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Abstract—This paper presents the generalized p-values for testing
the Behrens-Fisher problem when a ratio of variance is known. We
also derive a closed form expression of the upper bound of the
proposed generalized p-value.
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I. INTRODUCTION

SCHECHTMAN and Sherman [1] described a situation
with a known ratio of variances arises in practice when

two instruments reports (averaged) response of the same
object based on a difference number of replicates. If the two
instruments have the same precision for a single measurement,
then the ratio of the variance of the responses is known and
it is simply the ratio of the number of replicates going into
each response. They proposed a t-test statistic, which has
an exact t-distribution with n + m − 2 degrees of freedom
compared to the Satterthwaite’s t-test statistic [2]. They found
that their proposed test has more power than the existing
Satterthwaite’s test. However, they did not investigate the
coverage probability and the expected length of the confi-
dence interval for the difference of two normal population
means when the ratio of variances is known. Niwitpong and
Niwitpong [3] derived analytic expressions to find the coverage
probabilities and expected lengths of two confidence intervals,
the Schechtman-Sherman confidence interval and the Welch-
Satterthwaite (WS) confidence interval [4], in comparison
with each other. In this paper, following Weerahandi [5],
we propose the generalized p-value to test the hypothesis
H0 : θ < θ0 vs H1 : θ > θ0 where θ is the parameter of
interest, and, θ = μ1 − μ2 and θ0 is fixed and with know a
ratio of variances.

II. GENERALIZED P-VALUES FOR THE BEHRENS-FISHER
PROBLEM

Let X1, ...Xn and Y1, ..., Ym be random samples from
two independent normal distributions with means μx, μy and
standard deviations σx and σy , respectively.
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Let θ = μx − μy be the parameter of interest. The problem is
to test the hypothesis H0 : θ ≤ θ0 against the alternative hy-
pothesis Ha : θ > θ0 for some fixed θ0. The sufficient statistic
of this problem is (X̄, Ȳ , S2

xs, S
2
ys) (Tsui and Weerahandi [6])

where X̄ = n−1

n∑
i=1

Xi, Ȳ = m−1
m∑
j=1

Yj ,

S2
xs =

n∑
i=1

(Xi − X̄)2

n and S2
ys

m∑
j=1

(Yj − Ȳ )2

m .

The probability distributions of the statistics, X̄ ∼ N(μx,
σ2
x

n ),

Ȳ ∼ N(μy,
σ2
y

m ), V =
nS2

xs

σ2
x

∼ χ2
n−1 and U =

mS2
ys

σ2
y

∼ χ2
m−1

are independent of one another. Tsui and Weerahandi[6]
proposed the generalized p-value for the above hypothesis as
follow:

Suppose a random quantity T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

can be expressed as

T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) = T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)− θ

where

T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) =

X̄ − Ȳ − θ√
σ2
x

n +
σ2
y

m

√
σ2
xs

2
xs

nS2
xs

+
σ2
ys

2
ys

mS2
ys

and T (x, y, x, y, μx, μy, σ
2
x, σ

2
y) = x̄ − ȳ − θ0. It is

straightforward to see that T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is

free from nuisance parameters σ2
x and σ2

y and has the same

distribution Z
√

s2xs

V +
s2ys

U where Z ∼ N(0, 1).

T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is defined to be a generalized

test variable and T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is defined to be

a generalized pivot statistic and T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

is required to satisfy the following conditions:

C1. For a fixed x and y, the probability distribution of
T ∗(X,Y, x, y, μx, μy, σ

2
x, σ

2
y) is free of the unknown

parameters.

C2. The observed value of T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y),

namely T ∗(x, y, x, y, μx, μy, σ
2
x, σ

2
y) is simply θ.

C3. For fixed x, y and δ = (σ2
x, σ

2
y),

T∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is stochastically monotone

in θ.
The generalized pivot statistic T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)

is also required to satisfy the following conditions:
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C4. For a fixed x and y, the probability distribution of
T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) is free of the unknown

parameters θ and δ = (σ2
x, σ

2
y).

C5. The observed valued of T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y),

namely
T (x, y, x, y, μx, μy, σ

2
x, σ

2
y) is simply equal to θ.

