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Abstract—A method for simulating flow around the solid bodies 

has been presented using hybrid meshfree and mesh-based schemes. 
The presented scheme optimizes the computational efficiency by 
combining the advantages of both meshfree and mesh-based 
methods. In this approach, a cloud of meshfree nodes has been used 
in the domain around the solid body. These meshfree nodes have the 
ability to efficiently adapt to complex geometrical shapes. In the rest 
of the domain, conventional Cartesian grid has been used beyond the 
meshfree cloud. Complex geometrical shapes can therefore be dealt 
efficiently by using meshfree nodal cloud and computational 
efficiency is maintained through the use of conventional mesh-based 
scheme on Cartesian grid in the larger part of the domain. Spatial 
discretization of meshfree nodes has been achieved through local 
radial basis functions in finite difference mode (RBF-FD). 
Conventional finite difference scheme has been used in the Cartesian 
‘meshed’ domain. Accuracy tests of the hybrid scheme have been 
conducted to establish the order of accuracy. Numerical tests have 
been performed by simulating two dimensional steady and unsteady 
incompressible flows around cylindrical object. Steady flow cases 
have been run at Reynolds numbers of 10, 20 and 40 and unsteady 
flow problems have been studied at Reynolds numbers of 100 and 
200. Flow Parameters including lift, drag, vortex shedding, and 
vorticity contours are calculated. Numerical results have been found 
to be in good agreement with computational and experimental results 
available in the literature. 
 

Keywords—CFD, Meshfree particle methods, Hybrid grid, 
Incompressible Navier Strokes equations, RBF-FD. 

I. INTRODUCTION 
ESHFREE or meshless methods have emerged as a new 
class of numerical techniques during past few years. 

One of the common characteristics of these methods is that 
they eliminate, at least, the structure of the mesh by 
approximating the solution over a set of arbitrarily distributed 
data points (or nodes) [4]-[9]. There is no requirement pre-
selected connectivity or relationship amongst the nodes of 
meshless domain. Meshfree methods can also deal with 
complex geometries and irregular boundaries more efficiently. 
Moreover, computational ease of adding or removing nodes 
from the domain is another attractive advantage of meshless 
methods. Meshless methods therefore have the potential to 
alleviate the mesh generation complexities arising in 
traditional methods like Finite Difference (FD), Finite Volume 
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(FV) and Finite Element (FE) methods and significantly 
reduce the computational cost associated with grid generation. 
Due to these features, meshless methods have become one of 
the hottest areas of research in computational fluid dynamics 
[12]-[19]. However, despite their stated advantages, meshless 
methods possess overall lesser computational efficiency than 
traditional mesh based methods like FD, FV and FD [21]. This 
in fact, is the major limitation which impedes the wide 
applicability of meshless methods [11].  

Radial Basis Functions (RBFs) have been used for many 
years for multivariate data and function interpolation. In 90s, 
use of RBFs was proposed for the solution of Partial 
Differential Equations (PDEs) [25]. Lately there has been 
great interest of researchers to use RBFs for solution of PDEs 
on irregular domains by collocation approach [12], [25]-[27]. 
Local RBF methods have also been proposed to overcome the 
ill-conditioning problem associated with dense, large sized 
matrices. Local RBFs compromise on spectral accuracy and 
produce well-conditioned and sparse linear systems which are 
capable of efficiently handling the non-linearities[17]. These 
methods are therefore considered well suited for fluid 
dynamics problems which involve large number of data points 
in meshfree domains. RBF in Finite Difference Mode (RBF-
FD) is a local RBF method which was independently proposed 
by Tolstykh et al. [29] and Wright et al. [30] for different set 
of applications. RBF-FD allows the use of Finite Difference 
method on randomly distributed data points (or nodes). The 
method has been successfully applied to various fluid 
dynamics problems involving incompressible Navier Strokes 
equations [27], [32].  

Like other Meshfree methods, RBF based methods also 
suffer from high computational cost compared with 
conventional mesh based methods. For example, calculation of 
RBF weights corresponding to the neighbouring particles of a 
data point requires expensive square root and matrix inversion 
processes. Moreover, calculation of derivative approximation 
at a given order of accuracy usually requires much more 
number of neighboring particles (or nodes) for meshfree 
methods on irregular grid than for finite difference methods on 
Cartesian grid. As a result, the bandwidth of matrices 
representing the governing algebraic equations greatly 
expands in case of meshfree methods [11]. Therefore, the 
iteration process is slowed down due to relatively dense matrix 
equations and the computational efficiency is reduced. At the 
same time, meshfree methods have the advantage to efficiently 
deal with complex geometry.  

