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Terminal Wiener Index for Graph Structures
J. Baskar Babujee and J. Senbagamalar,

Abstract—The topological distance between a pair of vertices
i and j, which is denoted by d(vi, vj), is the number of edges
of the shortest path joining i and j. The Wiener index W (G) is
the sum of distances between all pairs of vertices of a graph G.
W (G) =

∑
i<j

d(vi, vj |G) where d(vi, vj |G) is the distance between

the vertices vi and vj in a graph. The Terminal Wiener index TW (G)
is defined as the sum of the distance between all pairs of pendent
vertices in a graph G. In this paper we analyze various types of trees,
caterpillar graphs isomorphic to molecular structures and Terminal
Wiener index for generalized graphs.

Keywords—Graph, Degree, Distance, Pendent vertex, Wiener in-
dex, Tree.

I. INTRODUCTION

In order to obtain the structure-activity relationships in
which theoretical and computational methods are based it is
necessary to find appropriate representations of the molecular
structure of chemical compounds. These representations are
realized through the molecular descriptors [7]. Molecular
descriptors are numbers containing structural information de-
rived from the structural representation used for molecules
under study. A molecular graph [6] is a collection of points
representing vertices and the lines are named edges in the
graph theory language.

In mathematical terms a graph is represented as G = (V,E)
where V be the set of vertices and E be the set of edges. Let G
be an undirected connected graph without loops or multiple
edges with n vertices, denoted by {v1, v2, v3, . . . , vn}. The
topological distance between a pair of vertices i and j, which
is denoted by d(vi, vj), is the number of edges of the shortest
path joining i and j. In 1947 Harold Wiener [4] defined the
Wiener index W (G) is the sum of distances between all pairs
of vertices of a graph G. W (G) =

∑
i<j

d(vi, vj |G) where

d(vi, vj |G) is the distance between the vertices vi and vj in
a graph. Among all the trees on n vertices, the star K1,n−1

has the lowest Wiener number and the path Pn has the largest
Wiener number.

In a number of recent studies, the terminal distance matrix
or reduced distance matrix of trees was introduced by Gutman,
B. Furtula, and M. Petrovic [5]. If an n-vertex graph G

has k pendent vertices (= vertices of degree one), labeled
v1, v2, v3, . . . , vk, then its terminal distance matrix is the
square matrix of order k whose (i, j)-entry is d(vi, vj |G).
The Terminal Wiener index TW (G) of a graph G is the
sum of the distances between all pairs of pendent vertices.
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TW (G) =
∑

1≤i<j≤k

d(vi, vj |G) where d(vi, vj |G) is the

distance between pair of pendent vertices in a graph G.
Consider a graph G, vertices having degree one is called

pendent vertices or terminal vertices and vertices having more
than one degree are called interior vertices [2]. In our paper
we represent the sum of the distance between all the pair
of pendent vertices by TW (G) [1], and sum of the distance
between all pair of interior vertices as IW (G). We use the
notations the graph K+k

n is obtained from a complete graph
Kn by adding a pendent edge to any of the vertex in Kn. The
graph G+ is obtained from any arbitrary graph G by adding
a pendent edge to each vertex of G. The graph Gt is obtained
from graph G by joining a pendent edge to all the interior
vertices of G. The generalized star graph [3] K1,n1,n2,...,nm

is obtained by joining one of the pendant vertices of each
paths Pn1

, Pn2
, . . . , Pnm

by an n edge to a common vertex.
The K1,n1,n2,...,nm

has n1 + n2 + · · ·+ nm + 1 vertices and
n1 + n2 + · · ·+ nm edges.

II. MAIN RESULTS

Theorem 1: The Terminal Wiener index of full binary tree

(FBT) is 2l−1
l∑

m=1

m2m.

