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An approximate solution of the classical Van der
Pol oscillator coupled gyroscopically to a linear
oscillator using parameter-expansion method

Mohammad Taghi Darvishi and Samad Kheybari

Abstract—In this article, we are dealing with a model consisting
of a classical Van der Pol oscillator coupled gyroscopically to
a linear oscillator. The major problem is analyzed. The regular
dynamics of the system is considered using analytical methods.
In this case, we provide an approximate solution for this system
using parameter-expansion method. Also, we find approximate values
for frequencies of the system. In parameter-expansion method the
solution and unknown frequency of oscillation are expanded in a
series by a bookkeeping parameter. By imposing the non-secularity
condition at each order in the expansion the method provides different
approximations to both the solution and the frequency of oscillation.
One iteration step provides an approximate solution which is valid
for the whole solution domain.

Keywords—Parameter-expansion method, classical Van der Pol
oscillator.

I. INTRODUCTION

ONSIDER the following model of a classical Van der Pol
oscillator coupled gyroscopically to a linear oscillator

Yy +e(y? -y +y+ fa" = Ecos(nt),
1)
2"+’ +x—dy=0

where a prime denotes time derivative. The Van der Pol
oscillator is represented by the variable y while x stands for
the linear oscillator, € and X are respectively the Van der Pol
parameters and the damping coefficient of the linear oscillator.
The quantities f and d are the coupling coefficients. £ and
n are the amplitude and frequency of the external excitation
while ¢ is the non-dimensional time. We have restricted our
analysis to the case where the natural frequencies of both
oscillators are identical (internal resonance). To solve non-
linear evolution equations many effective methods have been
introduced, such as the variational iteration method [1], [2],
[3], the Adomian decomposition method [4], [5], the homotopy
perturbation method [6], [7], [8], parameter expansion method
[9], [10], [11], [12], spectral collocation method [13], [14],
[15], [16], [17], homotopy analysis method [18], [19], [20],
[21], three-wave method [22], [23], [24], extended homoclinic
test approach [25], [26], [27], the (%)—expansion method
[28] and the Exp-function method [29], [30], [31], [32], [33],
[34].
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In this article we apply the parameter-expansion method to
obtain approximate solution of system (1), also we provide
numerical approximations for frequencies of = and y.

Il. PARAMETER EXPANSION METHOD

To solve (1) by parameter-expansion method we rewrite the
system as

y'+1-y=FEcos(nt)— fa"" +e(1 - 112)?/7
2
2 +1-z=dy— '

According to the parameter-expansion method, all variables
2 and y can be expanded into a series of an artificial parameter
p such as
x =z +pr1 +pPog 4 -
@)
Yy =190 +py1 +p*y2+ -

where p is called a bookkeeping parameter [35]. We also
expand all coefficients of the system (1) into a series of p
in a similar way

l=a’+pa; +p’ag+---

E=pE +p*Ey + -

e=pe1 +pieat -

f=phi+pP°fat--- 4
1= +pbi+p*r+ -

d=pdy +p°dy + - --

A=phi+p e+

By substituting the above expansions (3) and (4) into the
system (2), we have

W+ pyll + Pyl + )+ (a® + poy + pPag + -+ )X
(yo +py1 +pPy2 +---) =
(pEy + p?Eo + -+ )cos(nt) — (pfi + p2fa + -+ )x
(xf + pxi + p*x + ) + (pe1 + pPea + -+ )x
[1— (v +pyy + 2y + )2 (vh + pyy +P2yh + ),

(g +pxy +p*ay + -+ ) + (B2 + pl +p*B2 + -+ ) ¥
(zo + pr1 +p*2 4 -+ ) = (pd1 + pPday + -+ ) ¥
(Yo +pyr + Y2 +---) — (P + Ao+ -+ )X
(zg + px) +pPxh +---).
5)
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Equating in the powers of p, we have

