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An Adaptive Hand-Talking System
for the Hearing Impaired

Zhou Yu, and Jiang Feng

Abstract—An adaptive Chinese hand-talking system is presented
in this paper. By analyzing the 3 data collecting strategies for new
users, the adaptation framework including supervised and unsuper-
vised adaptation methods is proposed. For supervised adaptation,
affinity propagation (AP) is used to extract exemplar subsets, and en-
hanced maximum a posteriori / vector field smoothing (eMAP/VFS)
is proposed to pool the adaptation data among different models. For
unsupervised adaptation, polynomial segment models (PSMs) are
used to help hidden Markov models (HMMs) to accurately label
the unlabeled data, then the ”labeled” data together with signer-
independent models are inputted to MAP algorithm to generate
signer-adapted models. Experimental results show that the proposed
framework can execute both supervised adaptation with small amount
of labeled data and unsupervised adaptation with large amount
of unlabeled data to tailor the original models, and both achieve
improvements on the performance of recognition rate.

Keywords—sign language recognition, signer adaptation,
eMAP/VFS, polynomial segment model.

I. INTRODUCTION

THERE are about 500 million people who suffer from
hearing loss worldwide [1], and there are over 27 million

hearing impaired people in China [2]. The most important
way for the hearing impaired to communicate with the hearing
society is by sign language interaction. Whereas, most people
are not familiar with sign language, which prevents them
from communicating with the hearing impaired. With the
development of artificial intelligence techniques in computer
science, automatic recognizing and synthesizing sign language
have come into reality. Together with the mature techniques
of automatic speech recognition and synthesis, we can help
the hearing impaired to communicate with hearing society by
the aid of personal computers.

Our previous work [3] proposed a Chinese sign language
/ spoken language dialog system. With this system a hearing
impaired person can ”talk” with a hearing person through the
internet. The system consists of mainly four parts: namely sign
language recognition (SLR), sign language synthesis (SLS),
speech recognition, and speech synthesis. The SLR module
can accurately translate sentences composed of over 5000
Chinese sign language words to texts for a specific person.
Whereas the performance decreases drastically when users
are unregistered in the systems’ training set due to the fact
that different persons sign the same sign word differently.
Collecting enough signers’ data to train signer-independent
(SI) models can solve this problem to some extent. Even
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though, the models are still ”one-size-fits-all”, which means
that the SI models can perform acceptably, but not well
enough. One alternative to solve this problem is the adaptation
techniques, by which the SI models can be tailored to new
users with its labeled and unlabeled data. In this paper we
propose two adaptation methods to modify the SI models’
parameters so that an adaptive Chinese hand-talking system
can be achieved.

The remainder of this paper is organized as follows. In
Section II, we review the hand-talking system presented in [3]
and propose the adaptation framework. Then we describe the
supervised adaptation method and the unsupervised adaptation
method in Section III and Section IV respectively. The pro-
posed adaptation methods are evaluated in Section V. Finally
the conclusions are given.

II. HAND-TALKING SYSTEM AND ADAPTATION
FRAMEWORK

The system mainly consists of two terminals: the hearing
impaired terminal and the hearing terminal. The hearing im-
paired terminal has two modules: the SLR module translates
sign language signals to texts and sends them to hearing
terminal; the SLS module receives texts from hearing terminal
and synthesizes them to sign language image sequences. The
hearing terminal also consists of two modules: the speech
recognition module transcribes speech signals to texts and
sends them to the hearing impaired terminal; the speech
synthesis module receives the texts from the hearing impaired
terminal and synthesizes them to speech signals.