Proof: The level of a vertex is the number of edges along
the unique path between it and the root. The level of the root
is defined as 0. The vertices immediately under the root are
said to be in level 1 and so on. A full binary tree is a binary
tree in which each internal vertex has exactly two children.
If T is full Binary tree with i internal vertices, then T has
i+1 terminal vertices and 2i+1 total vertices. The maximum
number of vertices on level m in a binary tree is 2m. We
calculate a Terminal Wiener index of full binary tree is
TW (FBT ) = 1.2 + 2.22 + 3.22 + · · ·+ upto to mth level

TW (FBT ) = 2l−1
l∑

m=1

m2m, where l is the level of the tree

starting from 0th level.
Theorem 2: The Terminal Wiener index of the generalized

star K1,n1,n2,...,nm
is

TW (K1,n1,n2,...,nm)

=

{
mn(m− 1) if all n′

is are equal
(n1 + n2 + · · ·+ nm)(m− 1) if all n′

is need not be equal

Proof: Let K1,n1,n2,...,nm
be the given star graph

with root vertex u. Let be the rooted tree obtained from
K1,n1,n2,...,nm

by replacing each edge by {ni}
m
i=1 paths.
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Case (i): all ni’s are equal

TW (K1,n1,n2,...,nm
)

=
1

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(2n+ 2n+ · · ·+ 2n)︸ ︷︷ ︸

m times

+ · · ·+ (2n+ 2n+ · · ·+ 2n)︸ ︷︷ ︸
m times︸ ︷︷ ︸

m times

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

TW (K1,n1,n2,...,nm
) = mn(m− 1)

Case (ii): all ni’s need not be equal
TW (K1,n1,n2,...,nm

) = 1
2{((n1 + n2) + · · · + (n1 + nm)) +

((n2 + n1) + · · · + (n2 + nm)) + · · · + ((nm + n1) + · · · +
(nm + nm−1))}
TW (K1,n1,n2,...,nm

) = 1
2{(m − 1)(n2 + n3 + · · · + nm) +

(m− 1)(n1 + n2 + · · ·+ nm−1)}
TW (K1,n1,n2,...,nm

) = 1
2{(m − 1)(n1 + n2 + · · · + nm) +

m(n1 + n2 + · · ·+ nm)− (n1 + n2 + · · ·+ nm)}
TW (K1,n1,n2,...,nm

) = (m− 1)(n1 + n2 + · · ·+ nm).
Theorem 3: The Wiener index of K+k

n is 1
2{n

2 + n(4k −
1) + k(3k − 5)}.

Proof: Consider a complete graph Kn(V,E) with n

vertices. Let the vertex set be V = {v1, v2, v3, . . . , vn}.
Construct a graph K+k

n by adding a pendent vertex for
some k vertices of Kn. Let the vertex set of K+k

n (V ′, E′)
be V ′ = V ∪ {v′1, v

′
2, v

′
3, . . . , v

′
k} and edge set be E′ =

E ∪ (v1v
′
1, v2v

′
2, . . . , vkv

′
k).

W (Kk
n) =

1

2

⎧⎨
⎩k

⎛
⎝1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−1 times

⎞
⎠
⎛
⎝2 + 2 + · · ·+ 2︸ ︷︷ ︸

n−1 times

⎞
⎠

+ (n− k)

⎧⎨
⎩
⎛
⎝1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−1 times

⎞
⎠
⎛
⎝2 + 2 + · · ·+ 2︸ ︷︷ ︸

n−1 times

⎞
⎠
⎫⎬
⎭

+

⎧⎨
⎩k

⎛
⎝1 +

⎛
⎝2 + 2 + · · ·+ 2︸ ︷︷ ︸

n−1 times

⎞
⎠
⎞
⎠+

⎛
⎝3 + 3 + · · ·+ 3︸ ︷︷ ︸

k−1 times

⎞
⎠
⎫⎬
⎭
⎫⎬
⎭

W (K+k
n ) = 1

2{n
2 + n(4k − 1) + k(3k − 5)}.

Theorem 4: Let G be a graph, with k pendent vertices. By
joining a pendent edge to all the pendent vertices successively
then the Terminal Wiener index in the pth stage is TW (G)+
pk(k − 1).

Theorem 5: Let G be a graph with k pendent vertices. If
G′ be a graph obtained from G by joining m pendent edges
to every k pendent vertices, then the Terminal Wiener index
of G′ is m2TW (G) +mk(mk − 1).

