
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1219

Abstract—This paper presents an implementation and

performance test of a distributed motion control system based on a

master-slave configuration used to move a plasma-cutting torch over

a predefined trajectory. The master is a general-purpose computer

running on an open source operating system platform and software

developer. Software running in the master computer generates

commands on real time and we measure performance based on a

selected set of differences between expected and observed distances.

We are testing the null hypothesis that the outcome trajectory is

identical to the input against the alternative hypothesis that there is a

shift to the right or left of the input one. We used the Wilcoxon

signed ranks test method for the hypothesis test.

Keywords—Distributed, motion, control, real-time, contouring.

I. INTRODUCTION

URING development of a plasma-cutting X-Y table, it

was required to probe if the distributed motion control

system (DMCS) was able to reproduce the trajectories as

required. This paper presents the results of a test of the motion

control system including details of the implementation in this

section, and the network and algorithm sections. DMCS is one

of the most demanding applications in terms of real-time [1]-

[3]. We present the details of the DMCS performance test in

the experiment and results sections and paper finish with

concluding and further research remarks.

The cutting system is able to produce a contouring

operation on a plane through a set of stepper motors that move

a cutting torch. The master computer generates the DMCS

commands running a piece of software that we have

developed. This software runs under Linux Ubuntu operative

system and it does all the required operations for the DMCS.

The software is open and we can modify it to include other

components from different manufacturers and provides the

interface to accomplish the tasks required by the DMCS.

Nowadays openness is the focus of DMCS systems [4]-[6].

The software reads a set of control points from a file during

loading, sets the network parameters, displays the trajectory

control points and waits for input to start the trajectory

traversing, among other initialization tasks.

Fig. 1 shows the basic elements that are part of the DMCS.

An RS-485 network links the master (a general-purpose

computer) and the motor drivers (the slaves). The stepper

motors, connected to their associated motor driver, are in

F. J. is with the Industrial and Manufacturing Engineering, Universidad

Autonoma de Ciudad Juarez, Chihuahua, Mexico (corresponding author;

phone: 52-656-6884843; e-mail: frlopez@ uacj.mx).

S. R. is with the Electrical and Computer Engineering Department,
Universidad Autonoma de Ciudad Juarez, (e-mail: sramirez@luacj.mx).

charge of turning a power screw to convert turning motion

into linear movement fixing the cutting torch holder to a screw

nut. A set of two parallel bars keep the cutting torch

perpendicular to the working piece. The cutting table holds a

metal sheet in place and the plasma torch moves over it, on an

XY plane. The computer issues motion control commands to

the motor drivers at eight milliseconds, sampling time. The

commands include speed and direction at which the motors

must turn, the motor drivers get the commands and turn the

motors in the specified direction and speed. The input to the

motion control is a list of control vertices, time stamps and

flags to signal the start and end of the trajectories.

Fig. 1 Coordinate motion control elements

Once a trajectory traversing starts a timer is set, sampling

time, speed and direction are calculated base on time

increment and current position. Position is calculated applying

interpolation according to the input control points.

The stepper motors are NEMA 34, holding torque 1,282 oz-

in, 1.4 amps per phase, 11 VDC rated voltage with step angle

of 1.8 degrees per full step. Their axes are direct

interconnected to a spline screw of 38.1mm of pitch, i.e., one

turn of the screw results in 38.1mm displacement of the

cutting torch.

The motor drivers are model LS-146 intelligent micro

stepping controller with integrated amplifier for applications

using two-phase stepper motors, 32-bit position counter, 1/8,

Francisco J. Lopez-Jaquez, Sandra E. Ramirez-Jara

Distributed Motion Control Real-Time Contouring

Algorithm Implementation and Performance Test

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1220

1/4, 1/2 micro step and full step capable. Position and velocity

modes, communication speed of 19.2 to 115.2 Kbps, among

other features [7].

The computer is a laptop with Core 2 Duo CPU T7250 @

2.00 GHzx2, 32-bit OS and 3.9GiB of RAM, Ubuntu 12.04

LTS operating system. The motion control software was

developed using Qt Creator 2.3.

