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An Improved Phenomenological Model for Polymer

Desorption
Joanna Sooknanan and Donna Comissiong

Abstract—We propose a phenomenological model for the
process of polymer desorption. In so doing, we omit the usual
theoretical approach of incorporating a fictitious viscoelastic
stress term into the flux equation. As a result, we obtain a
model that captures the essence of the phenomenon of trapping
skinning, while preserving the integrity of the experimentally
verified Fickian law for diffusion. An appropriate asymptotic
analysis is carried out, and a parameter is introduced to represent
the speed of the desorption front. Numerical simulations are
performed to illustrate the desorption dynamics of the model.
Recommendations are made for future modifications of the
model, and provisions are made for the inclusion of experimen-
tally determined frontal speeds.

Index Terms—Phenomenological Model, Polymer, Desorption,
Trapping Skinning

I. INTRODUCTION

The study of polymers and their properties has been a

key area of investigation for experimentalists and theorists

in recent years. Material scientists are continually seeking

to capitalize on the designer qualities inherent in polymers.

Novel polymeric blends have proven advantageous for the

pharmaceutical, clothing and sealant industries. In order to

make accurate predictions for the industrial use of polymers,

there is a definite need for accurate mathematical models for

polymeric behavior. Owing to the complexity of the behavior

of polymeric materials, the mathematical modeling of such

systems is particularly challenging.

When a penetrant diffuses into a dry crosslinked poly-

meric network (i.e. polymer sorption), its molecules assume

new configurations in an attempt to accommodate incoming

penetrant molecules. This triggers a swelling process, which

transforms the polymer to a saturated “swelled”state. In con-

trast, a polymer already in its saturated “swelled”state has

the potential to lose solvent to its surroundings (i.e. polymer

desorption). As expected, this loss of solvent triggers the

reverse change of state in the polymer, which subsequently

resumes a semblance of its original dry configuration. We

note that the desorption process is not an exact reversal of

sorption. We remark that this is an overly simplified mode

of describing a complicated mechanical process, owing to

the nonlinear structure of polymeric chains. We do not take

kinetic or thermo-mechanical effects into consideration. In

the absence of experimental data, we base in our model

on the experimentally verified equations governing diffusion.
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However, in the face of such complexity, any simplified model

is a step towards attaining a better understanding of the

process, and is worthy of attention. It is a known fact that

penetrant transport in complex materials, such as polymers,

often deviates from the predictions of Fick’s law. Several

anomalies associated with mass uptake have been documented

in polymer sorption experiments [1]. Such features are often

termed anomalous or simply as non-Fickian.

Several attempts have been made to develop mathematical

models for anomalous diffusion in polymers. For anomalous

sorption, two main approaches are commonly utilized. The

first class of models are based on Fick’s law while attempting

to incorporate features of the experimentaily documented

glass-rubber polymer transition kinetics (see e.g. [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11]). Such phenomenological

formulations tend to be preferred by experimental polymer

scientists. In the second approach, Fick’s law is modified by

incorporating a viscoelastic stress term into the flux equation.

A variant of the linear Maxwell viscoelastic model is often

adopted to define a polymer stress relaxation time. This

parameter is then utilized to account for glass-rubber transition

dynamics in the swelling polymer (see e.g. [12],[13]). This

more theoretical approach has been adopted mainly by applied

mathematicians. For simplicity, and for comparison with the

existing models for polymer desorption to-date (see e.g. [14],

[15]), we will refer to the swelled saturated state as “rubbery”,

and the unswelled polymer state as “glassy”. The reader should

not however, that this is not a literal description of the process

at hand, and by no means should be interpreted as a pysical

phase change from a brittle glassy state to a flexible rubbery

state.

Much less attention has been given to the mathematical

modeling of polymer desorption. This could be a direct result

of the fact that experimental values for the velocity of the

rubber-glass transition front are not readily available in the

literature. Indeed, it is difficult to obtain such measurements

as a result of the complicated process of crystallization, which

inhibits the experimental probes utilized to measure transition

front speed. It should be pointed out that desorption is not

a simple reversal of the related sorption process. Anomalous

behavior is less varied and not easily detectable in the case

of polymer desorption. Experimental results often portray a

remarkable resemblance between desorption dynamics and

Fickian diffusive traits. It has also been verified that polymer

desorption is much faster than polymer sorption [16].

Owing to the absence of experimental data, it is difficult

to conceive a phenomenological model to describe polymer

desorption. As a result, most mathematical models developed
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to-date adopt a more theoretical approach by incorporating

a viscoelastic stress term into the flux equation, as done

previously for Case II polymer diffusion (see e.g. [14], [15]).

Numerical simulations obtained for polymer desorption mod-

els that utilize this approach at times exhibit sharp separation

fronts. We remark that this feature is discordant with the

experimental data presented in [1] and [16].

In this paper, we propose a phenomenological model for

polymer desorption based on Fick’s law, and a rate controlled

motion of the moving front separating the glassy and rubbery

regions. A simpler version of this model has been recently

conceived by Comissiong et al. [17]. In the absence of a stan-

dard expression for the speed of desorption front, we consider

concentrations for the glassy and rubbery states that depend on

a certain parameter. This parameter may be specified once a

particular expression for the frontal speed becomes available.

Therefore, our model provides a viable starting point for future

experimental studies on polymer desorption, as an appropriate

velocity expression can be easily incorporated.

The paper is organized as follows. A description of the

derived model is first presented. The analysis is based on a

pair of coupled partial differential equations together with

a moving, approximately Fickian boundary that separates

the glassy and rubbery regions. In light of experimental

observations [18], this is not an unreasonable approximation.

Since the system is not solvable by similarity solutions,

an integral method developed by Boley is used to obtain

asymptotic solutions. A preliminary test of validity of the

proposed model is implemented by determining whether the

model exhibits the traits of the experimentally documented

trapping skinning effect. This is done by considering the

relationship between accumulated flux and the force driving

desorption. In our numerical simulations, changes in external

concentration and permeability of the exposed end are utilized

to modify the driving force. For trapping skinning we would

expect a decrease in external concentration and an increase

in permeability to decrease the accumulated flux. This trend

is observed numerically with our polymer desorption model.