Theorem 6: If G be a graph with n vertices and at least
one vertex has degree n− 1 then TW (G) = k(k − 1) where
k is the number of pendent vertices in G.

Theorem 7: Let G be a connected graph with n vertices
such that there is at least one vertex v with degree n− 1. The
graph Gx obtained by connecting m copies of G by adding
m new edges from each v of G to a new vertex x. Then
TW (Gx) = mk[k(2m − 1) − 1] where k is the number of
pendent vertices in G.

Proof: By definition

TW (G) =
1

2

n∑
i=1

n∑
j=1

d(vi, vj |G)

=
1

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
m

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝(2 + 2 + · · ·+ 2)︸ ︷︷ ︸

k−1 times

+ · · ·+ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
k−1 times︸ ︷︷ ︸

k times

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝
(4 + 4 + · · ·+ 4)︸ ︷︷ ︸

k times

+ · · ·+ 4 + 4 + · · ·+ 4︸ ︷︷ ︸
k times︸ ︷︷ ︸

m−1 copies

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
1

2

⎧⎪⎨
⎪⎩2k(k − 1) + · · ·+ 2k(k − 1)︸ ︷︷ ︸

m copies

+(m− 1) 4k2 + 4k2 + · · ·+ 4k2︸ ︷︷ ︸
m copies

⎫⎬
⎭

=
1

2
{2mk(k − 1) + 4k2m(m− 1)}

TW (G) = mk[k(2m− 1)− 1].

Theorem 8: The Wiener index of G+ is 4W (G)+n(2n−1).
Proof: For any arbitrary graph G, let the vertex set be

V = {v1, v2, v3, . . . , vn}. Construct a graph G+ by adding a
pendent edge to each vertex of G. Now G+(V ′, E′) is denoted
by G+ where V ′ = V ∪ {v′1, v

′
2, v

′
3, . . . , v

′
n}, |V ′| = 2n

and |E′| = |E| + n, E′ = E ∪ {v1v1′, v2v2′, . . . , vnvn′}.
Splitting a Wiener index of G+ into four parts, (i.e.) half
sum of the shortest distance between the vertices in G and
half sum of the shortest distance between vertices in G to
pendent vertices in G+ and half sum of the shortest distance
between pendent vertices in G+ to vertices in G and half sum
of the shortest distance between the pendent vertices in G+

to pendent vertices in G+.

W (G+) =
1

2

⎧⎪⎪⎨
⎪⎪⎩

∑
vi,vj∈V

d(vi, vj |G) +
∑
vi∈V

v′
j
∈V ′

d(vi, v
′
j |G

+)

+
∑

v′
j
∈V ′

vi∈V

d(v′j , vi|G
+) +

∑
v′
i
∈V ′

v′
i
∈V ′

d(v′i, v
′
j |G

+)

⎫⎪⎪⎬
⎪⎪⎭

=
1

2

⎧⎨
⎩

∑
vi,vj∈V

d(vi, vj |G)

+

⎧⎪⎪⎨
⎪⎪⎩

d(v1, v
′
1) + d(v1, v

′
2) + · · ·+ d(v1, v

′
n)

+d(v2, v
′
1) + d(v2, v

′
2) + · · ·+ d(v2, v

′
n)

+ · · ·+ · · ·+ · · ·+ · · ·
+d(vn, v

′
1) + d(vn, v

′
2) + · · ·+ d(vn, v

′
n)

⎫⎪⎪⎬
⎪⎪⎭
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+

⎧⎪⎪⎨
⎪⎪⎩

d(v′1, v1) + d(v′1, v2) + · · ·+ d(v′1, vn)
+d(v′2, v1) + d(v′2, v2) + · · ·+ d(v′2, vn)

+ · · ·+ · · ·+ · · ·+ · · ·
+d(v′n, v1) + d(v′n, v2) + · · ·+ d(v′n, vn)

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

d(v′1, v
′
1) + d(v′1, v

′
2) + · · ·+ d(v′1, v

′
n)

+d(v′2, v
′
1) + d(v′2, v

′
2) + · · ·+ d(v′2, v

′
n)

+ · · ·+ · · ·+ · · ·+ · · ·
+d(v′n, v

′
1) + d(v′n, v

′
2) + · · ·+ d(v′n, v

′
n)

⎫⎪⎪⎬
⎪⎪⎭

=
1

2
{2W (G) + n+ n(n− 1) + 2W (G)

+ n+ n(n− 1) + 2W (G) + 2n(n− 1) + 2W (G)}

W (G+) = 4W (G) + n(2n− 1).