II. THE NETWORK

An RS-485 network interconnects the motion control

elements [8]. In this case, the master computer does not have

an RS-485. An USB to RS-232 and a RS-232 to RS-485

adapters connects the master to the network. During

initialization of the motor drivers, they require a network

communication speed of 19.2Kbps but, once the initialization

ends, speed is set to higher speed for a successfully

implementation [5]. In this case, network communication

speed was set to 38.4Kbps but it can be set up to 112.4Kbps

that is the limit on the motor drivers.

We cannot achieve a target sampling time of eight

milliseconds at 19.2Kbps, for a sampling rate of 125 Hertz.

Bites will accumulate in the communication buffer at

19.2Kbps, resulting on sampling time instability. At 19.2Kbps

it is possible to send 153 bits each eight milliseconds,

assuming that the sampling time interval is stable, but if we

need to send more data, it will start to accumulate in the

transmission buffer producing a delay on the communication

[9]. Every byte that is send requires start and end bites; to send

a byte it requires 10 bits then it is plausible to send 15 bytes

every sampling time interval, neglecting any other operating

system activities. During command generation, every eight

milliseconds, theoretically, the master sends data to the two

motor drivers. The load trajectory command consists of seven

bytes, for each motor, and if a change of direction is required

four bytes to stop and another four bytes to start the motor.

This clearly goes over the 153 bits limit imposed by the eight

milliseconds sampling time at 19.2Kbps

The transmission buffer of the port will accumulate the

information; the cutting torch will be behind in relation to the

position in the computer screen, also the sampling intervals

will show instability, hanging the timer more than expected.

Fig. 2 shows a chart of sampling time for 19.2Kbps and

38.4Kbps and it can be observed that at 38.4Kbs the sampling

time is stable while at 19.2KBps sampling time fluctuates up

to 80 milliseconds in a constant pattern leading to a misplaced

trajectory.

The motor drivers initialization require to send commands

to assign the network address to each one of the motor drivers,

this task is done writing a string to the communication port,

i.e., to assign address 1 to first motor driver in the line string

of characters {0xAA, 0x00, 0x21, 0x01, 0xFF,

0x00+0x21+0x01+0xFF}. All commands use 0xAA to signal

the beginning of the packet, a command. At start up, default

address is 0x00 for the first motor driver on the network line.

0x21 is the command identifier where first digit, 2, indicates

the number of data bytes that follows. The second digit, 1,

identifies the address assignation command. 0x01 is the new

address that is going to be assigned to first motor driver in the

network line. 0xFF is a group address assignation, the master

send commands to this address when all motor drivers in the

group must process the command. Finally,

0x00+0x21+0x00+0xFF is the check sum byte used by the

motor driver to validate the packet command.