A 100(1−α/2)% generalized lower confidence limit for θ
is then given by T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)1−α, the

100(1− α)th percentiles of T (x, y, x, y, μx, μy, σ
2
x, σ

2
y).

Further, given the observed value x, let t1 and t2 be such
values that
P (t1 < T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) < t2|θ) = 1 − α for

chosen significant level α ∈ (0, 1) than the confidence interval
for parameter θ defined by{
θ : t1 < T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) < t2

}
is a 100(1−α)%

generalized confidence interval for θ.
For the one-sided hypothesis given above they defined a

data-based extreme region Cx,y of the form

Cx,y(θ, σ
2
x, σ

2
y) =

{
(X,Y ) : T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)

− T (x, y, x, y, μx, μy, σ
2
x, σ

2
y) ≥ 0.

For the one-sided Behrens-Fisher problem, the generalized p-
value is

p∗ = Pr(T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

− T (x, y, x, y, μx, μy, σ
2
x, σ

2
y)|θ = θ0).

III. MAIN RESULTS FOR BEHRENS-FISHER PROBLEM WITH
ONE VARIANCE UNKNOWN

Following Schechtman and Sherman [1], we suppose a ratio
of variances is known i.e.

σ2
y

σ2
x

= c, where c is a constant.
According to Tsui and Weerahandi [6], one of the potential
pivotal quantity can be defined as
Q(X,Y, x, y, μx, μy, σ

2
x, σ

2
y)

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

n
+
σ2
y

m
+ θ

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

n
+
σ2
y

m

σ2
x

σ2
x

+ θ

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

(
1

n
+

c

m

)
+ θ

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

(ns2x)

nS2
x

(
m+ nc

nm

)
+ θ

= Z

√
s2x
V

(
m+ nc

m

)
+ θ (1)

For the one-side Behrens-Fisher problem as stated,
H0 : θ < θ0 against Ha : θ > θ0 , we can assume θ0 = 0
without loss of generality, and the generalized p-value for the
one-sided Behrens-Fisher problem is p(q) which is

Pr(Q(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) ≥ qobs = 0)

= Pr

(
Z

√
s2x
V

(
m+ nc

m

)
≥ x̄− ȳ

)

= Pr

(
Z ≥ (x̄− ȳ)

(
s2x
V

(
m+ nc

m

))− 1
2

)

= Pr

(
Z ≤ (ȳ − x̄)

(
s2x
V

(
m+ nc

m

))− 1
2

)

= EV

(
Φ

(
(ȳ − x̄)

(
s2x
V

(
m+ nc

m

))− 1
2

)
(2)

where Φ(.) is a cdf of the standard normal distribution and
EV (.) is an expectation operator with respect to V .

To find the upper bound of p(q), we need Theorems 1-2
based on Tang and Tsui [7] as follows:

Theorem 1. Define

h(v) = Φ

(
z

√
vm

t

)
for v ∈ (0, 1).

Then for fixed z < 0, h(v) is a convex function of v.

Proof: Letting

h(v) = z

√
vm

t
,

we have f(v) = Φ(h(v)). Let φ be the probability density
function of standard normal distribution.
Then

f ′′(v) = (f ′(v)′) = (φ(h(v))h′(v))′

= φ′(h(v))(h′(v))2 + φ(h(v))h′′(v)

For Z < 0, h(v) < 0. Hence φ′(h(v)) ≥ 0. Obviously,
φ(h(v)) ≥ 0. Moreover,

h′′(v) =
[
z

(
1

2

)(vm
t

)− 1
2
(m
t

)]′

= −z
4

(vm
t

)− 3
2
(m
t

)2
= −z

4

(
m
t

)2
(
vm
t

) 3
2

> 0

Hence h(v) ≥ 0, and h(v) is convex in v.