The underlying assumptions inherent in the model are duly

addressed. Numerical simulations illustrating polymer desorp-

tion dynamics are included. Finally, recommendations were

given to improve this model via boundary layer theory and

matched asymptotic expansions.

II. GOVERNING EQUATIONS

Initially the polymer is saturated with concentration Cinit.

The concentration of the external environment is denoted

by Cext where for desorption to occur Cext < Cinit. The

characteristic solute concentration that distinguishes the glassy

from the swollen state is denoted by C
∗
. In the dry-glassy state

the penetrant concentration Cg is such that Cg < C
∗
. In the

saturated state the penetrant concentration Cr is such that Cr

> C
∗
. The front position is denoted by s(t).

Fick’s law of diffusion is given by

J = −D(C)Cx , (1)

where J = mass flux, D(C) = molecular diffusion coefficient,

C = concentration, x = distance from boundary through

which solvent is free to move. Here and elsewhere, the

subscript x refers to a partial derivative with respect to the

variable x. There is a significant change in D(C) as the

polymer loses its solute and is transformed from the rubbery

to the glassy state [19].

To obtain a system amenable to asymptotic techniques

D(C) is taken to be piecewise constant. We note that this is a

widely accepted approximation in several models for diffusion

in polymers (see e.g. [14], [13], [15] and the cited references).

It is justified by the fact that differences within states are

negligible when compared with the difference between states.

Hence D(C) is modelled by taking an average over each phase

D(C) =







Dg, 0 ≤ C ≤ C
∗
(glassy)

Dr, C
∗

< C(rubbery)
. (2)

Combining (1) with the standard conservation law

Ct = −Jx , (3)

where the time is represented by t, we obtain the partial

differential equation for the concentration C

Ct = (D(C)Cx)x . (4)

The form of (2) the physical system is modeled as a two-state

problem with a moving boundary x = s(t) representing the

glass-rubber interface. Hence

Ct =







C
g
t = DgC

g
xx , x < s(t)

Cr
t = DrC

r
xx , x ≥ s(t)

(5)

The boundary condition at the front is given by

Cr(s(t), t) = C
∗
, t > 0 (6)

and the initial concentration is

C(x, 0) = Cinit, x > 0. (7)

The insulated far end is represented by

J(∞, t) = 0, t ≥ 0. (8)

At x = 0, we use

J(0, t) = K[Cext − C(0, t)], (9)

where K is a constant measuring the permeability of the

exposed boundary.

Using Fick’s Law we have

−D(C)Cx(0, t) = K[Cext − C(0, t)], (10)

which is the same as

Cx(0, t) = k[C(0, t) − Cext], (11)
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where k =
K

D
> 0. Upon solving the equation

∂C(0, t)

C(0, t) − Cext

= k∂x, (12)

we obtain

C(0, t) = Cext + m(t)ekx, (13)

where m(t) > 0 for all t > 0.

III. CONDITIONS ON m(t)

Since

C(0, 0) = Cinit , (14)

this implies that

C(0, 0) = Cext + m(0). (15)

This means that

m(0)ekx = Cinit − Cext. (16)

As

Cinit > Cext, ekx > 0, (17)

it follows that

m(0) > 0. (18)

Now consider the case t −→ ∞. Since

Lim
t−→∞

C(0, t) = Cext, (19)

taking limits as t −→ ∞ of (13) we obtain

Cext = Cext + Lim
t−→∞

m(t)ekx, (20)

and it follows that

Lim
t−→∞

m(t)ekx = 0. (21)

Also since ekx > 0, we conclude that

Lim
t−→∞

m(t) = 0 (22)

IV. SPEED OF THE FRONT

As the flux J and the solute concentration C are discontin-

uous across the front, the frontal speed is defined by

s′(t)[C]s(t) = [J ]s(t). (23)

Here [h]s(t) = h(s(t)+, t) − h(s(t)
−

, t) represents the jump

of h at s(t).

A. Small Time Behaviour

We now study the speed of the front by re-defining expres-

sions for the concentration in the glassy and rubbery states in

terms of fictitious initial and boundary conditions. These are

then solved using an integral method originally developed by

Boyle for standard diffusion problems and adopted by Edwards

[20] for use in his polymer desorption models. The method

is described as follows using the glassy region. The rubbery

region will follow an analogous procedure.

It is assumed that C
g
t = DgC

g
xx , x < s(t), holds for the

related function T g(x, t) in the entire semi-infinite domain

x > 0. This function T g(x, t) is assumed to satisfy an

unknown fictitious initial condition f i(x). It is also required

to satisfy the relevant model equations. This related function,

when restricted to x < s(t), gives the required solution for

Cg(x, t) [20].

B. Glassy Concentration

The diffusion equation C
g
t = DgC

g
xx , x < s(t) is assumed

to hold in the semi-infinite domain for some fictitious initial

boundary condition at x = 0, f i(x). This condition is fictitious

because the polymer is not glassy at t = 0. (Recall that

the polymer is initially saturated.) The solution of this partial

differential equation must satisfy condition (23), (7) and (8).

Let

Cg(x, t) = C(0, t) + T g(x, t), 0 < x < s(t), (24)

which is the same as

Cg(x, t) = Cext + m(t)ekx + T g(x, t) (25)

for 0 < x < s(t). Here, T g is defined by



































T
g
t = DgT

g
xx, x > 0, t > 0

T g(0, t) = 0, t > 0

T g
x (∞, t) = 0, t > 0

T g(x, 0) = f i(x), x > 0

. (26)

The solution of (26) is given by [21] to be

T g(x, t) =
1

√

4πDgt

∫

∞

0

f i(y)





e
−

(x−y)2

4Dgt

−e
−

(x+y)2

4Dgt



 dy, (27)

where

Cg(x, t) = Cext + m(t)ekx+

1
√

4πDgt

∫

∞

0

f i(y)

(

e−
(x−y)

2

4Dgt
−

e−
(x+y)

2

4Dgt

)

dy , (28)

for 0 < x < s(t).
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C. Rubbery Concentration

The diffusion equation Cr
t = DrC

r
xx , x > s(t) is assumed

to hold in the semi-infinite domain for some fictitious Dirichlet

boundary condition at x = 0, fb(t). This condition is fictitious

because the rubbery part occupies the region s(t) < x < ∞.

