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Abstract—This paper presents two solutions to
Theorem (FLT). The first one using some algebra
the Pythagorean theorem, expression of equation
their behavior, when compared with power
and using " the “Well Ordering Principle” of na
demonstrated that in Fermat equation
solution is using the connection between and p
Pascal’s triangle or  Newton’s binomial coefficients
equation do not fulfill the first coefficient, then it is

for and
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I. INTRODUCTION

HIS document serves the matter with reg
Fermat: Would be certain his claim 

"wonderful demonstration" of Fermat’s L
1637? [3]:

“Cubumautem in duos cubos, autquadrat
duos quadrate quadratos, et generaliter nul
ultra quadratum potestatem in duos eiusdem
divider cuius rei demonstrationem mirabile
Hanc marginis exiguitas non caperet.” Pierre 

“It is impossible to decompose a cube in
biquadratic in two biquadrate, and in general 
than the square, two powers of the exponent.
wonderful demonstration, but the margin of
small to put it.” Pierre de Fermat [3].

Wiles (1995) demonstration uses elliptic cu
groups, Hecks’ Algebra, Iwasawa theory, 
Bernays-Gödel’ theory, Zermelo-Fraenkel’ t
complex mathematical tools, all developed m
Fermat’s lived [7]. This document shows 
demonstration using procedures known in the 

II.FERMAT’S LAST THEOREM

Fermat's last theorem or Fermat-Wiles’s th
the most famous theorems in the history of 
and [6]. The search for a demonstratio
development of algebraic number theory in
century and the proof of the theorem of m
twentieth century. Using modern notation
theorem can be stated as follows:

If is an integer greater than 2, then you c
natural numbers x, y and z such equality is met
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Pierre de Fermat (1667), showed 
infinite descent technique [5]; 
demonstrated the n=3 case confir
Germain stated that if p and 2p+1 
expression for the power Fermat co
of the x, y or z would be divisible by
number n<100 and Legendre, ext
n<197 [8]. In 1825, Dirichlet and Le
of n=3 to n=5. More recently, Lame 
n=7 [8].
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z) such that . Although the Ba
how to generate such triads in certain cases, t
extended the study of the topic finding resu
integer is a member of a primitive Pythago
However, the complete solution to this pr
obtained until the 13th century when Fibonacc
generate all possible Pythagorean triples [2].

There are different ways for gener
Pythagorean triples [1], [2] and [4], but we sh
of finding Pythagorean triples (x, y, z) below.

Applied to right triangles of sides and hy
Pythagorean theorem establishes that the follo

x² y² z²

It is satisfied by natural numbers (x, y, z) 0
In (1), one of the two variables ( or ) mu

the other and they cannot be the same, becaus
the same would be and
natural number, (the square root of two is an i
with an infinite mantissa, which continues to
multiplying it by a natural number).

Assuming that ( ) then must be gre
) to make equation (1) solution, i.e.,

therefore, we can write:

where . If equal to or greater 
(1), would have not solution with (2).

Fig. 2 shows a graphical representation of th

Fig. 2 Graphic representation of (2

Theorem 1:
In (1) and (2)

Proof:
1. z > y > x,

2. Suppose m x > 0 m = x u,  u 0
3. x² 2ym m²…………...………….A

Babylonians knew
s, the Pythagoreans
sults as: "any odd
gorean triple" [3].

 problem was not
acci found a way to
].
nerating primitive
 show another way
.

hypotenuse whole,
llowing equation:

(1)

0
must be larger than
ause when they are

would not be a
n irrational number
 to be irrational by

greater than (
., , and

er than , Equation

f this equation.

f (2)

0
According to 1.

4. x² 2y(x u) (x u)²… sub
u ……..…………………..…

5. x² 2yx 2yu x² 2xu u
6. 0 2yx 2yu 2 xu u².…
7. 2yx 2yu 2xu u²

positive number cannot be 
when ).

8. Therefore, assumption 2 is inc
………………………………

9. Therefore: m < x…..…………

In (2) according to the Good Or
contain a minimum element within t
be of first grade it must be met fo
lowest element number 1. Additio
possible to find all Pythagorean trip
among the natural numbers, other 
would also give .

