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Abstract—A silicon photomultiplier (SiPM
fabricated and characterized. The SiPM was 
(Separation of Absorption, Charge and Multipl
which was optimized for blue light detection
positron emission tomography (PET). The achieved
high geometric fill factor of 64% and a low brea
about 22V, while the temperature dependence of b
is only 17mV/°C. The gain and photon detection
device achieved were also measured under illum
405nm and 460nm wavelengths. The gain of the de
of 106. The photon detection efficiency up to 60% 
under 1.8V overvoltage.

Keywords—Photon Detection Efficiency, P
Tomography, Silicon Photomultiplier.

I. INTRODUCTION

OR the past twenty-five years, detecto
Emission Tomography (PET) have b

photomultiplier tubes (PMT) as the photo de
The drawbacks of PMTs include fairly high
and high sensitivity to magnetic fields. In add
detector designs involve multiplexing a lar
169) of scintillation crystals to a small numbe
resulting in mispositioning errors, limited s
and dead time effects. To address these draw
of groups have explored the possibility of usin
state photo detectors such as avalanche phot
and more recently silicon photomultipliers 
have a much higher gain than APDs, with a sim
of PMTs. In addition, they have much faster, 
timing compared to APDs. Both APDs and S
to-one coupling to the scintillator elements an
with operation in a magnetic field [1]-[10
therefore emerged as the photo detector of ch
PET detectors that are to be operated inside 
with minimal cross-interference of the 
operations.

In this paper, a SiPM array has been
fabricated, with a target for PET app
preliminary results of the device performa
achieved.
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II.DEVICE DES

A SiPM array can be regarded as 
many identical SiPM cells, each of w
(avalanche photodiode) and a quen
seen in Fig. 1 (a). Fig. 1 (b) shows th
The detection window of the APD 
the active region, because a certa
consumed by the contact via and me
has a square shape with rounded co
for suppression of the unwanted e
corners. We use poly-Si strips as 
resistance is expected to be in the o
quenching of the avalanche current.

(a)

(c)

Fig. 1 (a) Schematic top-view of part of
of a SiPM cell, (c) Cross-sectional view

structure

Fig. 1 (c) shows the cross-section
cell to be achieved. As can be seen, 
with a separate absorption, charge, an
structure, which includes an ab
multiplication region separated by a 
field distribution between absorption
region) region. When the APD is rev
field in the absorbing region will b
multiplication region. The differenc
determined by the doping level of th
high electric field is confined in 
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region. APD gain has a strong exponential de
applied electric field strength. The E-field
increasing bias, causing the gain to increase
reaches breakdown value of around 400kV
which are generated near the surface (abs
200nm) by blue light (λ
initiate impact ionization when they enter 
region since they gained enough energy alon
buried junction enables single carrier injec
mixed injections, which leads to lower shot n
speed. Electrons being the injection carriers a
holes since they have higher ionization coeff
in silicon.

The p+ layer in Fig. 1 (c) serves as activ
APD, as well as the contact region for meta
APD. This region should be highly doped 
uniformity of electric field in absorption regio
the good ohmic contact between metal and Si
dopant concentration will result in recombin
carriers generated in absorption region. Thus
designed to be very thin (~100nm) in orde
unexpected carrier losses, which is designed
short wavelength. Absorption depth for 420nm
silicon is ~200nm, which means 63% of the 
in the first 200nm from the silicon surface. 
light is absorbed in the first 100nm distance,
doped top contact layer.

III. DEVICE FABRICATION

The devices designed were fabricated in
IME lab. The SACM-based APD was achieve
growth and ion implantation. The thi
multiplication layer in the SACM based APD 
absorption layer was 200nm thick, which
efficient absorption of blue light with the wa
420nm. Thus the total thickness of Si epitaxia
800nm, which can help to reduce the breakdo
the dark current of the device.

(a) (
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Fig. 2 shows the top view of two
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the fill factor of the arrays. Since t
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clearly seen. Although the shapes of
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designed to be identical. According 
resistance of a single poly-Si que
200kΩ, which is quite suitable for S

IV. CHARACTERIZ
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Fig. 5 I-V curves of SiPM arrays achi

After the wafer-level characterization of I
the achieved devices, the wafer was diced into
The SiPM arrays were then connected to the 
means of wire bonding. After that, the PCB
thermal chamber to measure the temperatur
curves. One example of the measurement res
Fig. 6. As can be clearly seen, with the incr
temperature, the dark current increases while
voltage decreases. The thermal coefficient o
voltage is only 13~17mV/ºC.

Fig. 6 Temperature dependence of dark current 
voltage

Fig. 7 Photon detection efficiency of a 1x1mm
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devices were measured at -15ºC by launching
or laser) to the surface of the arrays. Two wav

chieved
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cies (PDE) of the
ing blue light (LED
avelengths, 405nm

and 460nm have been used for 
example of the PDE measurement r
As can be seen, the photon detec
wavelength increases with the overv
of the gain. However, the noise 
drastically with the overvoltage as w
so high that it is comparable to the
will become saturated and starts
increase of the voltage applied. As s
PDE can be found when the overv
1.8V, where a PDE up to 60% can be

V.CONCLUSI

We have successfully developed
size (up to 4x4mm2), high fill factor,
dark current, low breakdown vo
stability and high photon detection e
be very promising for PET applicatio
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