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Numerical solution of Hammerstein integral
equations by using quasi-interpolation

M. Zarebnia and S. Khani

Abstract—In this paper first, a numerical method based on quasi-
interpolation for solving nonlinear Fredholm integral equations of the
Hammerstein-type is presented. Then, we approximate the solution
of Hammerstein integral equations by Nystrom’s method. Also, we
compare the methods with some numerical examples.
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I. INTRODUCTION

THE problem of finding numerical solution for Fredholm
integral equations of the second kinds is one of the oldest

problems in the applied mathematics and many computational
methods are introduced in this filed [2], [3], [4]. Hammerstein
integral equations are defined as follows:

y(x) = f(x) + λ

∫ 1

−1

k(x, t)G(y(t))dt, (1)

where, the function f(x) is known, k(x, t) is the kernel
function which is known, continuous and G(y(t)) is known
nonlinear function, the aim is to find the unknown function
y(x) which is solution of equation (1). Previously, some kinds
of Fredholm integral equations had been solved numerically,
by different methods that are indicated below. Borzabadi et al.
[1], introduseed a numerical method for a class of nonlinear
Fredholm integral equations of the second kind. In [5], Javidi
et al. solved nonlinear Fredholm integral equations by using
modified homotopy perurbation method.
The method of quasi-interpolation was 1991 introduced by
Maz’ya [7] and became popular under the name approximate
approximations. In the following years many applications of
this method where presented by Maz’ya and Schmidt which
are collected in the tex book [9].
We know that quasi-interpolations are defined by

μh,D u(x) =
∞∑

m=−∞

u(mh)e−
(x−mh)2

Dh2

√
πD

, (2)

where the function u is twice continuously differentiable with
bounded derivatives [8], [10]. The Taylor expansion of u at
the point mh has the form

u(mh) = u(x) + u
′
(x)(mh − x) + u

′′
(xm)

(mh − x)2

2
,

for some xm between x and mh. We apply this method to
solve the equation (1) and reduce it to system of equation.
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The outline of the paper is as follows. First, in Section 2 we
review some of the main properties of quasi function and
quasi-interpolation that are necessary for the formulation of
the discrete system. In Section 3, we illustrate how the quasi-
interpolation and Nystrom’s method may be used to replace
Eq. (1) by an explicit system of nonlinear algebraic equations,
which is solved by Newtons method. In Section 4, we report
our numerical results and demonstrate the efficiency and
accuracy of the proposed numerical schemes by considering
some numerical examples.

II. APPROXIMATION OF INTEGRAL OPERATORS

Let us consider the integral operator

T : C([−1, 1]) → C([−1, 1]), (TGu)(s) :=
∫ 1

−1

k(s, t)Gu(t) dt, (3)

where k : [−1, 1]2 → R is continuous kernel.
We approximate TG(u(s)) with the trapezoidal rule in point
mh. Let N ∈ N and h = 1

N . We obtain

TGu(s) =
∫ 1

−1

k(s, t)G(u(t)) dt

≈
N∑

m=−N

h

2
k(s,mh)G(u(mh))(2 − δ|m|N ),

where

δij =
{

1 i = j,
0 i �= j.

We suppose the operator TN : C([−1, 1]) → C([−1, 1]) as
follow:

TNGu(s) :=
N∑

m=−N

h

2
k(s,mh)G

(
u(mh)

)
(2 − δ|m|N ). (4)

We obtain
TGu(s) ≈ TNGu(s).

definition 1. The error function is defined by

erf(a, b) :=
2√
π

∫ b

a

e−t
2
dt,

where a, b ∈ R and a ≤ b.
The quasi-interpolation for d > 0 is defined as follows:

Gud,N : [−1, 1] → R, Gud,N :=
N∑

m=−N
Gu(mh)

e−
(t−mh)2

dh2

√
πd

.
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By replacing Gu with the quasi-interpolation, TGu(s) is
obtained as:

TGu(s) =
∫ 1

−1

k(s, t)Gu(t) dt ≈
∫ 1

−1

k(s, t)Gud,N (t) dt

=
N∑

m=−N
Gu(mh)

∫ 1

−1

k(s, t)
e−

(t−mh)2

dh2

√
πd

dt.

We obtain estimate of the nonlinear integral operator by
replacing k(s, t) with k(s,mh) as follows:

TGu(s) ≈
N∑

m=−N
Gu(mh)

∫ 1

−1

k(s, t)
e−

(t−m)2

dh2

√
πd

dt

≈
N∑

m=−N
k(s,mh)Gu(mh)

∫ 1

−1

e−
(t−m)2

dh2

√
πd

dt

=
N∑

m=−N
k(s,mh)Gu(mh)

h√
π

∫ m+N√
π

m−N√
π

e−t
2
dt

=
N∑

m=−N
k(s,mh)Gu(mh)erf

(
m − N√

d
,
m + N√

d

)
.