SLR takes sign language signals as input and outputs
corresponding texts. Hidden Markov Models (HMMs, [4]) are
used as the statistical models in the hand-talking system. Each
word is modeled by one HMM. For the signer-dependent (SD)
case the recognition accuracy of over 90% can be achieved
at the isolated word level. If we add language models to
the system, real-time continuous large-vocabulary SLR can
be implemented. However training the SD models for new
users needs lots of data to be collected. To alleviate this
problem we could train SI models using enough data from
large number of signers. Nevertheless collecting training data
is time consuming and very costly. Even the training data have
been collected, two problems still remain:

1) The models are difficult to converge because the data
of different signers vary significantly. Sometimes the
distinctions among the samples of the same sign from
different signers are even bigger than the distinctions
among the samples of different signs from the same
signer.
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2) The generalization ability is another problem. Well-
trained SI models may achieve acceptable performance
on new signers, but not perfect performance as achieved
by SD models, because the distributions of the SI models
are smooth.

The problems encountered above originate from that the
model parameters are fixed, that is, the models are one-size-
fits-all. If the models can be retrained using data of a new user,
problems can be solved. The explicit data collecting process
should be short considering the system’s usability. As a result,
the adaptation data can be collected by 3 ways:

1) Explicitly collecting small amount of labeled data be-
fore users first use the system. These data must be
representative since they are not only used to adapt
their corresponding models but also used to adapt other
models.

2) ”Implicitly” collecting labeled data when users manip-
ulate the system. The system gives the candidate result
list so that users could select the correct result when the
first candidate result is wrong. By this way large amount
of labeled data can be collected ”implicitly”.

3) Implicitly accumulating unlabeled data when users use
the system. All effective data can be stored in hard disks,
but these data are unlabeled.

Corresponding to the 3 data collecting strategies, adaptation
methods in supervised and unsupervised settings are proposed
in this paper, as shown in Fig. 1. Supervised adaptation in-
cludes two methods: adaptation using large amount of labeled
data that are collected by strategy 2 and adaptation using
small amount of data collected using by strategy 1. Unsu-
pervised adaptation methods use the unlabeled data collected
by strategy 3. In next two Sections we describe supervised and
unsupervised adaptation respectively.

Fig. 1. The adaptation framework. If labeled data are supplied, supervised
adaptation is executed, and if unlabeled data are supplied, unsupervised
adaptation is executed.

III. SUPERVISED ADAPTATION

A. Supervised Adaptation with MAP

The adaptation data collected by strategy 2 are labeled
manually, which could assure that each HMM has at least one

sample for adaptation. Consequently, Maximum a posteriori
(MAP, [5]) can be used to adapt SI models. MAP, which is
also called Bayesian adaptation, utilizes the prior distribution
of parameters and the limited adaptation data to estimate the
adapted parameters. If θ is the parameter to be adapted using
observation x, and its prior probability is p(θ), then the MAP
estimate of θ is:

θMAP = arg max
θ

(p(θ|x)) = arg max
θ

(p(x|θ) · p(θ)) (1)

The prior distribution is generally extracted from the SI
models. Previous experimental results show that for SLR the
means of HMMs’ mixture components are most important
so we only tailor the mean parameters. If conjugate priors
are used, a simple formula for MAP adaptation of the mean
parameter is obtained (2):

m̂j =
Lj

Lj + λ
m̄j +

λ

Lj + λ
mj (2)

where m̂j , m̄j and mj are the jth mean adapted, the jth

mean of the observed adaptation data and the jth mean of SI
models; λ is the weight of the prior and L is the occupation
likelihood of the adaptation data. If the amount of adaptation
data is small, that is, the value of Lj is small compared to λ,
m̂j will be close to SI mean mj . If the amount of adaptation
data is large, that is, the value of Lj is big compared to λ, m̂j

will be close to SI mean mj . If the amount of adaptation data
is large, that is, the value of Lj is big compared to λ, m̂j will
be close to m̄j . As a result, if the user collects enough data
using strategy 2, tailoring the SI models with MAP will obtain
SA models that are close to SD models in performance.

Though MAP can adapt SI models very well, it needs every
model has at least one adaptation sample. There are over 5000
words totally in Chinese sign language (CSL), so collecting
adaptation data is a tedious job. Therefore, we must adapt SI
models utilizing small amount of data. The data are collected
by strategy 1.