Fig. 2 Sampling time at 19.2 and 38.4 Kbps

Once the software initializes the motor drivers, the next task

is to initialize their operating parameters. The initialization

requires specification of the speed factor, active or deactivate

limit switch auto stop, minimum profile velocity, holding and

running current that the motor driver must deliver

(accordingly to the motor specifications). In this case, the

packet command for first motor driver is {0xAA, 0x01, 0x56,

0x07, 0x01, 0x32, 0x19, 0x00 0x01+0x56+ 0x07+0x01+

0x32+0x19+0x0}. First two bytes are the beginning of packet

identification and address of the motor driver that must

process the packet. 0x56 is the command byte where first digit

5 indicates that there are 5 bytes of data following this byte

and second digit, 6, is the command identification. 0x07 is the

control byte where first two bits are used to specify the speed

factor; third bit is used to specify if the limit switch auto stop

must be disabled or enabled. Forth bit indicates if motor must

turn off on limit switch. Fifth bite indicates if motor must turn

off on stop switch. The motor driver does not use the last three

bites of this control byte. In this case this byte is set to 0x07

that is “00000111” which means that sped factor is set to 1

and limit switch auto stop is disabled, currently the machine

does not have any limit switch attached to the motor driver

and it requires to be set to ignore it in order to activate the

motor. 0x01 is the minimum profile velocity, running current

is set to 50 and holding current to 25 (0x32 and 0x19,

respectively) to deliver 1.0 Ampere to the stepper motor on

normal running and up to 1.4 Amperes pick current. 0x00 is to

indicate that the thermal limit is disabled. Finally, the check

sum byte that is the sum of address byte up to the thermal limit

set byte.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1221

III. THE MOTION CONTROL ALGORITHM

Once a trajectory traversing start button is clicked on the

display interface, it get current time in milliseconds T1 from

the systems clock, set initial position X and Y to the first

control point of the interpolation window, traversing time (Tt)

is set to zero, sets the timer to 10 milliseconds. The CGMCS is

called after 10 milliseconds, current time in milliseconds is

again obtained and saved as T2, elapsed time is calculated

from T2 and T1 and stored as T0, this is the time increment.

The algorithm seta Tt to previous Tt + T0 and it is used to

compute the interpolation X and Y point associated to it, this

is the current position.

In the pseudo code list, when the software actives a new

interpolation windows it computes the Lagrange polynomial

interpolation denominator. This is done as listed from 1 to 10

in the pseudo code, e.g. at the beginning of the traversing the

interpolation window is set to 1, and assuming linear

interpolation, the windows will contain two X,Y,T triplets,

one signaling the beginning of the trajectory and the other the

next control point and its associated time stamp. Let’s call

them Wx[1][2]={180,182}, Wy[1][2]={38,40} and

Wt[1][2]={0,2}. The Tt will start a Wt[1][1]+sampling time

and while Tt is lower than Wt[1][2] the interpolation points

are computed using data from this window and because the

Lagrange polynomial keeps the same while the interpolation

control points are the same it is only calculated once, at the

beginning of the every interpolation window. The code from

11 to 24 runs every time, at the sampling time rate, because it

changes for every value for Tt, the accumulated traversing

time.

The input data is a set of k interpolation windows

Wx[k][nP]={set of X data values associated to the control

points},Wy[k][nP]={a set of Y data values associated to the

control points} and Wt[k][nP]={stamp times associated to the

control points}

1: if interpolation window changes then

2: for i equals to 0

3: Wd[i] equals to 1

4: for j equals to 0

5: if j is different than i

6: increase Wd[i] by (Wd[i]*(Wt[k][i]-Wt[k][j]))

7: increase j by one

8: while j less than nP repeat from line 4

9: increase i by one

10: while i less than nP repeat from line 2

11: else

12: Set X and Y to zero

13: for i equals to 0

14: set mL equals to 1

15: for j equals to 0

16: if j is different than i

17: incress mL by (Tt/1000 –Wt[k][j])

18: increase j by one

19: while j less than nP repeat from 14

20: increase mL by (mL / Wd[i])

21: increase X by (mL*Wx[k][i])

22: increase Y by (mL * Wy[k][i])

23: increase i by one

24: while i less than nP repeat from 12

It can be observed that the computation of the Lagrange

polynomial for a second order or higher does not require any

change in the algorithm, just by increasing the nP value it will

be able to generate higher order interpolation, i.e. a value of

nP = 2 will generate second order interpolation points giving a

smooth trajectory if it is desirable. A higher value of nP will

require more time to calculate the Lagrange polynomials. In

this case linear interpolation was used, nP=1.

Fig. 3 shows the flow diagram for the commands generation

of the motion control system (CGMCS). We use Lagrange

polynomial interpolation to generate the (X,Y) points.

Fig. 3 Command generation flow diagram

The software computes the displacements from current and

previous X-Y positions and then computes the required speed

and direction for each displacement. Using the current cutting

torch speed the software computes the component speed X and

Y. The signs of the displacements define the direction of the

movements; a negative displacement means a

counterclockwise rotation of the motor shaft and clockwise

rotation if the displacement is positive. The software issues a

load trajectory command to each motor driver based on the

computed speed and direction.

