequality, we get

biiβii + bjjβjj −
[
(biiβii − bjjβjj)2

+4sisjβiiβjj
∑
j �=i
|bji|

∑
l �=j
|blj |

] 1
2

≥ biiβii + bjjβjj −
[
(biiβii − bjjβjj)2

+4(bjjβjj − biiβii)siβii
∑
j �=i
|bji|

+(2siβii
∑
j �=i
|bji|)2

] 1
2

= 2biiβii − 2siβii
∑
j �=i
|bji|.

From Lemma 2.6, we have

q(B ◦A−1) ≥ min
i�=j

1
2

{
biiβii + bjjβjj−[

(biiβii − bjjβjj)2 + 4sisjβiiβjj
∑
j �=i
|bji|

∑
l �=j
|blj |

] 1
2
}

= min
i�=j
{biiβii − siβii

∑
j �=i
|bji|}

≥ min
i�=j

{
bii−si

∑
j �=i

|bji|
aii

}

Hence, the bound (4) is sharper than the bound (3).
Theorem 2.5 If A = (aij) ∈ Rn×n, B = (bij) ∈ Rn×n, are
two nonnegative matrices, then

ρ(A ◦B) ≤ max{ min
γ∈Ψ(A◦B)

rA◦B(γ),maxΘA◦B}.

rA◦B(γ) denotes the real roots of the equation
∏
i∈γ̄

(x −

aiibii) =
∏
i∈γ̄
Ri(A ◦B)◦ which greater than max

i∈γ̄
{aiibii}.

Proof: From Lemma 2.7 it is easy to obtained the desired
result.

Theorem 2.6 Let A = (aij) ∈ Mn and B = (bij) ∈ Mn.
Then

q(A � B) ≥ min
i�=j

1
2

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4αiαj(bii − q(B))(bjj − q(B))

] 1
2
}

(7)
where αi = max

k �=i
{|aki|}, ∀i ∈ N.

Proof: If A�B is irreducible, then A and B are irreducible.
Since, A− q(A)I and B − q(B)I are singular irreducible M-
matrices. Then

aii − q(A) > 0, ∀i ∈ N.
and

bii − q(B) > 0, ∀i ∈ N.
Since A = (aij), B = (bij) are irreducible nonsingular M-
matrices, then there exists two positive vectors u, v Such that
Au = q(A)u, Bv = q(B)v. Thus, we have

aii −
∑
j �=i

| aij | uj
ui

= q(A),

or equivalently,∑
j �=i
| aij | uj = [aii − q(A)]ui

and
bii −

∑
j �=i

| bij | vj
vi

= q(B),

or equivalently,∑
j �=i
| bij | vj = [bii − q(B)]vi

For convenience, let denote αi = max
k �=i
{| aki |}, ∀i ∈ N . Since

A is an irreducible matrix, αi > 0, ∀i ∈ N . Define a positive
diagonal matrix Z = diag(z1, · · · , zn), where

zi =
vi
αi

> 0, ∀i ∈ N.

By Lemma 2.2, we have q(A � B) = q(Z−1(A � B)Z) =
q(A� (Z−1BZ)). For convenience, let B̂ = (b̂ij) = Z−1BZ.
So we have

Ri(Z
−1(A � B)Z) = Ri(A � B̂)

=
∑
j �=i
| aij || bij | zjzi

≤
∑
j �=i
| bij | vj αi

vi

= (bii − q(B))αi.

According to Lemma 2.3, there exists a pair (i, j) of positive
integers with i �= j(1 ≤ i, j ≤ n), such that

| q(A�B)−aiibii || q(A�B)−ajjbjj |≤ (bii−q(B))αi(bjj−q(B))αj

From the above inequality and 0 ≤ q(A�B) ≤ aiibii, ∀i ∈ N ,
we have

(q(A � B)− aiibii)(q(A � B)− ajjbjj)
≤ αiαj(bii − q(B))(bjj − q(B))
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q(A � B) ≥ 1
2

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4αiαj(bii − q(B))(bjj − q(B))

] 1
2
}

≥ min
i�=j

1
2

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4αiαj(bii − q(B))(bjj − q(B))

] 1
2
}
.