The solution of this partial differential equation must satisfy

condition (6), (23), (7) and (8).

We consider

Cr(x, t) = Cinit − T r(x, t), x > s(t). (29)

Here, T r is defined by



































T r
t = DrT

r
xx, x > 0, t > 0

T r(0, t) = fb(t), t > 0

T r
x (∞, t) = 0, t > 0

T r(x, 0) = 0, x > 0

. (30)

The solution of (30) is given by [21]

T r(x, t) = fb(t) +

∫ t

0

1
√

4π(t − τ)
∗

[∫

∞

0

−f ′

b(τ)(e−
(x−y)2

4Dr(t−τ) − e
−

(x+y)2

4Dr(t−τ) )dy

]

dτ.

(31)

The second integral on the right hand side of the equation can

be expressed as

∫ t

0





∫

∞

0
−f ′

b(τ)





e
−

(x−y)2

4Dr(t−τ)

−e
−

(x+y)2

4Dr(t−τ)



 dy





√

4πDr(t − τ)
dτ

= −fb(t) +
x

√
4πDr

∫ t

0

fb(τ)e−
x
2

4Dr(t−τ)

(t − τ)3/2
dτ . (32)

This leads to

Cr(x, t) = Cinit−

x
√

4πDr

∫ t

0

fb(τ)e−
x
2

4Dr(t−τ)

(t − τ)3/2
dτ (33)

for x > s(t)

D. The Fictitious initial and boundary terms f i and fb

1) Small time behavior: t → 0: From [20], the following

forms are assumed.

f i(x) = f i
0
, fb(t) = f b

0
, s(t) = 2s0t

n. (34)

where f i
0
, f b

0
and n are to be determined. Using (34) and

properties of erfc, the concentration in the rubbery state (33)

is found to be:

Cr(x, t) = Cinit−

x
√

4πDr

∫ t

0

f b
0
e
−

x2

4Dr(t − τ)

(t − τ)3/2
dτ (35)

for x > s(t). This is simplified to

Cr(x, t) = Cinit−

xf b
0√

4πDr

∫ t

0

exp

(

−
x2

4Dr(t − τ)

)

(t − τ)3/2
dτ (36)

This can be written in a more elegant form in terms of the

error function if we let

z =

√

x2

4Dr(t − τ)
, (37)

then

dz =
1

2

√

x2

4Dr

(t − τ)
−3
2 dτ

=⇒ (t − τ)
−3
2 dτ =

4

x

√

Drdz. (38)

We note that for the case τ = 0,

z =

√

x2

4Drt
. (39)

Now consider

τ = t =⇒ z = ∞. (40)

Substituting this into (36) we have

Cr(x, t) = Cinit −
4xf b

0

√
Dr

x
√

4πDr

∞
∫

q

x
2

4Drt

e−z2

dz. (41)

Writing this in terms of the error function, we obtain

Cr(x, t) = Cinit − f b
0
erfc(

x
√

4Drt
). (42)

Next, (6) allows us to express Cr at the front as

C
∗

= Cr(s(t), t)

= Cinit − f b
0
erfc

sot
n−

1

2

√
Dr

. (43)

For n < 1

2
, Cr(s(t), t) → Cinit, when t → 0, this would

imply Cinit = C
∗
. This is impossible as Cinit > C

∗
as the

polymer is initially saturated. Hence it follows that

n ≥
1

2
for small time behavior. (44)

Using (34) and properties of erfc, the concentration in the

glassy state (28) is simplified to give
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Cg(x, t) = Cext + m(t)ekx +
f i
0√
π

∫ x
√

4Dgt

−

x
√

4Dgt

e−z2

dz,

This may be expressed in terms of the error function as

Cg(x, t) = Cext + m(t)ekx + f i
0
erf

x
√

4Dgt
(45)

for 0 < x < s(t). At the front s(t), Cg is given by

Cg(s(t)
−

, t) = Cext + m(t)ekx + f i
0
erf

sot
n− 1

2

√

Dg

. (46)

However, since (44) n ≥ 1

2
as t → 0, for small time, it was

deduced that

Cg(s(t)
−

, t) → Cext + m(0)ekx (47)

At this point, there is sufficient information to justify (23)

which claims that the concentration is discontinuous at the

front.

We now prove that C (x, t) is discontinuous at the front

using the method of contradiction. Let us assume that C is

continuous at the front. Then

Cg(s(t)
−

, t) = Cr(s(t), t) = C
∗

(48)

and

Cext. + m(0)ekx = C
∗
. (49)

Therefore

Cext + Cinit − Cext = C
∗
, (50)

and this implies that

Cinit = C
∗
. (51)

This is impossible as Cinit > C
∗
. Hence C(x, t) is not

continuous.

Therefore we are justified in our choice of a discontinuity

of front concentration. This lack of continuity gives the des-

orption front in our model a measure of non-Fickian character.

It is note mentioning that the desorption models of Edwards

[20] assume continuous front concentration.

2) Large time behavior: t → ∞: From [20], the following

forms are assumed:

f i(x) = f i
∞

eAx, fb(t) = f b
∞

eB2t, s(t) = 2s
∞

tn, (52)

where f i
∞

, f b
∞

, A, B and n are to be found. Using the above

and properties of erf , the concentration in the glassy state

(28) may be simplified to

Cg(x, t) = Cext+m(t)ekx

+
f i
∞

eA2Dgt

√
π











eAx

∫

∞

−

x+2ADgt

√

4Dgt

e−z2

dz

−e−Ax

∫

∞

x−2ADgt

√

4Dgt

e−z2

dz











. (53)

Employing the erfc function, this can be rewritten as

Cg(x, t)= Cext+m(t)ekx

+
f i
∞

2
eA2Dgt





eAx erf c( −
x+2ADgt√

4Dgt
)

− e−Ax erf c(
x−2ADgt√

4Dgt
)



 (54)

for 0 < x < s(t).
A can be determined by taking the limit of (54) as t → ∞.