If the component speed does not reaches a minimum of 10

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1222

steps per second the velocity is set to zero and a stop turning

command is issue to the associated motor driver. Even more,

when a change in direction occurs, the software first send a

motor stop command before the load trajectory command, and

initiate movement command after this. The command

structure follows the structure defined by the motor driver

manufacturer, and in general the standard used for RS-485

network [7], [8].

The motor drivers are capable of operating in velocity,

position (trapezoidal) and unprofiled modes. The one used in

this case is unprofiled motion that requires setting of a timer in

the motor driver to an initial timer count (ITC). Equation (1) is

used to determine the ITC for a required unprofiled speed, S,

in steps per second. The constant values 65538 and 625000 are

specific for this kind of motor drivers and the speed factor at

which it is set to operate [1].

The load trajectory command contains the information to

perform the unprofiled movement and it consist of a string of

characters, packet. The string consist of character 0xAA to

signal start of packet, 0x01 or 0x02 to signal the address of the

motor driver that should process the command, 0x34 that

identifies command load trajectory and includes the number of

bytes that came after it, one control byte and two bytes to

indicate the speed. Finally, a check sum byte that consists of

adding address, command, control and the speed data bytes.

The tricky part here is the preparation of the speed data bytes

that need to be send least significant byte first. After

component speed in steps per second (S) is converted to ITC

using (1). Using (2) and (3) is possible to split the resulting

ITC value into two bytes (SB1 and SB2), second byte is

placed first in the command string.

ITC = 65538 — (625000 / S) (1)

SB1= ITC / 256 (2)

SB2 = ITC — 256(SB1) (3)

During trajectory traversing, it is possible to hang the

movement without disturbing the trajectory traversing or

sampling time interval, since the algorithm works with time

increments, the CGMCS timer can be stop and continue at any

time during the trajectory traversing. The software includes a

button to get the stop/continue signal from the user. The

continue signal starts again the CGMCS timer and time

increment is computed setting the previous time as the one

when the user clicked the continue button. This adds

flexibility to stop and continue at any time providing a button

on the display interface to click on.

 The CGMCS algorithm, network initialization, parameter

setting, and control points trajectories loading and editing

where included in a software package where the operator is

able to simulate trajectory traversing, edit control points,

assign stop flags, move the cutting torch on the XY plane,

reset network, change network communication speed, change

traversing speed, among other options are included in the

software. Fig. 4 shows a screen shoot of the software main

screen showing a set of buttons to move the cutting torch and

the trajectory traversing operation.

Fig. 4 Screen shoot of the motion control software

IV. THE EXPERIMENT

Fig. 5 shows the test specimen, a trajectory consisting of

103 control points. The control points are not equidistant

along the trajectory. The algorithm generates X-Y points

applying linear interpolation based on elapsed time, position is

a function of time. The sampling time is set to 8 milliseconds,

resulting torch velocity is set to 760 steps per second and

component X and Y velocities are calculated proportional to

the required X and Y position displacements. Network

communication speed is set to 38.4 Kbps during trajectory

traversing.

The controls points include a stop flag and the software is

able to stop the trajectory traversing at that point and then

continue after user hits the continue button on the computer

interface. Each time the cutting torch reaches a stop control

point the software actives the plasma to make a piercing

operation, triggering the plasma generator. Fig. 5 shows the

stop points along the other control points of the trajectory.

Traversing of the trajectory starts at point 1 and will stop at

points 2 to 14 as they appear during trajectory traversing.

In this experiment, we are finding data to probe whether the

cutting torch traverses the test trajectory accordingly to the

input control points. If this is the case, the differences between

the measured and calculated distances should be equal to cero.

Five specimens where run to estimate the average measured

distances.

We considered thirty different distances in this experiment,

and five measurements for each distance as listed on Table I.