Replacing (2) in (1) would be:

(x² m²) (2m

Primitive Pythagorean triples of
found, replacing m 1 in (2) and (3), 

Primitive Pythagorean triples of
found, replacing m 2 in (2) and (3), 

Equations (4)-(7) let us find prim
and , where and values

found for and , respectively, 
.
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t for all , being their
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3), leaving:
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(5)
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3), leaving:
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k and and are

ith odd , and with

(8)
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TABLE I
PRIMITIVE PYTHAGOREAN TRIPLES AND LARGER BASES WITH ODD

Primitive Pythagorean triples odd xk=1 (m=1 (4) and (5))

x a=3 a=5 a=7 a=9 a=11 a=13 a=15 a=17 a=19

y b=4 b=12 b=24 b=40 b=60 b=84 b=112 b=144 b=180

z c=5 c=13 c=25 c=41 c=61 c=85 c=113 c=145 c=181

Larger Pythagorean triples: (8) k=2 (m=2 (8)

x 6 10 14 18 22 26 30 34 38

y 8 24 48 80 120 168 224 288 360

z 10 26 50 82 122 170 226 290 362

Larger Pythagorean triples: (8) k=3 (m=3 (8))

x 9 15 21 27 33 39 45 51 57

y 12 36 72 120 180 252 336 432 540

z 15 39 75 123 183 255 339 435 543

Larger Pythagorean triples: (8) k=4 (m=4 (8))

x 12 20 28 36 44 52 60 68 76

y 16 48 96 160 240 336 448 576 720

z 20 52 100 164 244 340 452 580 724

TABLE II
PRIMITIVE PYTHAGOREAN TRIPLES AND LARGER BASES WITH EVEN X=A

Primitive Pythagorean triples even x,k=1 (m=2 (6) and (7))

x a=6 a=8 a=10 a=12 a=14 a=16 a=18 a=20 a=22 a=24
y b=8 b=15 b=24 b=35 b=48 b=63 b=80 b=99 b=120 b=143
z c=10 c=17 c=26 c=37 c=50 c=65 c=82 c=101 c=122 c=145

Larger Pythagorean triples: (8) k=2 (m=4 (8))

x 12 16 20 24 28 32 36 40 44 48

y 16 30 48 70 96 126 160 198 240 286

z 20 34 52 74 100 130 164 202 244 290

Larger Pythagorean triples: (8) k=3 (m=6 (8))

x 18 24 30 36 42 48 54 60 66 72

y 24 45 72 105 144 189 240 297 360 429

z 30 51 78 111 150 195 246 303 366 435

Larger Pythagorean triples: (8) k=4 (m=8 (8))

x 24 32 40 48 56 64 72 80 88 96

y 32 60 96 140 192 252 320 396 480 572

z 40 68 104 148 200 260 328 404 488 580

This method is simple but very valuable. For example with
x 24, there are only four solutions of x y with natural
numbers so that z is a natural number and y 143, 70, 45, 32,
and z 145, 74, 51, 40 respectively, all values obtained with
(4)-(8), (see numbers highlighted in black in Table II),
solutions with m 2, 4, 6, 8 all dividers of 24. Values x y and
z as a natural numbers are equivalent and give the same z, just
as if it had been where , for example
x 24, y 18, z 30 is equivalent to y=24, x=18, z=30 but they
have not been taken as solutions because , ( has
been always considered). Although m 12 is a divisor of 24
and solves x 24, y 18, z 30 it also corresponds to a similar
Pythagorean triple of x 18, y 24 and z 30 with m 6.

There are other primitive Pythagorean triples (shown in [1],
[2] and [4]) which can also be obtained with m 2 (3) or with
following equations:

x² y² z² x 2uv,  y u² v²,  z u² v²,  (for  these equations
m 2v²) (9)

where u and v are prime numbers together, one of them is even
and the other odd.

Example with m 8 from (9):

x 20, y 21, z y m 8 2v², v 2,  u 20/4 5 and

Table III gives some examples:

TABLE III
EXAMPLES OF PRIMITIVE PYTHAGOREAN TRIPLES WITH SEQUENCES OF PRIME NUMBERS, ONE OF THEM EVEN ACCORDING TO (9)

Primitive Pythagorean triples with sequence of prime numbers

m=8 v=2, u=7 v=2, u=11 v=2, u=13 v=2, u=17 v=2, u=19 v=2, u=23

x 28 44 52 68 76 92

y 45 117 165 285 357 525

z 53 125 173 293 365 533

m=8 v=2, u=29 v=2, u=31 v=2, u=37 v=2, u=41 v=2, u=43 v=2, u=47

x 126 124 148 164 172 184

y 837 957 1365 1677 1845 2205

z 845 965 1373 1685 1853 2213

For cases where u and v are primes and both are odd,
primitive Pythagorean triples can be obtained using the
following equations:

x² y² z² x uv,  y (u² v²),  z (u² v²), (for these

equations m v² ) (10)

For all numbers x, y that are not within Pythagorean triples,
z is irrational with infinite mantissa. Its calculation comes

from a root of 2, ( ), that means m from (2) is
irrational with an infinite mantissa ( ) 0 and natural
numbers. Therefore:

(irrational with infinite mantissa) (natural number)
(the mantissa must be also infinite).