If A�B is reducible. It is well known that a matrix in Zn is
a nonsingular M-matrix if and only if all its leading principal
minors are positive. If we denote by D = (dij) the n×n per-
mutation matrix with d12 = d23 = · · · = dn−1n = dn1 = 1,
the remaining dij zero, then both A − tD and B − tD are
irreducible nonsingular M-matrices for any chosen positive
real number t, sufficiently small such that all the leading
principal minors of both A−tD and B−tD are positive. Now
we substitute A− tD and B − tD for A and B, respectively
in the previous case, and then letting t→ 0, the result follows
by continuity.
Theorem 2.7 Let A = (aij) ∈ Mn and B = (bij) ∈ Mn.
Then

q(A � B) ≥ min
i�=j

1
2

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4βiβj(aii − q(A))(ajj − q(A))
] 1

2
}

where βi = max
k �=i
{|bki|}, ∀i ∈ N.

According to Theorem 2.6 and Theorem 2.7, it is easy to
obtain the following corollary.
Corollary 2.1 If A = (aij) and B = (bij) are two n × n
nonsingular M -matrices, then

q(A � B) ≥ max

{
min
i�=j

1
2

{
aiibii + ajjbjj

−
[
(aiibii − ajjbjj)2 + 4αiαj(bii − q(B))(bjj − q(B))

] 1
2
}
,

min
i�=j

1
2

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4βiβj(aii − q(A))(ajj − q(A))
] 1

2
}}

where αi = max
k �=i
{|aki|} and βi = max

k �=i
{|bki|} ∀i ∈ N.

Corollary 2.2 If A = (aij) and B = (bij) are two n × n
nonsingular M -matrices, then

|det(A � B)| ≥ [q(A � B)]n

≥ min
i�=j

1
2n

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4αiαj(bii − q(B))(bjj − q(B))

] 1
2
}n
,

and
|det(A � B)| ≥ [q(A � B)]n

≥ min
i�=j

1
2n

{
aiibii + ajjbjj −

[
(aiibii − ajjbjj)2

+4βiβj(aii − q(A))(ajj − q(A))
] 1

2
}n
.

III. NUMERICAL EXAMPLES

Example 3.1

A =

⎡
⎢⎢⎣

4 −1 −1 −1
−2 5 −1 −1
0 −2 4 −1
−1 −1 −1 4

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

1 −1/2 0 0
−1/2 1 −1/2 0

0 −1/2 1 −1/2
0 0 −1/2 1

⎤
⎥⎥⎦ .

By calculation, we have q(B ◦ A−1) = 0.2148. By the
inequality (1), we get

q(B ◦A−1) ≥ 0.07

By the inequality (2), we get

q(B ◦A−1) ≥ 0.052

By the inequality (3), we get

q(B ◦A−1) ≥ 0.075

By Theorem 2.4, we have

q(B ◦A−1) ≥ 0.1729.

Example 3.2

A =

⎡
⎢⎢⎢⎢⎣

8 1 0 0 0
1 2 1 0 0
0 1 5 1 0
0 0 1 2 1
0 0 0 1 8

⎤
⎥⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

It is easy to calculate that ρ(A ◦ B) = ρ(A) = 8.1801. If we
use Gersgorin theorem and Brauer theorem, we have

ρ(A ◦B) ≤ 9.

and
ρ(A ◦B) ≤ 9.

If we take p1(A) = {e1,2, e2,3, e3,4, e4,5}, rA◦B(1, 2) =
rA◦B(1, 4) = rA◦B(2, 5) = 8.3166, rA◦B(1, 5) = 9,
rA◦B(2, 4) = 4, rA◦B(2, 3) = rA◦B(3, 4) = 6, rA◦B(1, 3) =
rA◦B(3, 5) = 8.5616.

From Theorem 2.5 we get

ρ(A ◦B) ≤Mr
c (A ◦B)

= max

{
min

γ∈Ψ(A◦B)
rA◦B(γ),maxΘA◦B

}
= 8.3166.

Example 3.3

A =

[
3 −1
0 2

]
B =

[
4 0
0 3

]
By calculation, we have

q(A � B) = 6

By Theorem 2.6, we get

q(A � B) = 6.
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IV. CONCLUSIONS

In this paper, we give some inequalities for the spectral
radius of the Hadamard product of two nonnegative matrices.
These bounds improve some existing results and numerical
examples illustrate that our results are superior.
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