Yo +a’yo =0
P’ (6)
) + (%19 =0
and
yi + o’y =
X E cos(nt) + e1yh — 193y — c1yo — 17y,
P
xlll + 62I1 —
diyo — Br1zo — Mg,
(7
Solving the equation (6), we obtain
yo = Aj cos(at) + As sin(at)
©))

xg = By cos(ft) + Bs sin(f5t).

where Ai,A5,B, and B, are arbitrary constants. Substituting
(8) into (7), we obtain

yi + Py =
Ey cos(nt) + f1[B1?% cos(Bt) — B2% sin(5t))
+sin(at)[§A1Adas; + FA3ae, — Ajas; — oy Ag)
+COS(O¢t)[—%A§O¢€1 — %A%Az(){El + A2a61 — OélAﬂ
+sin(3at)[3 Ace; — 3 A1 Aae |+
cos(3at)[3 A3 Asaer — 2 A3ae],

o + Pxy =

dy A cos(at) + dy Ag sin(at)
+sin(8t)[A B18 — B1Ba] + cos(Bt)[— A1 B3 — ﬂlBl](-g)
If the first-order approximation is enough, then, setting p = 1
in both equations (3) and (4), we have

y=vyo+y, o?+a1=1, E=E, e=¢e, [f=fi

[j2+ﬁ1:17 )\:>\1

Now substituting (10) into (9) yields:

xr=x0+ T, d = dy,

(10)

yi + o’y =
E cos(nt) + f[B15% cos(Bt) — Bo3? sin(5t)]
)

+sin(at) [ A1 Afae + L A3ae — Ajae — a1 A
+ cos(at)] iAgas — iA%Agoza + Asae — a1 A4q]
+sin(3at)[2 Aae — 3 A; Adae]

+ cos(3at) [%A%Agaa — 1 A30e],

o + Pry =
dA; cos(at) + dAs sin(at)
+sm(ﬂt)[)\B1ﬂ — /81B2] —+ COS(ﬂt)[—ABzB — ,8131% 1

No secular term in y; and x; requires that

%A:[A%OCS + %A?O&é‘ — AlOé&f — a1A2 = 0,
(12)
—1 A0 — L A3 Asae + Asae — a1 Ay =0

and
AB13 — 1By =0,

(13)
—AB2f — 1B1 =0
and using (12), (13) and (10), we have
a=0=1. (14)
and the frequencies of equations are
T, = %’T =2,
(15)
T, =% =2
Furthermore, equation (11) can be simplified as
yi +y =
E cos(nt) + f[Bjy cost + Baysint]
+sin3t[T Afe — 2 A1 AZe] + cos 3t[3 AT Are — L A3e],

af +x =
dA; cost + dAgsint

(16)
Solving equation (16) yields

Y1 =
£ cos(nt) + L(By fsint — By f cost)

+sin 3t[35 A1 Ade — 5 Ade] + cos 3t[55 AJe — 5 A2 Ase],

Tr1 =

(dA;y sint — dAs f cost).

t
: (17)
Now using (17), (8) and (10) we obtain the first order solution
for x and y as follows

y=1yo+y = Ajcost+ Assint

Jr17En2 cos(nt) + %(B1fSiIlt — By f cost)

+sin3t[ A1 A3e — b Ade] + cos 3[4 ASe — 3 AT Age,
T =x9+ 21 =

Bicost+ Bysint + %(dAl sint — dAs f cost).
(18)

I1l. CONCLUSIONS

In this study, we have applied the parameter-expansion
method to solve the classical Van der Pol oscillator coupled
gyroscopically to a linear oscillator equation. The method
more efficient than perturbation method [36] for this problem
because the method is independent of perturbation parameter
assumption and one iteration step provide an approximate
solution which is valid for the whole solution domain. One can
apply the parameter-expansion method on another nonlinear
oscillators, easily. Because, the method can be easily compre-
hended with only a basic knowledge of advanced calculus.
The method by help of Maple, is utter simplicity, and can be
easily extended to all kinds of non-linear equations.
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