Theorem 2. Let

g(a) = P

[
Φ

(
z

√
(n− 1)m

Cn−1a(m+ nc)
≤ r

)]
,

where z, Cn−1 independent random variables such that
z ∼ N(0, 1), Cn−1 ∼ χ2

n−1. Then g(a) is a convex function
in a.
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Proof:

g(a) = P

[
Φ

(
z

√
(n− 1)m

Cn−1a(m+ nc)
≤ r

)]

= P

[
z

√
(n− 1)m

Cn−1a(m+ nc)
≤ Φ−1(r)

]

= P

[
z

√
(n− 1)

Cn−1
≤
√
a(m+ nc)

m

(
Φ−1(r)

)]

= ET

[
Ψn−1

(√
a(m+ nc)

m

(
Φ−1(r)

))]

ET (.) is an expectation operator with respect to T and
Ψ(.)n−1 is a cdf of t distribution with (n − 1) degree of
freedom, denote

h1(a) =
√

a(m+nc)
m Φ−1(r) and g1(a) = Ψn−1(h1(a))

Let ψn−1 be the probability density function of t distribution
with n− 1 degees of freedom. we have

g′′1 (a) = (g′1(a))
′

= (ψn−1(h1(a))h
′
1(a))

′

= ψ′
n−1(h1(a))(h

′
1(a))

2 + ψn−1(h1(a))h
′′
1(a).

For r ≤ 0.5, h1(a) ≤ 0, and consequently, ψ′
n−1(h1(a)) ≥ 0.

Morever,

h′′1(a) =

[
1

2

(
a(m+ nc)

m1

)− 1
2

Φ−1(r)

(
(m+ nc)

m

)]′

= −1

4
Φ−1(r)

(
a(m+ nc)

m

)− 3
2
(
(m+ nc)

m

)2

≥ 0.

Hence g′′1 (a) ≥ 0. That is g1(a) is convex in a. As a result,
g(a) = ET (g1(a)) is convex in a.

Theorem 3. For the one-sided Behrens Fisher problem ,
when a ratio of variances is known with H0 : μ1 − μ2 ≤ θ0
and any 0 < r < 0.5. The generalized p-value , p(q) in (2),
has the following property under H0:

Pq(p(q) ≤ r) < Ψn−1(kΦ
−1(r)) k =

√
m+ nc

m

Where Ψn−1(.) is a cdf of t distribution with n− 1 degrees of
freedom,Φ(.) is cdf of the standard normal distribution, and
Φ−1inverse function of Φ(.).

Proof: Denote

A =
σ2
x

n
σ2
n

n +
σ2
m

m

z =
ȳ − x̄√
σ2
n

n +
σ2
m

m

Cn−1 =
ns2x
σ2
x

From (2)

p(q) = EV

[
Φ

(
(ȳ − x̄)

(
s2x
V

(
m+ nc

m

))− 1
2

)]

= EV

⎡
⎣Φ
⎛
⎝ (ȳ − x̄)√

σ2
x

n +
σ2
y

m

⎛
⎝√ 1

s2x
n +

σ2
y

m

(
m+nc

m

)
1
V

⎞
⎠
⎞
⎠
⎤
⎦

= EV

[
Φ

(
Z

(√
V m

Cn−1A(m+ nc)

))]

For any r < 0.5 and p(q) < r, we must have. Hence by
theorem 1

f(v) = EV

[
Φ
(
Z
(√

Vm
Cn−1A(m+nc)

))]
is convex in V.

By Jensens Inequality,

p(q) = EV (f(V ) ≥ f(E(V ))) = f(n− 1)

p(q) = φ

(
Z

(√
(n− 1)m

Cn−1A(m+ nc)

))
≡ p1(q)

Now observe that under μ1 − μ2 = 0, z ∼ N(0, 1),
Cm−1 ∼ χ2

n−1and z, Cn−1 are independent of one another.
For 0 < r < 0.5.

Pq({q : p(q) ≤ r} ≤ Pq {p1(q) ≤ r} = g(A)

. where g(a) is a defined in theorem 2. Next by theorem 2 for
0 < r < 0.5 , g(A) , is convex in A.

g(A) ≤ max {g(0), g(1)}

= Φ

(
Z

(√
(n− 1)m

Cn−1A(m+ nc)

)
≤ r

)

=

(
z

√
n− 1

Cn−1
≤ Φ−1(r)

√
m+ nc

m

)

= Ψn−1 ≤ (kΦ−1(r))

where k =
√

m+nc
m

IV. CONCLUSION

In this paper, we derive an expression of the upper bound of
the generalized p-value for the Behrens-Fisher problem with
a know ratio of variances used the method described by Tang
and Tsui [7]. This upper bound can be easily computed by
R program with command: pnorm(k*qnorm(r)), when r is a
fixed real value between 0 to 0.5.
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