Another important analysis is that ξ and β remain constant
both for primitive Pythagorean triples, as its projection in the
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larger Pythagorean triples:

ξ x/z (xk)/(zk) ak/ck a/c
β= y/z =(yk)/(zk) = bk/ck = b/c

The importance of (2) and (3) is that any primitive
Pythagorean triple can be found easily. By using the Good
Ordering Principle of natural numbers, the minimum elements
of (2) and (3) inside the set of natural numbers would be:

. Additionally with (2) and (3)
can be formed any right triangle sides where
and odd number, and where

and . The resulting equation has the
same form of (1), i.e. , but here and

. This is important, because it helps
showing that Fermat’s Last Theorem is true in a simple way.

IV. SOLUTION FOR FERMAT'S LAST THEOREM

A. First Solution

A solution using z y to solve , for n 2,
similar to the procedure followed to find primitive
Pythagorean triples, in the previous chapter, demonstrating
that is as follows:
Theorem 2

In equation is always true that: ( for
) ( for n 2)

Proof:
for n>1

Let’s the solution of for and
the solution of and assuming that

is solution of ( )

………….……    According to 2.
……...…According to 1, 2, 3 and 4.

……According to 4 and 5.
According to

6.
…………..……      According to 7.

…………….…..…………    According to 8.

.. According to 9.

……………….....……...…   According to 10.

Q.E.D.

Corollary one: In the equation:

(

Corollary two: The theorem 2 also applies to equations
where and

, because .
Theorem 3

Proof:

1. Assuming that equation , has integer
solutions, where and
are coprimes.

2. Assuming one of the variables ( ) is smaller than the
other ( ). It can not be the same because it leads to

therefore ).
3. Then ……………..…. According to 1 and 2.
4. If has integer solutions we can do:

, where must be an integer number, but
(theorem 2)

(11)

From (11) it is clear that and we are assuming
is integer number.

5. From 3:

(12)

6. Looking (11) and (12), both have the same form because
in  (11) it has assumed that is integer (only differ is in
the name of variables), that means if + = then:

(13)

7. Equation (13) has the same form of the Fermat’s equation
but with even lower values ( ) which

leaves us in the path of the infinite descent, (if there is a
minimum integer, then with (13), would be another minor
integer, which contradicts the well-ordering principle of
the natural numbers, therefore and also

.
8. Applying Theorem 2 and the well-ordering principle of

the natural numbers:
Starting with the original equation (Fig. 3):
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must be inside of if no

By the well-ordering principle of the natu
must have a minimuminteger solution, then i
look the minimum solution inside of:

There are four cases:
a. but
The minimum solution for is:

and , then , but
is irrational.
and then ,

with and
for is irrational (don’t 

solution)
b. but
The minimum solution for is:

and , then , but
because is irrational.

and then ,
with and

for is irrational (don’t 
solution)

c. but
The minimum solution for is:

and , then , but
is irrational.

and then ,
with and

for is irrational (don’t 
solution)

d. then
The minimum solution for is:

and , then , and , b
with

then for is 
have a minimum solution)

That means the Fermat’s equation
have minimum solution where

9. Therefore it assumed in 1 is false a
Theorem is demonstrated, because

 not

atural numbers,
n it is necessary to

because

but
and then

have a minimum

ut

but
and then

have a minimum

because

but
and then

have a minimum

, but:
and

irrational (don’t

must not

and Fermat’s Last

Q.E.D.

Fig. 3 Graphic representation of Fer
, ,
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Fig. 4 Graphic where and
and

Fermat’s Last Triangle

Fermat´s Last Theorem can be sho
, when joining the

,  and where  60
opposited to side ). This tr
Fermat’s Last Triangle in his honor.
is shown in Figure 5. Here
could be a natural number when
a Pythagorean triples, condition 

, because .

.

rmat’s equation
,

a comparison between the
and

for .

nd with
for n 2

showed as a triangle of sides
the straight lines and

90 ( is the angle
s triangle, has been named as
or. A graphic representation

. Only z
and ( ) belong to

n that never fullfills
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Fig. 5 Graphic representation of Fermat’s L

The Fermat’s Last Triangle is part of Scalen
Fig. 6.