Using erf c(−w) = 2 − erf c(w), Cg can be written as

Cg(x, t) = Cext+m(t)ekx

+
f i
∞

2









2eA2Dgt(eAx − e−Ax)

+e−Ax+A2Dgt erf c(
−x+2ADgt√

4Dgt
)

− eAx+A2Dgterf c(
x+2ADgt√

4Dgt
)









. (55)

We note that

lim
t→∞

e

γx + γ2t

α2 erf c(
x + 2γt

2α
√

t
) =

lim
t→∞

2α
√

t
√

π(x + 2γt)
e
−

x2

4α2t . (56)

On taking large time limits, the erfc terms in (55) can be

simplfied as follows

lim
t→∞

e−Ax+A2Dg terf c(
−x + 2ADgt
√

4Dgt
) =

lim
t→∞

2
√

Dg t
√

π(−x + 2ADg t)
e
−

x2

4Dg t . (57)

Also

lim
t→∞

eAx+A2Dg terf c(
x + 2ADgt
√

4Dgt
) =

lim
t→∞

2
√

Dg t
√

π(x + 2ADg t)
e
−

x2

4Dg t . (58)

Finally, using Lim
t−→∞

m(t) = 0 , (55) reduces to

lim
t→∞

Cg(x, t) = lim
t→∞













Cext+

f i
∞









eA2Dgt(eAx − e−Ax)

+e
−

x
2

4Dgt (

√
Dgt

√

π(−x+2ADgt)

−

√
Dgt

√

π(x+2ADgt)
)





















.

(59)
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The limit in the above is finite provided that A = 0. For the

case where A = 0, (54) becomes

Cg(x, t)= Cext+m(t)ekx+
f i
∞

2







erf c( −
x

√

4Dgt
)

− erf c(
x

√

4Dgt
)






.

(60)

Using the identities erfc(z) = 1−erf(z) and erfc(−z) =
−erf(z), it follows that

Cg(x, t) = Cext+m(t)ekx + f i
∞

erf (
x

√

4Dgt
) (61)

and A = 0.

B can be determined by considering the concentration in

the rubbery state. Substituting fb(t) = f b
∞

eB2t into (33), we

obtain for x > s(t)

Cr(x, t) = Cinit−

f b
∞

eB2t

2









e
Bx√
Dr erfc

(

x + 2Bt
√

Dr
√

4Drt

)

+e
−

Bx√
Dr erfc

(

x − 2Bt
√

Dr
√

4Drt

)









, (62)

From (56) we have

lim
t→∞

e
B2t +

Bx√
Dr erfc(

x + 2Bt
√

Dr√
4Drt

) =

lim
t→∞

2
√

Dr t
√

π(x + 2Bt
√

Dr )
e−

x
2

4Dr t . (63)

Substituting this into the large-time limit of (62), we obtain

for x > s(t)

lim
t→∞

Cr(x, t) = Cinit−

f b
∞

2







lim
t→∞

e−
x2

4Dr t
2
√

Dr t
√

π(x+2Bt
√

Dr )

+ lim
t→∞

e
B2t− Bx√

Dr erf c(
x − 2Bt

√
Dr

√
4Drt

)






. (64)

Now

lim
t→∞

e−
x2

4Dr t
2
√

Dr t
√

π(x+2Bt
√

Dr )
= 0, (65)

so for lim
t→∞

Cr(x, t) to be bounded, either

B = 0, (66)

or

B2t −
Bx
√

Dr

< 0, i.e. x >
√

DrBt, (67)

and this is valid in the region x > s(t) (where s(t) =√
DrBt). These two cases are now examined.

3) CASE 1: B = 0: When B = 0, (62) becomes

Cr(x, t) = Cinit −
f b
∞

2







erfc(
x

√
4Drt

)

+erfc(
x

√
4Drt

)






, (68)

which is equivalent to

Cr(x, t) = Cinit − f b
∞

erfc

(

x
√

4Drt

)

. (69)

The large-time concentrations Cg and Cr are now analysed at

the front s(t). Substituting s(t) into (69) gives

Cr(s(t), t) = Cinit − f b
∞

erfc





s
∞

tn−
1

2

√
Dr



 . (70)

It follows that for n > 1

2
and t → ∞, Cr(s(t), t) → Cinit.

As Cr(s(t), t) = C
∗
, this would imply that C

∗
= Cinit. This

is not possible as C
∗

< Cinit. Hence we may conclude that

n ≤
1

2
(71)

for large time behavior when B = 0.

4) Case 2: s(t) =
√

DrBt: Utilizing (6) where

Cr(s(t), t) = C
∗

in (62) gives

Cr(s(t), t) = Cinit−

f b
∞

2
eB2t









e
B

√
DrBt
√

Dr erf c(
Bt

√
Dr + 2Bt

√
Dr

√
4Drt

)

+e
−B

√
DrBt
√

Dr erf c(
Bt

√
Dr − 2Bt

√
Dr

√
4Drt

)









,

(72)

which on simplifying gives

Cr(s(t), t) = Cinit−

f b
∞

2
eB2t









e
B

√
DrBt
√

Dr erf c(
3Bt

√
Dr√

4Drt
)

+e
−B

√
DrBt
√

Dr erf c(
−Bt

√
Dr√

4Drt
)









. (73)

Now taking t → ∞, we obtain

Cr(s(t), t) = Cinit −
f b
∞

2

[

erfc(
−Bt

√
Dr

√
4Drt

)

]

. (74)

Since erfc(−∞) = 2, as t → ∞ we have

Cr(s(t), t) = Cinit − f b
∞

= C
∗
. (75)

Using the expressions for Cr(s(t), t), Cg(s(t)
−

, t) to deter-

mine expressions for Cr
x(s(t), t) and Cg

x(s(t)
−

, t), taking lim-

its as t → ∞ and substituting in (23), we now determine the

validity of the expression for front position s(t) =
√

DrBt.