We define the operator

Td,N : C([−1, 1]) → C([−1, 1])

by

(Td,NGu)(s) :=
N∑

m=−N

h

2
k(s,mh)Gu(mh)erf

(
m − N√

d
,
m + N√

d

)
,

(5)

we have

(TGu)(s) ≈ (Td,NGu)(s).

Lemma 1. It holds:

lim
d→0

erf

(
m − N√

d
,
m + N√

d

)
= 2 − δ|m|N .

proof. We have

lim
d→0

erf(
m − N√

d
,
m + N√

d
) = lim

d→0

2√
π

∫ m+N√
d

m−N√
d

e−t
2
dt

and
2√
π

∫ ∞

0

e−t
2
dt = 1,

then we obtain

lim
d→0

erf(
m − N√

d
,
m + N√

d
) =

⎧⎨
⎩

1, m = −N,
2, |m| �= N,
1. m = N.

therefore

lim
d→0

erf

(
m − N√

d
,
m + N√

d

)
= 2 − δ|m|N .

Lemma 2. It holds:

lim
d→0

Td,N = TN

. proof. Let Gu ∈ C([−1, 1])
and
M := ||k||∞ = sup(s,t)∈[−1,1]2 |k(s, t)|.
We obtain

||Td,NGu − TNGu||∞ = sup
s∈[−1,1]

|(Td,NGu)(s) − (TNGu)(s)|

≈
N∑

m=−N

h

2
M ||Gu||∞|erf(

m − N√
d

,
m + N√

d
) − (2 − δ|m|N )|,

therefore from the above relation and lemma 1, we conclude
that

||Td,N − TN || = sup
||Gu||∞=1

||Td,NGu − TNGu||∞

≤
N∑

m=−N

h

2
M ||Gu||∞|erf

(
m − N√

d
,
m + N√

d

)
− (2 − δ|m|N )| = 0.

III. APPLICATION TO HAMMERSTEIN INTEGRAL

EQUATIONS

Consider the Hammerstein integral equations

X − TGX = b, (6)

where b ∈ C[−1, 1] and T is defined in (3).

A. Approximation with quasi-interpolation

We estimate solution of the nonlinear integral equation (6)
using quasi-interpolation. By substituting T with TN from (5),
we have

Xd,N − Td,NGXd,N = b, (7)

similarly we obtain the nonlinear system in the point jh as
following:
ud(jh) −∑N

m=−N
h
2 k(jh, mh)erf

(
m−N√

d
, m+N√

d

)
Gud,m =

b(jh),

(8)

where ud,m = Xd,N (mh) are then approximate values for
u(mh).

B. Approximation with Nystrom’s method

In this section we obtain approximate of integral equation
by Nystrom’s method [6].
Let u be the solution of (6) and s ∈ [−1, 1], we ’ll have

u(s) − (TGu)(s) = b(s).

If we employ the trapezoidal rule for the quadrature procedure
and approximate equation

XN − TNGXN = b, (9)
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with TN is defined in (4), we can obtain the nonlinear system
of equation in the points jh.

u(jh) −
N∑

m=−N

h

2
k(jh, mh)Gum(2 − δ|m|N ) = b(jh), (10)

that j = {−N, ..., N} and the values um = XN (mh) are
then approximation for u(mh).

IV. NUMERICAL EXAMPLES

In this section, we use the above proposed methods in
examples with detailed explanations. we compare the results
of numerical solution this method with the solution of the
Nystrom’s method.

Example 1 Consider the following nonlinear Fredholm
integral equation:

u(s) = es − 2(2 + e6)s
9e3

+
∫ 1

−1

stu3(t) dt,

with exact solution u(s) = es. Table I shows the solution ud
of the nonlinear system (8) with d = 0.1 and d = 0.01 and
the solution u of the nonlinear system (10) for N = 4.

TABLE I
COMPARISON OF NYSTRROM’S MTHOD AND

QUASI-INTERPOLATION METHOD WITH N = 4, d = 0.1 AND
d = 0.01.

u u0.1 u0.01

0.4628229775674136 0.4628215310881807 0.4628215310881807
0.5435742050379936 0.5435731201785685 0.5435731201785685
0.6540024279106195 0.654001704671003 0.654001704671003
0.8025366671703977 0.8025363055505895 0.8025363055505895
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.2602895325887487 1.2602898942085567 1.2602898942085567
1.6012495025021423 1.6012502257417587 1.6012502257417587
2.0457923643156954 2.0457934491751204 2.0457934491751204
2.6233382920630737 2.6233397385423065 2.6233397385423065

Example 2 As the second example consider the following
nonlinear integral equation:

u(s) = s2 − 4
15

s − 1 +
∫ 1

−1

1
4
s(t − 1)u2(t) dt,

with exact solution u(s) = s2 − 1. The Table II illustrate the
numerical results for N = 4 the solution ud of the nonlinear
system (8) with d = 0.1 and d = 0.01 and the solution u of
the nonlinear system (10).