Column A lists the reference points of the measured distance,

i.e. from first row, distance 14 is from point 1 to 9, distance 26

is from point 7 to 10, and so on. Column B shows the

theoretical distance and column C lists the average distance

calculated from five observed measurement. D and |D| are the

differences obtained from C-B and the absolute value,

respectively. Column E is the ranking, F id the sign and last

two columns are the positive and negative T values, totals for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1223

each one are included in the bottom row. We took the

measurements rounded to millimeters based on appreciation

and from there we calculate the average. We used the physical

system illustrated in Fig. 6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fig. 5 Test specimen input control points

Fig. 6 The physical system

V. THE ANALYSIS

The null hypothesis is that the difference between the

outcome measurements and the theoretical distances are

identical against the alternative hypothesis that there is a shift

to the right or left of the other, there is a significant difference

between them.

We used the Wilcoxon T statistic, signed rank test, for

matched-pairs design test. We have selected this test because

we are comparing two probability distributions where we have

obtained measured and theoretical data from the same

distances and we do not know if the data comes from a normal

distribution at all. Wilcoxon test is part of a distribution free

test of the non-parametric methods that focus on the location

of the probability distribution rather than on specific

parameters of the population [10]. On Table I, there is the data

outcome from the analysis. Distances appear sorted in

ascending order, based on the absolute differences, column

|D|.

The T value is 182 and it corresponds to the negative signed

rank differences. According to the procedure, T is the lower

absolute value of the positive or negative differences.

According to the test procedure, we must reject the null

hypothesis if the T vale, calculated from the observed data, is

lower or equal to the T0, the test value obtained from the

critical values in the Wilcoxon matched-pairs signed rank test

chart, [10]. In this case, for n = 30, level of significance equal

to 5% and two tail test, T0 = 137. Therefore, we cannot reject

the null hypothesis. The evidence is not strong enough to

indicate a shift in the distributions of ratings for the distances.

VI. CONCLUSIONS

We have put the distributed motion control system, as

implemented, under evaluation. Neglecting mechanical issues

or any other factors not considered here, we have compared

the expected and real trajectories based on a set of predefined

distances among the trajectory; the ability to reproduce the

trajectory was the main characteristic under evaluation. Based

on the outcome of the experiment, we can say that if any other

factors, not considered in the test, do not disturb the runs the

resulting trajectory is identical to the expected one.

The central part of the motion control system is a piece of

software that generates motion control commands on real-

time, at eight milliseconds sampling rate. If the operating

system is able to maintain this sampling rate and there are not

communication pitfalls in the transmission-reception of data,

the algorithm produces good results according to the statistical

analysis.

Currently the algorithm handles feedback from the motor

drivers’ current position but if the sampling rate takes too long

the motors will continue to turn during that period and

probably will produce a shift on the trajectory. When a

command does not reach the motor driver due to problems

somewhere in the communication line this will probably

introduces another shift in the trajectory.

The runs in the experiment where all runs that do not

observed any of the two problems mentioned before. We are

going to conduct more research to attack these problems and

make the algorithm robust to these issues.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1224