From (61)
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Cg(x, t) = Cext+m(t)ekx + f i
∞

erf (
x

√

4Dgt
). (76)

Substituting

x = s(t) =
√

DrBt (77)

and taking limits as t → ∞, we obtain

Cg(s(t)
−

, t) = Cext + f i
∞

. (78)

The derivation of Cg
x(s(t)

−
, t) is as follows:

Cg(x, t) = Cext+m(t)ekx + f i
∞

erf (
x

√

4Dgt
). (79)

Differentiating with respect to x yeilds,

Cg
x = f i

∞

2
√

π
e −

x2

4Dgt

(

1
√

4Dgt

)

+ km(t)ekx, (80)

Substituting for s(t) and taking large time limits gives

Cg
x(s(t), t) = 0. (81)

The partial differential of Cr with respect to x follows a

similar proceedure. After substituting for s(t), we get

Cr
x(s(t), t) = f b

∞

B
√

Dr

. (82)

Utilizing (75) in the above yields

Cr
x = (Cinit − C

∗
)

B
√

Dr

, (83)

The expressions for Cr(s(t), t), Cg(s(t)
−

, t), Cr
x(s(t), t),

Cg
x(s(t)

−
, t), and (6) are substituted into (23) to obtain

s′ {Cr(s(t)+, t) − Cg(s(t)
−

, t)} =

DgC
g
x(s(t)

−
, t) − DrC

r
x(s(t), t). (84)

Substituting for Cr(s(t), t), Cg(s(t)
−

, t), Cr
x(s(t), t),

Cg
x(s(t)

−
, t) and s′ we obtain

√

DrB
{

C
∗
− Cext − f i

∞

}

= −
Dr(Cinit − C

∗
)B

√
Dr

. (85)

This implies that

f i
∞

= Cinit − Cext . (86)

Using this expression in (61) and taking limits as t → ∞ and

s(t) =
√

DrBt gives

lim
t→∞

Cg(s(t)
−

, t) = Cext + f i
∞

lim
t→∞

erf (

√
DrBt

2
√

Dgt
), (87)

which on simplification leads to

lim
t→∞

Cg(s(t)
−

, t) = Cext + f i
∞

. (88)

On substituting for f i
∞

this reduces to

lim
t→∞

Cg(s(t)
−

, t) = Cext + Cinit − Cext, (89)

which means that

lim
t→∞

Cg(s(t)
−

, t) = Cinit. (90)

This allows us to conclude that Cinit < C
∗
. However this

is not true as for desorption Cinit > C
∗

(as the polymer

is initially saturated). Clearly, this second case is unrealistic.

Hence B = 0 and n 6
1

2
. It follows that the speed of the

front behaves like

tn−1 =











n >
1

2
t → 0

n 6
1

2
t → ∞

(91)

V. DEPENDENCE OF THE MOVING FRONT ON PROBLEM

DATA

We now analyse the behavoir of the moving front when

n =
1

2
. This choice for n has been justified previously.

5) Small time behavior: From (34) the expression for the

front position s(t) becomes

s(t) = 2s0

√
t. (92)

Substituting this expression into (42) we obtain

C
∗

= Cr(s(t), t) = Cinit − f b
0
erfc

s0
√

Dr

. (93)

This may be rearranged to obtain

f b
0

=
Cinit − C

∗

erfc(
s0

√
Dr

)
. (94)

We note that in this model, the concentration in the glassy

phase, Cg , is not continuous. Since there is no specific

expression for s′(t), clearly f i
0

cannot be explicitly determined,

and is therefore expressed in terms of s0. We therefore need

to establish bounds for f i
0
.

6) Conditions on f i
0
: The discontinuity is concentration at

the front may be expressed as

[C]s(t) = Cr(s(t)+, t) − Cg(s(t)
−

, t) (95)

which on substituting (93) and (61) is equivalent to

[C]s(t) = Cinit − f b
0
erf c(

s0
√

Dr

)−

Cext − m(t)e2ks0

√

t − f i
0
erf (

s0
√

Dg

). (96)

Also, the partial differentials for Cg and Cr with respect to x

are respectively

Cg
x(s(t)

−
, t) = kme2ks0

√

t +
f i
0

√

Dgtπ
e

−s2

0

Dg (97)
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and

Cr
x(s(t), t) =

f b
0√

Drtπ
e

−s2

0

Dr . (98)

On substituting these expressions in (23) given by

s′(t)[C]s(t) = [J ]s(t)

= DgC
g
x(s(t)

−
, t) − DrC

r
x(s(t), t), (99)

the following expression is obtained

s0







Cinit − f b
0
erfc(

s0
√

Dr

) − Cext

−m(t)e2ks0

√

t − f i
0
erf (

s0
√

Dg

)






=

Dg













√
tkme2ks0

√

t +
f i
0
e

−s2

0

Dg

√

Dgπ













−
Drf

b
0
e

−s2

0

Dr
√

Drπ
. (100)

This can be rearranged to give

f b
0











s0 erf c(
s0√
Dr

) −

√
Dre

−s2

0

Dr
√

π











+Dg

√
tkme2ks0

√

t

+f i
0













√

Dge

−s2

0

Dg

√
π

+ s0 erf (
s0
√

Dg

)













=

s0

[

Cinit − Cext − m(t)e2ks0

√

t
]

. (101)

As

f b
0

=
Cinit − C

∗

erfc(
s0

√
Dr

)
, (102)

we obtain

Cinit − C
∗

erf c(
s0

√
Dr









√

Dr

π
e

−s2

0

Dr

−s0erfc(
s0

√
Dr

)









+

s0(Cinit − Cext − m(t)e2ks0

√

t)

= f i
0











√

Dg

π
e

−s2

0

Dg + s0 erf (
s0
√

Dg

)











+ Dg

√
tkme2ks0

√

t

(103)

which is equivalent to

√
Dre

−

s2

0

Dr (Cinit − C
∗
)

erf c(
s0√
Dr

)

−f i
0















√

Dge

−s2

0

Dg

+s0

√
π erf (

s0
√

Dg

)















−s0

√
π(Cext + m(t)e2ks0

√

t − C
∗
)

−
√

tπDgkme2ks0

√

t = 0. (104)

In this equation s0 and f i
0

are the unknowns. f i
0

is a parameter

that controls s0, i.e., s0 is a function of f i
0
. By varying s0,

the existence of solutions of (104) is shown and a bound is

established for f i
0
.