Conventional mesh-based methods (e.g. FD, FV and FE 
methods) offer better computational efficiency over 
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meshfreemethods. However, generation of an efficient mesh, 
which could ensure accurate results, is generally a tedious and 
time consuming task. Cartesian grid is generally considered to 
be much more efficient to generate but it cannot be applied to 
complex geometries. In order to cope with this problem, 
coupled multi-grid methods have been proposed [33]-[35]. 
However these methods rely on interpolation approximations 
at the grid interchanges and suffer from inaccuracies 
especially when high gradients exist at these junctures. Some 
researchers have also proposed the use of Cartesian grids on 
irregular shapes using boundary-fitted methods [36]-[38]. 
However, these methods necessitate special treatments close 
to the boundary and suffer from time step restrictions due to 
small cut cell to accurately embed irregular boundaries in the 
Cartesian grid. Another approach is to use non-body 
conformal methods [39], [40] in which a background 
structured mesh is defined behind the solid boundary. The 
interface between fluid and solid is traced using ‘marker 
nodes’. These schemes however suffer from inaccuracies 
coming from accurate tracing of the boundary which is limited 
by the grid resolution.  

In view of the foregone, it is logical to come up with a 
technique which combines the inherent strengths of both 
meshfree and mesh-based methods. Here, a hybrid technique 
is presented to simulate incompressible flow around arbitrarily 
shaped solid objects. The proposed technique couples RBF-
FD method on meshfree zone around the solid body and 
conventional Finite difference method applied to the Cartesian 
grid zone in rest of the domain. Meshfree nodes efficiently 
adapt to the irregular shape of the solid boundary. Outer 
boundary of the meshfree zone is a regular rectangular or 
squared shaped. A Cartesian mesh can therefore be generated 
and coupled to the outer boundary of meshfree zone as shown 
in Fig. 1. Computationally expensive RBF-FD method is 
therefore limited to only small meshfree zone of the 
computational domain where it is required to deal with 
irregularly shaped solid boundaries. The remaining 
computational domain is dealt with conventional finite 
difference method on a Cartesian grid which enjoys 

computational efficiency over its meshfree counterpart. Values 
of field variables at collocation points on meshfree boundary 
serve as boundary conditions for Cartesian grid zone. 
Therefore, an overall efficient solution scheme is achieved 
which can effectively handle irregularly shaped solid 
boundaries. 

 
TABLE I 

COMMON RADIAL BASIS FUNCTIONS ߶ሺݎሻ 
Re St 

Multiquadric (MQ) ߶ሺݎሻ ൌ ඥݎଶ ൅ ଶߪ

Inverse Multiquadric (IMQ) ߶ሺݎሻ ൌ 1/ඥݎଶ ൅ ଶߪ

Inverse Quadric (IQ) ߶ሺݎሻ ൌ 1/ሺݎଶ ൅ ଶሻߪ  
Gaussian (GA) ߶ሺݎሻ ൌ expሺെሺݎߪሻଶሻ 

II. FORMULATION OF PROBLEM 

A. Governing Equations 
Incompressible, transient, viscous Navier-Strokes equations 

in non-dimensional pressure-velocity form are expressed as:  
 

.׏ ሬܸԦ ൌ 0 (1) 
߲ሬܸԦ/߲ݐ ൌ െܲ׏ െ ൫ሬܸԦ. ൯ሬܸԦ׏ ൅ ሺ1/ܴ݁ሻ׏ଶ ሬܸԦ  (2) 

 
where ሬܸԦis the velocity vector, ܲ is the pressure, and ܴ݁ is the 
Reynolds number. The equations are discretized using time 
implicit RBF-FD method proposed by Javed et al [41]. The 
method has been shown to be stable and produce accurate 
results in the regions of gradients high field variables. Detail 
of temporal and spatial discretization is described below.  

B. Time Splitting 
Time splitting of the governing equations has been achieved 

using implicit fractional step method [41]. In this method, 
convective term of momentum equation is treated with 2nd 
order explicit Adam-Bashforth scheme whereas viscous term 
is decomposed using 2nd order implicit Crank-Nicholson 
scheme [42].  