Fig. 6 Types of Triangles

Verification of Theorem 3 inside of 
Triangle

In Fig. 7, there are the following three triang

1. Fermat’s Last Triangle sides x, y,
2.

3.

24

32 32 32

40 40 40

45 70 143

51 74 145

77 102 175

Last Triangle

lene Triangles. See

Fermat’s Last

angles:

Fig. 7 Graphic representation of Fermat
theorem 3

Analyzing the two right triangle
Last Triangle it is possible to demon

Proof:

1. Assuming

This equation to have an integer so
, but it is not the Fermat’s Las

.
Examples are given in Table IV an

TABLE IV
EXAMPLES FOR EQU

32 32 32

40 40 40

45 70 143

51 74 145

77 102 175

Fig. 8 The Triangles formed with

t’s Last Triangle to verify the
 3

gles that form the Fermat´s
onstrate that:

:

r solution, must be:
ast Triangle, then

 and Fig. 7.

V
QUATION:

24

32 32 32

40 40 40

45 70 143

51 74 145

77 02 175

and
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2. Assuming (z, and
(irrational number)but .

one integer solution with at the
and correspond to Isosceles Tri

Other solution .
3. Assuming (

numbers), but The

4. Assuming (
numbers):

integer solution then:

The solution is not the mi

there is another then:

5. There are no more possibilities to be studi

Q.E.D.

B. Second Solution

This section will show another analytic p
that Fermat’s last theorem is true.

Relationship between n power of a num
(factorial number),  which allows  the demo
Fermat’s Last Theorem.

The author found a relationship betwe
number ( ) raised to a power , 
corresponding n factorial (n!), where x an
numbers.

Table V shows how this relationship wa
table is possible to see how power keeps a c
with . Table IV shows that the power of a nu
will always be in the column (power 
2, power 3 gives 3! that is 6, power 4 give
power 5 gives 5! that is 120, power 6 gives 
and so on). Boxes highlighted in Table IV

nd

. There is only
the same time
Triangles (Fig. 5).

(irrational

hen:

(rational

and

to have

 minimum solution,

udied then:

c proof that shows

umber and the n!
monstration of the

ween any natural
, ( ), and their

and n are natural

was found. In this
a close relationship
 number for ,
er 2 gives 2! that is
ives 4! that is 24,
es 6! which is 720
IV, shows another

interesting relationship: they contain
by and in its lower right corner alw

Table V was constructed as follow
is the number to raise to  powe

The first column of is .
The second column of is the 

, that means {
The third column of is c
differences in the values found i
that means
so on until column .
The bottom of the column
row .

The coefficients of
, as a result of this

up to will be generated where co
the polynomial would be given in Fig

Fig. 9 Pyramidal representation of coe
polynomial series u

tain rows and columns of
always will be .
ows:
wer .

e difference between and
} .

 constructed similarly to
d in the second column of ,

and

is always from the

this operations, a polynomial
coefficients ( ) of

 Fig. 9.

coefficients a, b, c, d... of the
es until
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TABLE V
RELATIONSHIP OF POWER WITH N!

x n=1 n=2 n=3

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

2 2 1 4 3 2 8 7 6 5

3 3 1 9 5 2 27 19 12 6

4 4 1 16 7 2 64 37 18 6

5 5 1 25 9 2 125 61 24 6

6 6 1 36 11 2 216 91 30 6

7 7 1 49 13 2 343 127 36 6

8 8 1 64 15 2 512 169 42 6

9 9 1 81 17 2 729 217 48 6

10 10 1 100 19 2 1000 271 54 6

x n=4 n=5

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 16 15 14 13 12 32 31 30 29 28 27

3 81 65 50 36 23 243 211 180 150 121 93

4 256 175 110 60 24 1024 781 570 390 240 119

5 625 369 194 84 24 3125 2101 1320 750 360 120

6 1296 671 302 108 24 7776 4651 2550 1230 480 120

7 2401 1105 434 132 24 16807 9031 4380 1830 600 120

8 4096 1695 590 156 24 32768 15361 6930 2550 720 120

9 6561 2465 770 180 24 53043 26281 10320 3390 840 120

10 10000 3439 974 204 24 1E+05 40951 14670 4350 960 120

Taking this relationship of the polynomial as an equation,
can be expressed as follows:

The factor (-1)k of (14)  is to indicate that alternate the signs

of the coefficients: . These coefficients are exactly

Newton's binomial coefficients of:

Or, in the following equation:

The only difference is that the coefficients of (16) are all
positive, while the coefficients of (14) and (15), have
alternating signs, starting with the positive sign.