TABLE I

DISTANCES RATINGS FOR WILCOXON’S SIGNED RANK TEST

A B C D |D| E F T+ T-

14(1-9) 367.18 367.0 0.18 0.18 1 1 1 0

26(7-10) 150.86 150.6 0.26 0.26 2 1 2 0

13(1-8) 561.73 562.0 -0.27 0.27 3 -1 0 3

16(1-11) 473.48 473.2 0.28 0.28 4 1 4 0

15(1-10) 505.53 505.2 0.33 0.33 5 1 5 0

18(1-13) 202.04 202.4 -0.36 0.36 6 -1 0 6

19(1-14) 183.17 182.6 0.57 0.57 7 1 7 0

5(9-10) 138.57 139.2 -0.63 0.63 8 -1 0 8

30(7-14) 304.44 303.8 0.64 0.64 9 1 9 0

17(1-12) 473.85 475.0 -1.15 1.15 10 -1 0 10

4(7-8) 196.79 195.4 1.39 1.39 11 1 11 0

8(1-3) 409.80 411.2 -1.40 1.40 12 -1 0 12

1(1-2) 674.13 675.6 -1.47 1.47 13 -1 0 13

12(1-7) 466.70 465.2 1.50 1.50 14 1 14 0

11(1-6) 579.17 577.6 1.57 1.57 15 1 15 0

23(7-5) 107.00 105.2 1.80 1.80 16 1 16 0

29(7-13) 274.61 277.0 -2.39 2.39 17 -1 0 17

27(7-11) 44.82 41.8 3.02 3.02 18 1 18 0

10(1-5) 547.83 544.8 3.03 3.03 19 1 19 0

20(7-2) 381.66 378.6 3.06 3.06 20 1 20 0

21(7-3) 60.84 64.0 -3.16 3.16 21 -1 0 21

25(7-9) 165.00 168.4 -3.40 3.40 22 -1 0 22

28(7-12) 76.38 80.4 -4.02 4.02 23 -1 0 23

9(1-4) 396.73 401.0 -4.27 4.27 24 -1 0 24

7(13-14) 33.24 28.4 4.84 4.84 25 1 25 0

6(11-12) 32.02 37.6 -5.58 5.58 26 -1 0 26

22(7-4) 362.44 354.8 7.64 7.64 27 1 27 0

3(5-6) 375.69 366.8 8.89 8.89 28 1 28 0

2(3-4) 315.34 304.6 10.74 10.74 29 1 29 0

24(7-6) 427.45 416.0 11.45 11.45 30 1 30 0

 T 268 182

Currently, if the operating system hangs more than expected

the software display a discontinue trajectory instead of a solid

one when there are not operating systems hangs during the

trajectory traversing operation.

There is also place to experiment the behavior at different

end velocities, movement strategies and high order

interpolation, among others. The base has been set to keep

improving the algorithm and, at the end, take the complete

motion control system and evolve it into a better one, but we

need to conduct more research.

REFERENCES

[1] C. Pang, V. Vyatkin and C. Fantuzzi, “time-complemented event-driven
control framework for distributed motion control systems based on IEC

61499 and IEEE 1588,” 9th International conference on Industrial

Informatics (INDIN), 2011, pp. 640-645
[2] G. Y. Gu, L. M. Zhu, Z. H. Xiong and H. Ding, “design of a distributed

multiaxis motion control system using the IEEE- 1394 bus,” IEEE

Transactions on Industrial Electronics, vol. 50, no. 2, December 2010,
pp. 4209-4218

[3] Z. Wang, D. Yu, Y. Hu and Y. Tao, “design of distributed cross-coupled
controller based on motion control bus,” IEEE 2009 chinese control and
decision conference (CCDC 2009), pp. 1662-1667

[4] Shi Hongyu, Feng Yong, and Chen Na, “a distributed digital motion

control system based SERCOS,” IEEE international conference on
electrical and control engineering, 2010, 48-52

[5] F. Benzi, G. S. Buja and M. Felser, “Comunication architecture for

electric drives,” IEEE Transactions on industrial informatics, Feb. 2005,
vol. 1, pp. 47-53.

[6] S.Y. Lin, C. H. Ho and Y. Y. Tzou, “distributed motion control using

real-time network comunication techniques,” power Electronics and
motion control conference, IEEE IPMEC 2000, pp. 843-847

[7] Logosol Intelligent Microstepping driver LS-146,

http://www.logosolinc.com/products/ls-146.htm
[8] J. Axelson, “An RS-485Network— in Serial Port Complete,” second

edition, Lakeview Research, Madison WI, 2007, pp. 281-31

[9] M. Aqil, N. Masud, S. M. Pasha and S. Nazir, “a novel control scheme
for real time motion control,” 9th International Multitopic Conference,

IEEE INMIC 2005, pp. 1-5

[10] M. William and S. Terry, “Nonparametric statistics— in Statistics for
Engineering and the Sciences,” Fifth Edition, editorial Prentice Hall,

Upper Saddle River, New Jersey, 2007, pp 755-778.