 

 

 
Fig. 1 Schematic of Hybrid Meshfree-Meshed Domain 
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Equation (2) therefore assumes the following form:  
 

ሺሬܸԦכ െ ሬܸԦ௡ሻ/߲ݐ ൌ െ1/2ൣ3൫ሬܸԦ௡. ൯ሬܸԦ௡׏ െ ൫ሬܸԦ௡ିଵ. ൯ሬܸԦ௡ିଵ൧׏
൅ 1/ሺ2ܴ݁ሻൣ׏ଶ൫ሬܸԦ௡ ൅ ሬܸԦכ൯൧ 

(3) 

 
Superscripts ݊ and ݊ െ 1 represent the iteration number and 

 represents the intermediate velocity. The pressure termכܸ
appearing in momentum (2) can be linked with velocity as:  
 

ሺሬܸԦ௡ାଵ െ ሬܸԦכሻ/߲ݐ ൌ െܲ׏௡ାଵ  (4)  
 

Now, from continuity condition (1):  
 

.׏ ሬܸԦ௡ାଵ ൌ 0  (5)  
 

Substituting the value of ሬܸԦ௡ାଵfrom (4) into (5) leads to,  
 

ଶܲ௡ାଵ׏ ൌ ሺ1/Δݐሻ׏. ሬܸԦכ  (6)  
 
Equation (6) is called pressure Poisson equation. By 

incorporating pressure term into continuity equation, the 
continuity is satisfied in the process of solution of transient 
flow problem. 

C. Space Splitting 
As mentioned before, space splitting has been achieved 

using RBF-FD in meshfreezone.RBF in finite difference mode 
(RBF-FD) is the generalization of classical finite difference 
method over scattered data points (or nodes) using Radial 
Basis Functions. The standard RBF interpolation for a set of 
distinct pointsݔ௝߳Թௗ, ݆ ൌ 1,2, … ܰ is given by [32]:  

 

ሻݔሺݑ ൎ ሻݔሺݏ ൌ ෍ ߶௝ߣ ቀቚหݔ െ ௝หቚቁݔ
ே

௝ୀଵ

൅  (7) ߚ

 

where, ߶ ቀቚหݔ െ .|௝หቚቁis a radial basis function, หݔ |หis a 
standard Euclidean norm and ߣ݀݊ܽߚ௝ are expansion 
coefficients. Some of the common radial basis functions are 
given in Table I. ݎ is the radial distance between two data 
points and ߪ is the shape function. Equation (7) can be written 
in Lagrange form as:  
 

ሻݔҧሺݏ ൌ ෍ ࣲ ቀቚหݔ െ ௝หቚቁݔ ௝൯ݔ൫ݑ
ே

௝ୀଵ

 (8)  

 

where, ࣲ ቀቚหݔ െ  ௝หቚቁis of the form (7) and satisfies theݔ
cardinal conditions as 
 

ࣲ ቀቚหݔ௞ െ ௝หቚቁݔ ൌ ൜1, ݂݅݇ ൌ ݆
0, ݂݅݇ ് ݆݇ ൌ 1,2, … . ݊ (9) 

 
Applying a differential operator ࣦ on (8) at node ݔଵ, as shown 
in Fig. 2, yields:  

ଵሻݔሺݑࣦ ൎ ଵሻݔҧሺݏࣦ ൌ ෍ ࣲࣦ ቀቚหݔଵ െ ௝หቚቁݔ ௝൯ݔ൫ݑ
௡

௝ୀଵ

 (10) 

 
Using classical finite difference approach, the derivative of 
any parameter ݑ at any node, sayݔଵ, can be expressed as 
weighted linear sum of same variable values at surrounding 
nodes in the support domain. Therefore,  
 

ଵሻݔሺݑࣦ ൌ ෍ ሺଵ,௝ሻݓ
ሺࣦሻ ௝൯ݔ൫ݑ 

ே

௝ୀଵ

 (11) 

 
whereN is the number of nodes in the support domain of 
nodeݔଵ, ݑ൫ݔ௝൯is the value of parameter ݑat node ݔ௝and ݓሺଵ,௝ሻ