Let

g(s0) =

√
Dre

−

s2

0

Dr (Cinit − C
∗
)

erf c(
s0

√
Dr

)

−f i
0











√

Dge

−s2

0

Dg + s0

√
π erf (

s0
√

Dg

)











− s0

√
π(Cext + m(t)e2ks0

√

t − C
∗
)

−
√

tπDgkme2ks0

√

t . (105)

For s0 = 0, (105) becomes

g(0) =

√

Dr

Dg

(Cinit − C
∗
) −

√
πt
√

Dgkm(t) − f i
0
. (106)

If we assume that

f i
0
≤

√

Dr

Dg

(Cinit − C
∗
) −

√
πt
√

Dgkm(t),

and substitute this expression into (106), we obtain

g(0) > 0. (107)

We now proceed to analyse (105) for a different value of

f i
0

and s0.

Let f i
0

> Cinit − Cext and s0 → ∞. (108)

Substituting s0 → ∞ into (105), we have

− f i
0
s0

√
π − s0

√
π(Cext + m(t)e2ks0

√

t − C
∗
)

−
√

tπDgkme2ks0

√

t = lim
s0→∞

g(s0), (109)

which may be rearranged as
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−s0

√
π(Cext + m(t)e2ks0

√

t − C
∗
)

−
√

tπDgkme2ks0

√

t − g(s0) = f i
0
s0

√
π. (110)

Substituting for f i
0
, we obtain

−s0

√
π(Cext + m(t)e2ks0

√

t − C
∗
)

−
√

tπDgkme2ks0

√

t − g(s0) > (Cinit − Cext) s0

√
π, (111)

which gives

g(s0) + s0

√
π(Cinit − C

∗
+ m(t)e2ks0

√

t)

+
√

tπDgkm(t)e2ks0

√

t
6 0. (112)

Since

lim
s0→∞

[

s0

√
π(Cinit − C

∗
+ m(t)e2ks0

√

t)
]

> 0 (113)

and

lim
s0→∞

[√
tπDgkm(t)e2ks0

√

t
]

> 0. (114)

We conclude that

g(+∞) < 0. (115)

Using (107) ,(115) and assuming g(s0) is continuous for all

values of s0, it follows that there is at least one value of s0

that satisfies (104). This value occurs when

f i
0
∈

[

Cinit−Cext,
√

Dr

Dg

(Cinit − C
∗
)

−
√

πt
√

Dgkm(t)

]

, (116)

assuming that

Cinit − Cext 6

( √

Dr

Dg

(Cinit − C
∗
)

−
√

πtDgkm(t)

)

. (117)

Alternatively, given

f i
0

>

√

Dr

Dg

(Cinit − C
∗
) −

√

πtDgkm(t), (118)

and substituting this expression into (106), it follows that

g(0) < 0. (119)

Furthermore

f i
0

> Cinit − Cext and s0 → ∞, (120)

and substituting in (105) we see that,

g(∞) > 0. (121)

Hence when

f i
0
∈

[ √

Dr

Dg

(Cinit − C
∗
)−

√

πtDgkm(t), Cinit − Cext

]

(122)

such that

Cinit − Cext >

( √

Dr

Dg

(Cinit − C
∗
)

−
√

πtDgkm(t)

)

, (123)

and when we assume that g(s0) is continuous for all values

of s0, we may conclude that there is at least one value of s0

that satisfies (104)

Hence for

f i
0
∈













min

(

Cinit − Cext,
√

Dr

Dg

(Cinit − C
∗
)−
√

πtDgkm(t)

)

,

max

(

Cinit − Cext,
√

Dr

Dg

(Cinit − C
∗
) −

√

πtDgkm(t)

)













,

(124)

(104) always has a solution. This gives us the bounds for f i
0
.

7) Large time behavior t → ∞: From (70) we see that

f b
∞

=
Cinit − C

∗

s
∞

erf c(
s0

√
Dr

)
, (125)

which coincides with the previous result for small-times f b
0

(94). Thus, the equations for both Cg and Cr are equal in the

small and large time limits, and s
∞

satisfies (105) when

f b
0
≡ f b

∞

and f i
0
≡ f i

∞

. (126)

We see that equation (105) has a solution s
∞

= s0, which is

represented by s̄. Since there is no specified expression for the

speed of the front, f i cannot be determined and (124) gives

the bounds of f i. Hence s appears as a function of f i.

VI. NUMERICAL METHOD

Let xj = xj−1 + h, j = 1, . . . , N − 1, x0 = 0, xN = L,

be the spatial grid in [0, L] for a sufficiently large sample size

L. For the interval [0, T ], T > 0 we consider the time grid

tj , j = 0, . . . , M, t0 = 0, tj − tj−1 = ∆t, j = 1, . . . , M.

At each point in time tn, s(tn) ≃ sn is the corresponding

spatial point, that is sn = xi∗
n

for some i∗n ∈ {1, . . . , N}.
We utilize Cn+1

h = (Cn+1

h,g , Cn+1

h,r ) with Cn+1

h,g = (Cn+1

j,g , j =

1, . . . , sn+1), C
n+1

h,r = (Cn+1

j,r , j = sn+1, . . . , N − 1) to

represent the discrete approximations of Cg and Cr thereby

defined as

Cn+1

h,g = Cn
h,g + ∆tDgD2,xCn+1

h,g ,

Cn+1

h,r = Cn
h,r + ∆tDrD2,xCn+1

h,r .