B. Combining AP and eMAP-VFS for Adaptation

Since we need reduce the number of labeled adaptation data,
we must mine the correlation among the words and select some
exemplars for them. If we have not enough data to adapt all
the means, we can first adapt exemplars of them, then the un-
adapted means can be tailored according to the priors (from
SI models) and the changes (from the adapted means). We
propose the enhanced maximum a posteriori and vector field
smoothing (eMAP-VFS) to adapt SI models with small amount
of exemplar data, of which the exemplar data are extracted
by affinity propagation (AP, [6]). The adaptation method is
illustrated in Fig. 2.

We use AP to cluster the HMMs’ means and detect patterns
of them, and each pattern is an exemplar. A preference value
and the similarity matrix whose elements are the similarity
measure between pairs of two means are inputted. Then two
real-valued messages between every two means are computed
iteratively until a set of exemplar means with high quality
emerges. This method can find exemplars with much lower
error and high speed compared with other methods.
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Fig. 2. Combining AP and eMAP/VFS for adaptation. First, exemplar means
are extracted, and then corresponding subset is formed. Based on this subset,
adaptation data are collected. SA models are generated using e-MAP/VFS.

Sign language data can be separated into 3 data streams:
position and orientation of two hands (P&O), left hand shape
(LHS) and right hand shape (RHS). These 3 data streams are
almost independent from each other, and contribute differently
to the recognition task. Before we compute the similarity
between two means we should first weigh the 3 data streams.
According to experiments implemented previously, the expe-
riential values of 1/4 : 1/4 : 1/2 are obtained corresponding
to P&O, LHS and RHS respectively. As a result, the similarity
s(i, j) between two means mi and mj can be obtained.

AP clusters the means through 3 steps, depicted in (3)-(5):

res (i, p) = s (i, p) − max
q �=p

{ava (i, q) + s (i, q)} (3)

ava (i, p) = min
{

0, res (p, p) +
∑

q �=i,p
max {0, res (q, p)}

}

(4)
ava (p, p) =

∑
q �=p

max {0, res (q, p)} (5)

where res(i, p), denoting responsibility, is the message sent
from mi to mp; ava(i, p), denoting availability, is the message
sent from mp to mi; ava(p, p), denoting self-availability.
AP begins with all availabilities initialized to zero, and s(p,
p) is set to the preference value that mp be chosen as an
exemplar. Then the messages are passed between all mean-
pairs. Algorithm will terminate after the fixed number of
iterations that the messages’ changes fall below a threshold,
or after the local decisions stay constant for some number of
iterations [6].

The outputs of AP are the exemplar means. These exemplar
means can represent a specified signer’s characters to some
extent. Each exemplar mean belongs to an HMM, that is,
corresponds to a word. We collect one sample of an word for
adaptation if the word’s HMM includes one exemplar mean
at least. Considering that the different exemplar means may
belong to the same HMM, the number of word included in the
adaptation data may be smaller than the number of exemplar
means. This can also reduce the amount of adaptation data.

The adaptation data do not cover all HMM models. Sup-
posing there are Ns samples in the adaptation data set, the
corresponding Ns HMMs can be adapted using MAP. The un-
adapted HMMs must be estimated by utilizing the prior in-
formation available (from the SI models), the adapted HMMs,
and the correlation among HMMs.

Supposing Ωsdenotes the HMM means set that each of them
has adaptation data available and Ωu denotes the HMM means
set that each of them has no adaptation data, the transfer

vectors of means in Ωs can be obtained by subtracting SI
means from their corresponding adapted means. We assume
that all the transfer vectors of Ωs ∪ Ωu form a smoothing
vector field. So the transfer vectors of means in Ωu can be
estimated using the transfer vectors of their neighbors in Ωs.

For each mi in Ωu, the estimation using MAP/VFS [7] is
obtained by (6):

m̃i = mi +

∑
mj∈NK

i
ωij∇mj∑

mj∈NK
i

ωij
(6)

where NK
i is a subset ofΩs, represents mi’s K nearest

neighbors in Ωs; ∇mj represents the transfer vector of mj

which equals to (m̂j − mj), where m̂j is defined the same as
in (2); ωij is the weight of mj to mi, and equals to s(i, j),
which indicates that the more similar mj is with mi, the more
information it supplies to mi.