ሺࣦሻ  
is the weight of corresponding differential operator ࣦ at node 
 ଵas shown in Fig. 2. Comparing (10) and (11), theݔ ௝for nodeݔ
weightsݓሺଵ,௝ሻ

ሺࣦሻ can be written as:  
 

ሺଵ,௝ሻݓ
ሺࣦሻ ൌ ࣲࣦ ቀቚหݔଵ െ   ௝หቚቁ (12)ݔ

 
In practice, RBF weights can be computed by solving the 

following linear system [27]: 
 

ቂ Φ ݁
்݁ 0ቃ ቂ

࢝
ߤ ቃ ൌ ቂࣦΦଵ

0 ቃ (13)  
 
where ࣦΦଵrepresents the column vector  
ࣦ߶ ൌ ሾࣦ߶ሺห|ݔ െ ݔ|ଵ|ห ࣦ߶ሺหݔ െ ଶ|หݔ … . ࣦ߶൫ห|ݔ െ  ௡|ห൧்evaluatedݔ
at node ݔଵ and ߤ is a scalar parameter which enforces the 
condition:  
 

෍ ሺଵ,௝ሻݓ
ሺࣦሻ

௡

௝ୀଵ

ൌ 0 (14)  

 
Evaluation of (13) at each node, sayݔଵ, gives weights 

ሺଵ,௝ሻݓ
ሺࣦሻ of all the nodes in the support domain for particular 

differential operator ࣦ. Corresponding weights and locations 
of nodes in support domains are then used to approximate the 
complete differential equation at nodeݔଵ. The procedure 
repeated to approximate the differential equations at all the 
node in domain. 
 

 
Fig. 2 Support domain of a reference node 
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Classical finite difference method has been used in 
Cartesian grid zone to improve computational efficiency of the 
solution. At time iteration ݊, 1st and 2nd spatial derivatives of a 
variable ݑ, with respect to ݔ, can be approximated at node 
ሺ݅, ݆ሻ using central difference schemes on a standard 2-D 
Cartesian grid (see Fig. 3) as follows:  

 
௡ݑ߲

ݔ߲
ฬ

ሺ௜,௝ሻ
ൎ

௜ାଵ,௝ݑ
௡ െ ௜ିଵ,௝ݑ

௡

2Δݔ 
  (15) 

   
߲ଶݑ௡

ଶݔ߲ ቤ
ሺ௜,௝ሻ

ൎ
௜ାଵ,௝ݑ

௡ െ ௜,௝ݑ2
௡ ൅ ௜ିଵ,௝ݑ

௡

Δݔଶ   (16) 

 
Spatial discretization is to be decided by corresponding 

meshfree / Cartesian zone of the particular node. Separate 
Matrix equations can be formulated, for meshfree and 
Cartesian nodes, by writing governing equations ((3) and (6)) 
in discretized form at each node of the domain. Solution of 
these equations results nodal pressure and intermediate 
velocity values at each time step. Subsequently, velocity 
values at next time iteration can be calculated using (4). 

 

 
Fig. 3 Nodes on standard 2-D Cartesian grid 

 

 

Fig. 4 Coupling of Meshfree-Cartesian Zones 

D. Treatment of Computational Domain 
As mentioned earlier, the computational domain has been 

divided into two zones namely Cartesian and meshfree zones. 
Meshfree zone comprises of a nodal cloud. The inner 

boundary of this nodal cloud adapts to the shape of solid 
boundary whereas the outer boundary of nodal cloud is 
essentially rectangular for 2-D domain. Beyond the nodal 
cloud, a standard Cartesian grid exists. A closed view of 
computational domain near the juncture of the two zones is 
shown in Fig. 4. The nodes existing in the domain can be 
classified in three categories. Cat-A nodes fall in the meshfree 
zone and are treated with RBF-FD method. Value of field 
variable at each node is calculated using the linear weighted 
sum of corresponding values at the nodes in the support 
domain. Near the outer boundary of the meshfree zone, the 
support domain of Cat-A nodes may extend to the Cartesian 
zone. Therefore, some Cartesian nodes will also fall in the 
support domain of these meshfree nodes. These Cartesian 
nodes which fall in the support domain of meshfree nodes, are 
named as Cat-B nodes in Fig. 4. Although Cat-B nodes 
influence the results of corresponding meshfree nodes, 
solution at Cat-B nodes is calculated using conventional finite 
difference method. On the contrary, Cat-C nodes are those 
Cartesian nodes which do not fall in the support domain of any 
meshfree (Cat-A) node. Outer Boundary nodes of meshfree 
zone are positioned in a way that they can be treated as 
boundary nodes for Cartesian grid. Thus the values calculated 
at these nodes serve as boundary conditions for Cartesian grid 
at corresponding time iteration. 