TABLE II
COMPARISON OF NYSTRROM’S MTHOD AND

QUASI-INTERPOLATION METHOD WITH N = 4, d = 0.1 AND
d = 0.01.

u u0.1 u0.01

0.515512338823494 0.515512294219369 0.515512294219369
-0.0508657458823796 -0.050865779335473 -0.050865779335473
-0.492243830588253 -0.492243852890315 -0.492243852890315
-0.808621915294126 -0.808621926445158 -0.808621926445158
-1.000000000000000 -1.000000000000000 -1.000000000000000
-1.066378084705874 -1.066378073554842 -1.066378073554842
-1.00775616941175 -1.007756147109684 -1.007756147109684

-0.824134254117620 -0.824134220664527 -0.824134220664527
-0.515512338823494 -0.515512294219369 -0.515512294219369

Example 3 Consider the nonlinear Fredholm integral equa-
tion

u(s) = sin 2πs +
∫ 1

−1

t sin (2πs)u2(t) dt,

with exact solution u(s) = sin 2πs. The following table
shows for N = 4 the solution of the nonlinear system
(8) with d = 0.1 and d = 0.01 and the solution of the
nonlinear system (10). The obtained solutions of Nystrom’s
and quasi-interpolation methods are exact for this example.

TABLE III
ABSOLUTE ERRORS ON THE NYSTRROM’S MTHOD AND

QUASI-INTERPOLATION METHOD WITH N = 4, d = 0.1 AND
d = 0.01.

|uex − u| |uex − u0.1| |uex − u0.01|
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000
0.0000000000000 0.0000000000000 0.0000000000000

Example 4 Consider the Hammerstein integral equation

u(s) = s2 − 56
15

s + 1 +
∫ 1

−1

(s − t)u2(t) dt.

In this example the exact solution of the nonlinear integral
equation is u(s) = s2 + 1. Errors results for the nonlinear
system (8) and the nonlinear system (10) with N = 7,
d = 0.1 and d = 0.01 are given in Table IV.
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TABLE IV
ABSOLUTE ERRORS ON THE NYSTRROM’S MTHOD AND

QUASI-INTERPOLATION METHOD WITH N = 7, d = 0.1 AND
d = 0.01.

|uex − U | |uex − u0.1| |uex − u0.01|
0.006850882568 0.006850048150 0.006850048150
0.006541928759 0.006541131773 0.006541131773
0.006232974951 0.006232215395 0.006232215395
0.005924021143 0.005923299017 0.005923299017
0.005615067335 0.005614382640 0.005614382640
0.005306113526 0.005305466262 0.005305466262
0.004997159718 0.004996549884 0.004996549884
0.004688205910 0.004687633507 0.004687633507
0.004379252102 0.004378717129 0.004378717129
0.004070298293 0.004069800751 0.004069800751
0.003761344485 0.003760884374 0.003760884374
0.003451967996 0.003451967996 0.003451967996
0.003143051619 0.003143051619 0.003143051619
0.002834483060 0.002834135241 0.002834135241
0.002525529252 0.002525218863 0.002525218863

Example 5 Consider the nonlinear Fredholm integral equa-
tion

u(s) = s − π

4
+

1
2

∫ 1

−1

1
1 + u2(t)

dt

with exact solution u(s) = s. The following table shows the
errors nonlinear systems (8) and (10) for N = 4, d = 0.1 and
d = 0.01.

TABLE V
ABSOLUTE ERRORS ON THE NYSTRROM’S MTHOD AND

QUASI-INTERPOLATION METHOD WITH N = 4, d = 0.1 AND
d = 0.01.

|uex − U | |uex − u0.1| |uex − u0.01|
0.00260574350092058 0.00260636384788038 0.00260636384788038
0.00260574350092069 0.00260636384788027 0.00260636384788027
0.00260574350092069 0.00260636384788027 0.00260636384788027
0.00260574350092063 0.00260636384788027 0.00260636384788027
0.00260574350092065 0.00260636384788027 0.00260636384788027
0.00260574350092066 0.00260636384788027 0.00260636384788027
0.00260574350092069 0.00260636384788032 0.00260636384788032
0.00260574350092069 0.00260636384788027 0.00260636384788027
0.00260574350092069 0.00260636384788027 0.00260636384788027

V. CONCLUSION

In this paper, we approximate solution of Hamnmerstein
integral equation (1) by using quasi-interpolation. We show
that the approximation of the nonlinear integral equation,
gained with this method, lead to the same numerical results as
Nystrom’s method with the trapezoidal rule. Also approximate
solutions of quasi-interpolation method and Nystrom’s method
are convergence to exact solution.
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