The estimated mean m̃i is equal to the sum of its initial
value mi and the estimated transfer vector, which is obtained
by interpolation by weighing its nearest neighbors’ transfer
vectors. Selecting the number of K is a problem that must
be solved. The neighborhood relationship may change after
MAP/VFS adaptation. Previously the neighbors are obtained
in the SI means space only, not considering the SA means
space. Although the SA means space is not known completely,
it still can supply some information. We therefore propose the
e-MAP/VFS to solve this problem.

Fig. 3 shows the process of e-MAP/VFS. In (a), the target
mean mi selects 3 neighbors in the SI means space. Then (b)
shows that the estimated value for mi can be obtained with
its neighbors using MAP/VFS. At the SA means space, the
estimated m̃i finds the same number of neighbors. As can be
seen in (c), a new neighbor appears, which means that it is
still informational to mi though it is not very close to mi

in the SI means space. (d) shows that since a new exemplar
mean appears, it should be added to the neighbors at the SI
means space also. The procedure iterates until the number of
maximum iteration arrives or the neighbors do not change for
some number of iterations.

Fig. 3. The e-MAP/VFS, nearest neighbors are iteratively refined.

Though the two supervised adaptation methods can tailor
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the SI models to SA models, they both need adaptation data to
be labeled. On the other side huge amount of unlabeled data
can be collected when the user manipulate the hand-talking
system. Next Section we describe the unsupervised adaptation
method.

IV. UNSUPERVISED ADAPTATION

Large amount of unlabeled data can be accumulated when
users manipulate the hand-talking system. If these data can
be used for model adaptation, the adaptation can be executed
implicitly at the time users do not use the system.

The class of the unlabeled data are not known, so we
can not directly use them to adapt the models. Labeling the
unlabeled data accurately must be done first. Self-teaching
is an alternative, that is, labeling the unlabeled data with SI
models, retraining the models with the ”labeled” data. By self-
teaching the noise rate of the adaptation data set may be very
high, which will affect the subsequent adaptation process. We
must decrease the labeling error rate further.

By analyzing the principle of HMMs we find that HMMs
has the conditional independence assumption [8], that is, it
assumes that the observations belonging to the same state are
independent and identical distributed (i.i.d.). This assumption
may be appropriate sometimes, but not always appropriate.
Fig. 4 showed two signals, one of which represents a CSL
word. The left signal has 5 explicit states, thus can be
modeled well using a 5-state HMM. The right signal has no
explicit state, and can not be well modeled by any HMM. An
alternative to HMM is the polynomial segment model (PSM)
[8].

Fig. 4. Two signals representing two types of CSL words. The left signal
has 5 states explicitly, the right signal has no explicit states.

A PSM can be depicted as a triplet: {B,
∑

, N}, as shown
in Fig. 5. Given a CSL signal O = {o1, o2, . . . , oN}, its
corresponding PSM is:

O = ZNB + E (7)

where O is an N ×Dobservation matrix containing N frames
of D dimensional feature vectors; B is a (R+1)×D parameter
matrix of a Rth order trajectory model and E is the residual
matrix the same size as O; ZN is N × (R + 1) design matrix
for an Rth order trajectory model that normalizes the samples
of different frames to [0, 1].

Since HMM and PSM can model two types of signals
respectively, we can combine them to label the unlabeled data
such that the labeling right rate can be improved. The process
of combining HMM and PSM to label unlabeled data are

Fig. 5. Illustration for PSM. The observation sequence is assumed to be
generated by a state sequence with polynomial curve type.

shown in Fig. 6. After recognizing the unlabeled data with
HMMs and PSMs, two candidate sequences are obtained. Then
we compute the maximum and minimum of the two sequences
respectively, and use them to normalize the two sequences to
[0, 1]. After summing the two normalized sequences according
to the word order, we obtained the combined likelihood.
Using the combined likelihood to label the unlabeled data,
the labeling right rate can be improved. The ”labeled” data
together with the SI models are inputted to MAP, then SA
models are obtained.