At every time step, the solution is first calculated at 
meshfree zone. For this calculation, the boundary conditions at 
the solid surface and field variable values at Cat-B nodes are 
used. After having calculated the results in meshfree zone, 
standard finite difference scheme is used to calculate results in 
Cartesian zone. For this, nodes at the outer boundary of 
meshfree cloud provide the boundary conditions to Cartesian 
nodes. In addition to this, the boundary conditions at outer 
boundaries of domain are also used.  

III. NUMERICAL TESTS 

A. Calculation of Order of Accuracy 
Spatial Accuracy of the presented method has been found 

by simulating the decaying vortex on hybrid grid. Analytical 
solution of decaying vortex case is known. Therefore, the test 
is often used by researchers to verify the accuracy of new 
methods [21], [42], [44], [45]. Theoretical expressions for 
velocity and pressure fields for this case are given by: 

 
,ݔሺݑ ,ݕ ሻݐ ൌ െ cosሺݔߨሻ sinሺݕߨሻ expሺെ2ߨଶݐ/ܴ݁ሻ (17) 

 
,ݔሺݒ ,ݕ ሻݐ ൌ sinሺݔߨሻ cosሺݕߨሻ expሺെ2ߨଶݐ/ܴ݁ሻ (18) 

 
,ݔሺ݌ ,ݕ ሻݐ ൌ െ0.25ሾcosሺ2ݔߨሻ

൅ sinሺ2ݕߨሻሿ expሺെ4ߨଶݐ/ܴ݁ሻ  (19) 

 
Here, ܴ݁ is the flow Reynolds number which is taken as 

ܴ݁ ൌ  ଴ is the maximumݑ ,is the flow density ߩ) ߤ/ܮ଴ݑߩ
velocity at t=0, ߤ is the dynamic viscosity and ܮ is the length 
of the vortex). Numerical simulations are carried out on a 
rectangular domain with dimensions [-0.5x0.5]x[-0.5x0.5]. 
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TABLE II 
COMPARISON OF SEPARATION ANGLE (ߠ௦௘௣), LENGTH OF RECIRCULATION 

REGION (ܮ௦௘௣) AND DRAG COEFFICIENT (CD) AT RE 10, 20 AND 40 

Re Source ߠ௦௘௣ ܮ௦௘௣ CD 
10 Dennis and Chang [1] 29.6 0.265 2.85 
10 Takami and Keller [3] 29.3 0.249 2.80 
10 Taunn and Olson [20] 29.7 0.25 3.18 
10 Ding et al [18] 30.0 0.252 3.07 
10 He and Doolen[23] 26.9 0.237 3.17 
10 Mei and Shyy[24] 30.0 0.249 - 
10 Guo et al [28] 31.6 0.267 - 
10 Chew et al [21] 28.6 0.28 3.09 
10 Firoozjaee et al [31] - 0.26 - 
10 Present Study 30.47 0.255 3.12 
20 Dennis and Chang [1] 43.7 0.94 2.05 
20 Takami and Keller [3] 43.7 0.935 2.01 
20 Taunn and Olson [20] 44.1 0.9 2.25 
20 Ding et al [18] 44.1 0.93 2.18 
20 He and Doolen[23] 42.9 0.921 2.152 
20 Mei and Shyy[24] 42.1 0.902 - 
20 Guo et al [28] 42.3 0.935 - 
20 Chew et al [21] 44.2 0.95 2.19 
20 Firoozjaee et al [31] - 0.94 - 
20 Fornberg[43] - 0.91 2.00 
20 Present Study 44.11 0.91 2.20 
40 Dennis and Chang [1] 53.8 2.35 1.52 
40 Takami and Keller [3] 53.6 2.32 1.54 
40 Taunn and Olson [20] 54.8 2.1 1.68 
40 Ding et al [18] 53.5 2.20 1.71 
40 He and Doolen[23] 53.8 2.245 1.50 
40 Mei and Shyy[24] 50.12 2.19 - 
40 Guo et al [28] 53.13 2.2 - 
40 Chew et al [21] 53.47 2.3 1.59 
40 Firoozjaee et al [31] - 2.26 - 
40 Fornberg[43] - 2.24 1.50 
40 Present Study 53.13 2.18 1.63 