(127)

We use the same notation as (127) where D2,x denotes

the second-order finite-difference operator. A moving grid

criterion is included in the finite difference scheme. This is



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:3, 2009

230

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2009 10

obtained by an explicit discretization of the front equation

(23) as

sn+1 = sn + ∆t
[J ]sn

[C]sn
+ γ

, (128)

where γ is an arbitrarily small positive constant, and

[J ]sn
= −DrD−xCn

i∗
n
+1

+ DgD−xCn
i∗
n

,

[C]sn
= C

∗
− Cn

i∗
n
−1

.

Here, the backward finite-difference operator is denoted by

D
−x.

As sn+1 ∈ [xℓ, xℓ+1] for some given ℓ, the transition point

xi∗
n+1

is defined as

xi∗
n+1

= xℓ if sn+1 ≤ (xℓ + xℓ+1)/2 , else xi∗
n+1

= xℓ+1.

(129)

Equations (127) and (128) are complemented by the discrete

boundary conditions

D+xCn+1

0,g = k(Cn+1

0,g − Cext), Cn+1

i∗
n+1,r

= C⋆, D
−xCn+1

N,r = 0 (130)

where the initial condition is represented as

C0

j = Cinit . (131)

As previously discussed, we do not have an explicit expression

for the front velocity to the facilitate the numerical compu-

tation of Cn+1

h,g defined in (127). We therefore replace the

implicit equation

Cn+1

i⋆

n+1−1
= Cn

i⋆

n+1−1
+ ∆tDgD2,xCn+1

i⋆

n+1−1
(132)

with an explicit formulation. In this case we consider

Cg(s(tn+1)−) ≃
∑

i<i∗
n+1

αiC
n+1

i , with αi ∈ [0, 1] and

∑

i

αi = 1.

VII. NUMERICAL RESULTS

Several numerical calculations were carried out. In this

paper we present our numerical results for the following

parameters:

C∗ = 0.7, Dr = 1.0, Dg = 0.4, L = 4,

Cext = 0.3, ∆t = 1 ∗ 10−4, h = 0.027 (133)

In Figure 1, we show a graph of the concentration for

various times. The general shape of the concentration curves is

similar to the experimentally obtained desorption curve s

shown in [1]. As expected, there is a distinct change in gradient

of these curves after the critical concentration C
∗

has been

crossed. By varying the magnitude of C
∗
, the exact position

of the transition to the glassy state may be altered. The ratio
Dg

Dr

may also be modified to regulate the transition from the

saturated rubbery state to the dry glassy configuration.

During the desorption process, another phenomenon (be-

sides literal skinning) called trapping skinning, can occur.

In trapping skinning, an increase in the force driving the

desorption – by decreasing the external concentration or

increasing the permeability of the exposed end [20] – will

actually decrease the accumulated flux through the boundary.

It should be noted that the lower diffusion coeffcient in the

glassy skin (from literal skinning) is not adequate to describe

such behavior.

We now consider the trapping skinning effect. As explained

by Edwards [14], the driving force for desorption can be

enhanced by decreasing the external concentration Cext or

by increasing k – the permeability of the exposed end. The

trapping skinning effect causes an increase in the driving force

to decrease the accumulated flux for small times.

We set Cext = 0.0, increase this to Cext = 0.1 and

then to Cext = 0.4. The numerically calculated values of

the accumulated flux are then plotted against time. Figure 2

shows that although the driving force and accumulated flux are

greatest when Cext = 0.0, this graph is similar to the graph

for Cext = 0.1, and the graphs can be superimposed for small

times.

Figure 3 shows the graphs of accumulated flux against time

for k = 100, 300 and 600. On comparison of the graphs, it is

observed that although the driving force and accumulated flux

are smallest when k = 100, there is not much change in the

graphs when k and hence the driving force is increased for

k = 300 and k = 600. In fact, these two graphs are almost

superimposed for t > 1
It should be noted that the scaling of the parameters is

based on pure intuition, as no experimental data is available

for direct testing of the model. Added to this, restrictions on

numerical stability of the scheme prevents extensive testing

with widely varying parameters. Although these may seem

to be enormous limitations, and a discredit to our model,

as we base our model on tested and experimentally verified

equations governing diffusion in polymers, we are confident

that our model can act as a stepping stone towards a more

comprehensive study of desoprtion. We wish to remind the

reader that to the best of our knowledge, no experimentalists

have developed suitable equipment to measure the speed of

the desorption front. Indeed, this would be essential for the

proper validation of our model. However, such experimental

verification is both beyond the scope of this present study and

the capability of polymer experimentalists to-date.

VIII. DISCUSSION OF NUMERICAL RESULTS

Trapping skinning is akin to anomalous diffusion in the

sense that both represent unusual diffusion phenomena. An

increase in the force driving desorption should naturally reflect

an increase in the accumulated flux. However, in trapping

skinning the reverse occurs, and an increase in the driving

force results in a decrease in the accumulated flux. This is

thus contrary to expectations and cannot be explained solely

by the lower diffusion coefficient of the encapsulating glassy

skin formed due to literal skinning.

According to our analysis, under certain conditions, as Cext

increased – and hence the driving force for desorption de-

creased – the accumulated flux increased. Figure 1 shows that

the graphs of Cext = 0.0 and Cext = 0.1 can be superimposed

for small times. A decrease in the external concentration and
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Fig. 2. Illustration of the trapping skinning effect: Varying the external
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hence an increase in the driving force had little effect on the

accumulated flux thus illustrating the trapping skinning effect.