Fig. 6. Combine HMM and PSM to accurately label the unlabeled data.

V. EXPERIMENTS

A. Supervised Adaptation

Two data gloves and a 3D-SPACE position trackers (with
a transmitter and three receivers) were used as data input
devices in the hand-talking system. The data gloves collect the
information of hand shape with a 18-dimensional data for each
hand, and position tracker collects the information of relative
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TABLE I
EXPERIMENTAL RESULTS OF OUR METHOD.

hand location and orientation with a 6-dimensional data for
each hand.

Experimental data consist of 6144 samples over 256 words
with each word having 24 samples (including 6 signers, each
signer with 4 samples). One signer was selected as the test
signer, and its first and fourth samples of all the words were
used as adaptation data set and test data set respectively. The
data of other 5 signers were used as the training data set. Cross
validation was conducted on 6 signers. The models were 3-
state Bakis HMMs, and each state’s observation distribution
was unimodal multivariate Gaussian.

The experimental results were summarized in TABLE I.
We can see that the recognition accuracy improvements be-
tween SI and P-MAP become larger with the increase of
preference value. This is because that when we increased the
preference value, the number of exemplars became larger, and
the corresponding number of adaptation data became larger.
When the preference value was -0.3, almost every HMM
had an adaptation sample, which meant that every HMM
had been adapted by MAP. When the preference value was
-0.7, the number of adaptation samples was about 180, which
meant that about 76 HMMs had no adaptation data and their
parameters were not adapted; However, if we use eMAP/VFS
to estimate the un-adapted means, the recognition accuracy
can be improved over 10% compared to P-MAP.

To verify the effectiveness of our method we also compared

TABLE II
COMPARISON BETWEEN WANG’S AND OURS.

our method with Wang’s method [9], and the result was
illustrated in TABLE II. Using Wang’s method the ratio
between the size of adaptation vocabulary and that of whole
vocabulary was 38.9%, and the improvement of recognition
accuracy was 10.2%. By our method only 6.6% ratio was
needed when the improvement was 8.9%. This meant that our
method can adapt the models more quickly compared with
Wang’s method.

B. Unsupervised Adaptation

To verify the unsupervised adaptation method, the test
person’s 4th group data were selected as test data, the other 3
groups data were selected as unlabeled adaptation data after
we hid their labels. The experimental results were shown in
TABLE III.

Rec (%) represented the recognition rate for test data, and
Unl (%) represented the labeling right rate for unlabeled
data. Self-teaching was selected as the compared method.
From TABLE III, we can see that after adopting PSMs to
help HMMs to label the unlabeled data, both the labeling
right rate and the recognition rate were improved. This was
because that by using combining method the right candidate’s
likelihood was taken ahead, as a result the labeling right rate
was improved a lot. Thus a more ’clean’ adaptation data set
was obtained, and the more ”clean” adaptation data set led
to better adaptation performance. These results showed that
introducing PSMs to the unsupervised framework was helpful.

VI. CONCLUSION

The hand-talking system suffers from the problem of drastic
decrease in performance when new users are unregistered in
the training set. This paper presents an adaptive framework to
solve this problem. Three data collecting strategies are pro-
posed, and supervised and unsupervised adaptation methods
are implemented using these data. Experimental results show
that the proposed framework can modify SI models to SA
models , which can better recognize new users’ data. The
evaluation result shows great prospects of applying adaptation
techniques to improve the hand-talking system’s robustness.

Though the framework solves the problem to some extent,
the amount of labeled data required are still large, which
affects the applicability of the system. Utilizing unlabeled
data to adapt SI models more effectively is a problem to
be explored. In the adaptation problem, SI models can serve
as the weak classifier, and large amount of unlabeled data
exist, which supply two prerequisites for the semi-supervised
learning [10] framework. Our future works will focus on uti-
lizing the semi-supervised learning to solve the unsupervised
adaptation problem.
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TABLE III
UNSUPERVISED ADAPTATION RESULTS.
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