 
Inflow boundary conditions (ݑ ൌ ܷ, ݒ ൌ 0, where ܷ is the 

free stream velocity) are applied at the inlet. No slip boundary 
conditions (ݑ ൌ ݒ ൌ 0) have been introduced at the solid 
boundary. No slip boundary condition implies that ߲݌/߲݊ ൌ
0 (where ݊ is the outward normal direction to the boundary). 
Therefore, Neumann boundary conditions for pressure are 
introduced at solid boundary. At the outlet, outflow boundary 
conditions are met using the expression 
ݐ߲/ݑ߲  ൅ ݔ߲/ݑ߲ ൌ 0. At top and bottom boundary, 
ݕ߲/ݑ߲ ൌ 0, ݒ ൌ 0 is applied.  
 

 
(a) Nodes in Cartesian and meshfree zones 

 

 
(b) Orthogonal nodal arrangement around solid boundary 

Fig. 8 Grid around circular cylinder 
 
The nodal arrangement used for the problem is shown in 

Fig. 8 (a). A total of 100 nodes are placed on the circular solid 
boundary. The domain is represented by 2895 meshfree nodes 
(arranged radially) and 32088 Cartesian nodes. Therefore, 
computationally expensive meshfree scheme will be used at 
only 8.3% nodes of the domain. In order to implement 
Neumann boundary condition at solid boundary, first two 
layers of nodes around the solid are arranged orthogonally 
with the boundary nodes as shown in Fig. 8 (b). The condition 
of orthogonal grid at the outlet boundary is naturally satisfied 
due to Cartesian grid. 

Lift and drag forces at the solid boundary are evaluated by 
summing up vertical and horizontal components of pressure 
and viscous forces at all the boundary nodes as shown in Fig. 
9. Lift ሺܨ௅ሻ and drag ሺܨ஽ሻforces can therefore be expressed as:  

 

௅ܨ ൌ ଶܷߩ ቌ෍ ൬െ ௜ܲ sin ௜ߠ ߠ݀ݎ ൅
1

ܴ݁
߱௜ cos ௜ߠ ൰ߠ݀

௡ೞ

௜ୀଵ

ቍ  (20) 
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஽ܨ ൌ ଶܷߩ ቌ෍ ൬െ ௜ܲ cos ௜ߠ ߠ݀ݎ െ
1

ܴ݁
߱௜ sin ௜ߠ ൰ߠ݀

௡ೞ

௜ୀଵ

ቍ  (21) 

where ௜ܲand߱௜are the pressure and vorticity values at 
boundary node ݅, ݊௦is the number of nodes at solid boundary, 
 ௜is the angular position of the nodeߠ ,is the radius of circle ݎ
݅ from horizontal (as shown in Fig.9) and ݀ߠ is the angular 
displacement between two consecutive boundary nodes. The 
lift and drag coefficients (CD and CL) around the solid 
boundary are then evaluated using following expressions:  

 

ݐ݂݂݊݁݅ܿ݅݁݋ܿ ݐ݂݅ܮ ൌ ௅ܥ ൌ
௅ܨ

 ଶܷߩ (22) 

   

ݐ݂݂݊݁݅ܿ݅݁݋ܿ ݃ܽݎܦ ൌ ஽ܥ ൌ
஽ܨ

 ଶܷߩ (23) 

 

 
Fig. 9 Lift and drag force vectors on solid boundary 

 
The steady flow cases have been studied at Re 10, 20 and 

40. Time step is kept as 5x10-3 sec. The simulation is run until 
steady state is achieved. Vorticity profiles of flow at all the 
three Reynolds numbers are shown in Fig. 10. The resultant 
values of drag coefficients, separation angles and lengths of 
recirculation regions have been calculated and validated 
against the solutions from previous researchers [1], [3], [20], 
[23], [24], [28], [31], [43]. Comparison of results has been 
presented in Table II. The resultant flow parameters are found 
to be in good agreement with the results of previous 
researchers at the three Reynolds numbers.  