Theorem 9: Let W (G) be a Wiener Index of a connected
graph G. If Gt is a graph obtained from G by joining exactly
one pendent edge to all the n1 interior vertices of G, then
TW (Gt) = W (G)+n1(n1+n0−1) where n0 is the number
of pendent vertices in G.

Proof: Let G be a graph. The vertex set be
{v1, v2, v3, . . . , vn0

, v1, v2, . . . , vn1
}. The vertices

v1, v2, v3, . . . , vn0
= n0 are called terminal vertices of G.

The vertices v1, v2, . . . , vn1
= n1 are called interior vertices

of G. k0 + k1 = n be the number of vertices of a graph G.
The graph Gt is obtained from G by joining a pendent edge
to all the interior vertices of {v1, v2, v3, . . . , vn1

}. The new
pendent vertices be {v′1, v

′
2, v

′
3, . . . , v

′
n1
}.n1 + n0 + n1 = N

be the number of vertices of a graph Gt. By definition

TW (Gt) =
1

2

N∑
i=1

N∑
j=1

d(vi, vj |G
t)

=
1

2

⎧⎨
⎩

n′

1∑
i=1

n′

1∑
j=1

d(vi, vj |G
t) +

n′

1∑
i=1

n1∑
j=1

d(vi, vj |G
t)

+

n1∑
i=1

n′

1∑
j=1

d(vi, vj |G
t) +

n1∑
i=1

n1∑
j=1

d(vi, vj |G
t)

⎫⎬
⎭

=
1

2

⎧⎨
⎩2IW (G) + 2n1(n1 − 1) + 2

n′

1∑
i=1

n0∑
j=1

d(vi, vj)

+2TW (G)}

= {2IW (G) + 2n1(n1 − 1)

+ [2W (G)− 2WI(G)− 2TW (G) + 2n1n0] + 2TW (G)}

{2W (G) + 2n1(n1 − 1) + 2n1n0}

TW (Gt) = W (G) + n1(n1 + n0 − 1).

III. OBSERVATION AND ANALYSIS

Caterpillar graph is a tree in which all the vertices of the
caterpillar are within distance one from the main path. In the
main path the vertex set be v1, v2, . . . , vn. Caterpillar tree is
isomorphic to certain types of molecular graphs. Consider a
saturated hydrocarbon with n carbon atoms there are k methyl
molecules attached in various positions i, (2 ≤ i ≤ n− 1).

Theorem 10: If T be a caterpillar with n vertices on the
main path having k pendent edges at various positions i (2 ≤

i ≤ n−1), then TW (G) = (k+1)(n+k−1)+
1

2

∑
i

∑
ik

|ii−

ik|.
Proof: Let T (n, k) be a caterpillar graph with n +

k vertices, {v1, v2, . . . , vn} be the vertices on the main
path. The degree sequence of a caterpillar graph is
(d1, d2, . . . , dn, dn+1, dn+2, . . . , dn+k). The degree sequence
on the main path {di}

n−1
i=2 is either 2 or 3. The degree sequence

of d1, dn, dn+1, dn+2, . . . , dn+k is one. The positions of k

pendent edges lies on the main path in various position is
v2 to vn−1. The Terminal Wiener index of a graph is sum of
the distance between vth1 and vthn vertex, sum of the distance
between pairs of k pendent vertices and sum of the distance
between v1 and vthn vertex to k pendent vertices.