In addition, trapping skinning also appeared when we con-

sidered the behavior of k [14]. Edwards noted that an increase

in k – the permeability of the exposed boundary – would

increase the driving force. According to Figure 3, an increase

in k – and hence the driving force – from 300 to 600 resulted

in little change in the accumulated flux. However, the trapping

skinning effect was not deduced when k = 100. There also

appeared to be less of an effect when we considered changes

in the driving force due to k as opposed to Cext. We note

that a thorough investigation into these observations cannot

be accomplished without adequate experimental support, and

to the authors’ knowledge, such empirical evidence is not

currently available.

We wish to make it clear that at the current stage of

development, the polymer desorption model outlined does not

attempt to offer any explanation of the physical mechanisms

underlying the trapping skinning effect. However it is no-

table that the general shape of our numerically determined

polymer desorption curves are similar to those obtained from

experimental data [1], [16], [22], [23]. The method employed

to obtain an expression for front speed serves our purpose,
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Fig. 3. Illustration of the trapping skinning effect: Varying the permeability
constant

at least until experimentalists manage to obtain an analytical

expression for the speed of the desorption front.

IX. CONCLUSION

The phenomenological model considered was an extension

of one by Comissiong et al [17], in which a more practical

boundary condition - a radiation condition - was applied to

the exposed end. The ensuing model consisted of a pair of

coupled partial differential equations with a moving, approxi-

mately Fickian front separating the glassy and rubbery regions.

Since this system was not solvable by similarity solutions,

an integral method was used to obtain asymptotic solutions.

Since the expression for the front speed is given in terms

of a parameter, the model can also be adapted easily should

the experimentalists come up with an analytical expression or

value.

One of the basic assumptions used in the model was the

treatment of the polymer as a one dimensional object. Though

this assumption was justified in [24], by neglecting changes in

the size of the polymer as it is being desorbed, this assumption

appeared intuitively unrealistic. However, according to Samus

and Rossi [1], this one dimensional approach may be deemed

appropriate as most of the experimental work undertaken on

diffusion in polymers used either films or samples in which

the thickness was significantly smaller than the length or the

width.

Assumptions were also made about the behavior of the dif-

fusion coefficient. There was a critical transition concentration

C
∗

at which the polymer changed state from rubbery to glassy,

and this was built into the definition of D(C). The differ-

ence within states were assumed negligible when compared

with difference between states. According to Hui and Wu

[19], these assumptions are all consistent with experimental

observations. Hence we are justified by taking D(C) to be an

average over each polymer phase. Sanopoulou and Petropoulos

(1999) observed, on studying desorption processes, a close

similarity in shape between Fickian and non-Fickian desorp-

tion curves. Thomas and Windle in [10] also remarked that the

process of penetrant desorption from a plasticised rubber is
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expected to have Fickian characteristics. Hence the governing

equation for the position of the front we used was a Fickian

one s(t) = 2s0

√
t.

In the analysis for small times, it was noted that if continuity

was imposed to the concentration, then for n >
1

2
, C⋆ = Cext.

This was of course not possible for desorption. Hence the

concentration was found to be discontinuous at the front which

was one of the model assumptions. We claim that this lack of

continuity contributes to give the front a certain non-Fickian

character. Based on experimental results, Samus and Rossi [1]

described the “existence of two regimes for desorption: an

initial fast regime followed by a very slow desorption regime

whose onset depends on the temperature of the experiment”.

According to Bagley and Long [23],

“The sorption and desorption for this rapid initial stage follow

Fick’s law ...The second, slow stage of sorption and desorption

does not obey Ficks law”. Hence our expression for front speed

appears reasonable until experimentalists can agree upon an

analytical expression for the speed of the front.

While the model illustrates the rough characteristics of the

trapping skinning effect, there was no provision in the formu-

lation to account for for the encapsulating glassy skin that has

been observed experimentally (almost instantaneously) at the

start of the desorption process. This skin should slow down

the process of desorption. This is the subject of ongoing work,

and is briefly outlined here.

Two boundary layers may be introduced into the model –

one inserted near the exposed end, x = 0 and the other (which

may be either an interior or corner layer) placed near the

moving boundary x = s(t). The definitions of concentration

at the front and the boundary conditions remain the same and

will assist in the matching process. The boundary Layer at

x = 0 may be found as follows. Let the thickness of the

initial glassy skin be η. (This can be found experimentally).

It is also assumed that 0 < ǫ << 1. According to [25], the

diffusion coeffcient in the glassy skin is much lower than in

the rubbery region and can be written as Dgg = D0ǫ, where

D0 is a constant [15].

The problem at x = 0 is reduced to solving C
g
t (0, t) =

D0ǫC
g
xx(0, t) subject to Cg(0, t) = Cext where t > 0, (so

there is always a glassy skin of thickness η), and the radiation

condition is applied at x = η i.e. Cg(η, t) = Cext + m(t)
ekx. Using matched asymtotic expansions, we may assume

that there is a boundary layer at x = 0, Cgg(ζ, t) = Cg(0, t),

and lim
ζ→∞

Cgg(ζ, t) = lim
x→o

Cg(0, t) = Cext where ζ =
x

ǫα

and α is a constant to be determined. The moving boundary

layer at x = s(t) may be either an interior or a corner layer.

However due to the discontinuous conditions imposed at the

front, an inner layer can be assumed to exist at s(t). Since

the concentration at the front is discontinuous, we have to

match the solutions of Cr[s(t), t] = C
∗

and Cg[s(t), t]. The

problem at x = s(t) can therefore be reduced to solving

C
g
t (x, t) = D1ǫC

g
xx(x, t) in the domain 0 6 x 6 s(t) with a

boundary layer near s(t), where Cg(η, t) = Cext + m(t)ekx

and Cg(s(t), t) = C
∗
.

We conclude by saying that our model hints at but did not

examine the possibility of boundary layers in the model. This

naturally led to recommendations for yet a further evolution

of the Comissiong et al. model using asymptotic techniques

to examine the existence and type of these boundary layers.

Though this model appears amenable to changes, with more

research being done in polymer diffusion, the real test will be

how well the model stands up to experimental data, when it

becomes available.
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