 
TABLE III 

COMPARISON OF LIFT AND DRAG COEFFICIENTS (CL AND CD) AND STOUHAL 
NUMBER (ST) AT RE 100 AND 200 

Re Source CL CD St 
100 Braza et al [2] +0.25 1.364+0.015 0.160 
100 Lieu et al [10] +0.34 1.350+0.012 0.164 
100 Ding et al [11] +0.28 1.325+0.008 0.164 
100 C.Shu et al [21] +0.34 1.362+0.010 0.166 
100 Present Study +0.36 1.35+0.01 0.166 
200 Belovetal[22] +0.64 1.19+0.042 0.193 
200 Braza et al [2] +0.75 1.40+0.05 0.200 
200 Lieu et al [10] +0.69 1.31+0.049 0.192 
200 Ding et al [11] +0.60 1.327+0.045 0.196 
200 C.Shu et al [21] +0.34 1.325+0.008 0.192 
200 Present Study +0.72 1.354+0.058 0.196 

 
Fig. 10 Vorticity profiles at Re 10, 20 and 40 

 
In order to simulate unsteady flow around the cylindrical 

objects, the flow solutions have been calculated at Re100 and 
200. Time step has been chosen to be 2.5x10-3 sec. At these 
flow conditions, oscillating vortices are obtained behind the 
solid object. The oscillating vortex profile is captured at 
various time instances for a complete cycle, and shown in 
Figs. 11 and 12 for Re 100 and 200, respectively. The 
oscillatory flow also results in corresponding fluctuation in lift 
and drag forces over the body. Variation of CL and CD has 
been plotted against time in Figs. 13 and 14 for Re 100 and 
200, respectively. It can be observed that magnitude of lift and 
drag coefficients and frequency of oscillation tend to increase 
with the increase in Reynolds number. At both Reynolds 
number, frequency of oscillation of drag coefficient is twice 
the corresponding oscillation frequency of lift coefficient. 
Frequency of oscillation can be represented in terms of 
Strouhal number which is equal to the vortex shedding 
frequency in case of non-dimensionalized length and time 
parameters. Therefore, Strouhal number can directly be 
acquired by frequency of oscillation of CL versus time plot.  

The numerical solutions have been verified by comparing 
the resultant values of lift and drag coefficients and Strouhal 
number with results of previous researchers, as shown in 
Table III. The results show good agreement with the previous 
solutions [2], [10], [11], [21], [22]. 

A comparison of computational time between hybrid and 
fully meshfree schemes was carried out on a grid containing 
18026 nodes at flow Reynolds number 100. The simulation 
was run on Intel ® 3.1 GHz Processor machine and CPU time 
for every 100 iterations was monitored. Average CPU time for 
fully meshfree scheme was found to be 468.3 sec compared 
with the average CPU time of 38.72 sec for Hybrid scheme. 
Thus the computation time was reduced by almost a factor of 
12 with the use of Hybrid scheme. More overdue to fewer 
meshfree nodes used in Hybrid approach, RBF-FD weight 
calculation time was also reduced by a factor of 6 compared 
with fully meshfree approach. Therefore significant 
improvement in computational time was achieved using 
hybrid approach.  
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Fig. 11 Vortex shedding at Re 100 

 

 
Fig. 12 Vortex shedding at Re 200 

IV. CONCLUSION 
RBF-FD is a highly flexible meshless method which is 

known for accurate and efficient approximation the derivatives 
of field variables on a meshless domain. However, like other 
meshless methods, it lacks computational efficiency compared 
with the conventional mesh based methods. The proposed 
hybrid scheme therefore couples both the meshless and mesh-
based methods on a hybrid grid.  

 

 
Fig. 13 Variation of CL and CD with time at Re 100 

 

 
Fig. 14 Variation of CL and CD with time at Re 200 

 
The hybrid scheme is used to simulate incompressible flow 

past circular cylinder. Implicit treatment of time marching is 
implemented to achieve better stability of the iteration process. 
The overall hybrid scheme is found to have spatial order of 
accuracy greater than 3.8 for both pressure and velocity results 
on a hybrid meshfree-Cartesian grid with rectangular domain. 
Numerical tests are performed to demonstrate the application 
of presented method for steady and unsteady flow problems. 
Accurate solutions have been obtained by using the presented 
scheme with the use of significantly less computational 
resources. 
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