This relationship of the coefficients of (14), (15) and (16) is
because we can always get exactly the root of
or , or when an equation in polynomial form contains
those coefficients in the same way. Later it will be showed
that Fermat’s equation does not contain these coefficients in
the same way.
Theorem 4

For any natural number c that is between and
its n root is irrational, where

Proof:
1. Let c be the integer that is in: xⁿ<c<(x+1)ⁿ where x

2. If z=
3. ………………………….….    According to 2.
4. ..……..…..According to 1 and 3.
5. ……………………..According to 4.
6. will be a radical   (comes from the root)

…………….……………..……..According to 4 and 5.
7. Assume that the solution of , where is an

irreducible fraction ( and are coprime factors), where
.

8. Raising to the power is obtained:

9. If then , but then ,but it would be
contrary to that found in 5.

10. If , then is not natural number, which contradict to
1.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1492

11. Therefore, c is not a perfect power fo
, then, its n roo

According to 9 and 10

Q.E.D.

Corollary 1: the root for of a prim
always irrational.

Corollary 2: the numbers that are betwe
for not comply with (11)

Corollary 3: the root of an integer
perfect power of another integer number is irr
→ is irrational).

For example, for , 99 do not com
,  and

), and to build T
instead of 100 ( ), it fails that , so 
would be an irrational number. (

Any natural number that have the exac
expressed by (12) or (13), where the coefficien
Newton’s binomials and also fulfill (11):

If , where zis a natural number

, where a and d are natural numbe

The coefficients structure is exactly eq
triangle as in Fig. 10.

Fig. 10 Newton’s binomial coefficients or Pa

If is not a natural number, it cannot be 
sum of two integers. If , is a natural numbe
in the form of Newton’s coefficients where
must contain the same coefficients of New
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of two natural numbers.

Equation (16) can be written in the followin

 for , (
oot is irrational.
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 irrational (
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 Table IV with 99
o the root 2 of 99,

)

act root, can be
ients correspond to

bers

equal to Pascal’s

ascal’s triangle

e expressed as the
ber to be expressed
e , it

wton’s binomial,
e sum or difference

ing form:

Equation (17) complies with th
binomial coefficients and the struct
(14) and therefore will be a natural

In the case of Fermat's Last Th
simple fact that , 
maintaining the structure of Newto
The first coefficient is 2, therefore
thus also proving Fermat's Last Theo
(15) or (16)).

Reviewing these concepts in Ferm

where and natural num
.

Proof:
Assuming x y

y x + s, where s

Note that the structure of Newto
and root of would be exact, 
remains a natural number.

Replacing from (19) into (18) w

The first coefficient of is no
structure of  Newton’s binomial coe
no longer equal to the structure of th
or (17) to make root of exact 
natural number.  If was a natural n

that (Ec. 20) and
the same and between these tw
contradiction: the polynomial equ
binomial and the basic principle of th
through Newton’s binomial coeffici
coefficient is 1 and not 2. This al
Theorem.

V.CONCLUSI

The known standard method to fi
triples, is that of the succession of
(10). Exploring another method
Pythagoras’s Theorem, employing

, primitive Pythagorean triples

he structure of Newton’s
ucture of the coefficients of
ral number.
Theorem it is through the
, cannot be expressed
on’s coefficients for .

e would not be an integer,
heorem (it cannot meet (14),

mat’s Last Theorem:

(18)

numbers, for

e s

on’s binomial stays in (16)
t, i.e., has not changed and

8) we have:

 not 1, it is 2 in (20), the
efficients in this equation is

 the coefficients in (14), (16)
ct and thus would not be a
l number, it would be saying

(Ec. 17), are
two equations there is a
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f the connection of n with n!

ients, indicate that the first
 also proves Fermat's Last
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 find primitive Pythagorean
 of prime numbers, (9) and
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les can be obtained when



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1493

is a natural number, (1,2,3,4... ∞). Comparing them with the
method of succession of prime numbers, it could be
established that is easier to employ , because in a
very simple form it could compute any primitive Pythagorean
triple ordered for any even or odd . By applying this method
in a similar way for , and using the mathematical  Well-
ordering Principle in natural numbers, the demonstration of
Fermat's Last Theorem was possible.

The formation of Fermat’s Last Triangleis shown and the
verifications of Theorem 3 inside of Fermat’s Last Triangle
sides ( with( theyall meet:

.
Furthermore, using the connection of n! with

through Newton’s binomial, for the demonstration of
Fermat's Last Theorem was also shown.
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