TW (T ) =
1

2

{
2(n− 1) +

∑
i1

∑
ik

|ii − ik|+ 2k(k − 1)

+2
∑
i1

|1− i1|+ 2
∑
i1

|n− i1|+ 2(2k)

}

TW (T ) =
1

2

{
2(n− 1) + 2k(k + 1) +

∑
i1

∑
ik

|i1 − ik|

−2
∑
i1

|1− i1|+ 2
∑
i1

|n− i1|

}

TW (T ) = (n− 1) + k(k + 1) +
1

2

∑
i1

∑
ik

|ii − ik|+ (nk − k)

TW (T ) = (k + 1)(n+ k − 1) +
1

2

∑
i1

∑
ik

|ii − ik|.

Example 1:

Fig. 1. (3, 4, 6, 10) - tetramethyldodecane

If we can study that for all molecules, the distance between
two extremum methyl molecules as well as the two interme-
diate methyl molecules have the same distance contain same
Terminal Wiener index.

If we denote (a, b, c, d)-tetramethyldodecane in the follow-
ing table, where (a, b, c, d) denote the positions of the 4 methyl
molecules varying over the positions from 2 to n-1 in the
straight chain consisting of n carbon atoms. In the molecular
structure 3, 4, 6, 10 tetramethyldodecane, the distance between
the positions of (3, 10) and (4, 6) are 7 and 2 respectively. The
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positions of the molecular structure (2, 3, 5, 9) and (4, 5, 7, 11)
of tetramethyldodecane, the Terminal Wiener Index is similar.

TABLE I
TERMINAL WIENER INDEX FOR CERTAIN CHEMICAL COMPOUNDS

S.No. Chemical compound TW(G)
tetramethyldodecane

1 (2,3,4,7), (3,4,5,8), (3,6,7,8), (4,7,8,9), (5,8,9,10), 91
(6,9,10,11)

2 (2,4,6,7), (3,5,7,8), (4,6,8,9), (5,7,9,10), (6,8,10,11), 92
(2,3,5,7), (3,4,6,8), (4,5,7,9), (5,6,8,10), (6,7,9,11)

3 (2,3,6,7), (3,4,7,8), (4,5,8,9), (5,6,9,10), (6,7,10,11) 93
4 (2,3,4,8), (3,4,5,9), (4,5,6,10), (5,6,7,11), (2,6,7,8), 94

(3,7,8,9), (4,8,9,10), (5,9,10,11), (2,4,5,8), (3,5,6,9),
(4,6,7,10), (5,7,8,11), (2,5,6,8), (3,6,7,9), (4,7,8,10),

(5,8,9,11)
5 (2,4,6,8), (3,5,7,9), (4,6,8,10), (5,7,9,11), (2,3,5,8), 95

(3,4,6,9), (4,5,7,10), (5,6,8,11), (2,5,7,8), (3,6,8,9)
(5,8,10,11), (4,7,9,10)

6 (2,3,6,8), (3,4,7,9), (4,5,8,10), (5,6,9,11), (2,4,7,8), 96
(3,5,8,9), (4,6,9,10), (5,7,10,11)

7 (2,3,4,9), (3,4,5,10), (4,5,6,11), (2,4,5,9), (3,5,6,10), 97
(4,6,7,11), (2,5,6,9), (3,6,7,10), (4,7,8,11), (2,6,7,9),

(3,7,8,10), (4,8,9,1), (2,7,8,9), (3,8,9,10)
8 (2,3,5,9), (3,4,6,10), (4,5,7,11), (2,4,6,9), (3,5,7,10), 98

(4,6,8,11), (2,5,7,9), (3,6,8,10), (4,7,9,11), (2,6,8,9)
(3,7,9,10), (4,8,10,11)

9 (2,3,6,9), (3,4,7,10), (4,5,8,11), (2,4,7,9), (3,5,8,10), 99
(4,6,9,11), (2,5,8,9), (2,6,9,10), (4,7,10,11)

10 (2,3,4,10), (3,4,5,11), (2,4,8,9), (3,5,9,10), (4,6,10,11), 100
(2,3,7,9), (3,4,8,10), (4,5,9,11)
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