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Abstract—In the present study the efficiency of Big Bang-Big 

Crunch (BB-BC) algorithm is investigated in discrete structural 
design optimization. It is shown that a standard version of the BB-BC 
algorithm is sometimes unable to produce reasonable solutions to 
problems from discrete structural design optimization. Two 
reformulations of the algorithm, which are referred to as modified 
BB-BC (MBB-BC) and exponential BB-BC (EBB-BC), are 
introduced to enhance the capability of the standard algorithm in 
locating good solutions for steel truss and frame type structures, 
respectively. The performances of the proposed algorithms are 
experimented and compared to its standard version as well as some 
other algorithms over several practical design examples. In these 
examples, steel structures are sized for minimum weight subject to 
stress, stability and displacement limitations according to the 
provisions of AISC-ASD. 
 

Keywords—Structural optimization, discrete optimization, 
metaheuristics, big bang-big crunch (BB-BC) algorithm, design 
optimization of steel trusses and frames. 

I. INTRODUCTION 
N general, the optimum design of a steel structure is an 
attempt to find the best combination of design variables that 

results in a minimum weight or cost design of the structure. 
Meanwhile, for practical applications the optimum design 
should satisfy a set of predefined constraints imposed 
according to a given code of practice. In general, optimum 
design of skeletal structures (either frame or truss structures) 
can be divided into three main categories as sizing, shape, and 
topology optimization. In sizing optimization the cross 
sectional areas of structural members are considered as design 
variables. This can further be divided into two subcategories 
in terms of the nature of the design variables employed: 
continuous and discrete. In continuous sizing optimization any 
positive value can be assigned to cross sectional areas of 
elements.  However,  this  is  usually   not   the   case   in   
practical applications, where structural members should be 
adopted from a set of available sections. The latter is 
addressed to discrete sizing optimization.  

The two well-known categories of traditional structural 
optimization methods are mathematical programming [1] and 
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optimality criteria [2, 3] approaches. The main shortcomings 
of traditional design optimization techniques are that these 
techniques are gradient-based approaches and thus typically 
work on the basis of continuous design variables. 
Additionally, computing the gradients of highly nonlinear 
objective functions of practical instances becomes another 
obstacle while working with the traditional techniques. The 
most recent category of structural optimization techniques is 
referred to as non-traditional stochastic search methods or 
metaheuristics. These algorithms, such as genetic algorithms 
(GAs), particle swarm optimization (PSO), ant colony 
optimization (ACO), etc., are typically nature inspired 
techniques, which borrow their working principles from 
natural phenomena [4]. Unlike traditional optimization 
techniques, metaheuristic algorithms do not perform a 
gradient based search and are able to handle both discrete and 
continuous design variables. Additionally, the stochastic 
nature of metaheuristics makes it more probable to find a near 
optimum solution (if not the global optimum) even for 
complicated design optimization problems. Since the 
optimization approaches based on metaheuristics are robust 
and quite successful in finding the optimal solutions, these 
algorithms can efficiently be employed for solving practical 
structural optimization problems. Nowadays, there are a large 
number of such metaheuristic algorithms available in the 
literature. The state-of-the-art reviews of these algorithms as 
well as their applications in structural design optimization 
problems can be found in [5-7]. 

Big bang–big crunch (BB–BC) algorithm is a novel 
metaheuristic optimization method based on the BB–BC 
theory of the universe evolution [8]. Due to its competitive 
performance and ease of use, the BB-BC technique quickly 
became one of the most popular algorithms of the recent years 
[9-18]. Afshar and Motaei [9] used the BB-BC to find the 
optimal solution of large scale reservoir operations problem. 
Tang et al. [10] used the technique for parameter estimation in 
structural systems. The first application of the BB-BC for 
optimum design of skeletal structures was carried out by 
Camp [11]. Therein, the optimum design of planar and spatial 
truss structures was performed using a modified variant of the 
technique. To enhance the efficiency of the BB–BC, he 
proposed a weighting parameter to control the influence of 
both the center of mass and the current global best solution on 
generating new candidate solutions. Additionally, a 
multiphase search strategy was utilized to increase the quality 
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of solutions. The study evinced efficiency of the BB-BC in 
comparison to other metaheuristics, such as GAs, PSO, and 
ACO. Kaveh and Abbasgholiha [12] used the Camp’s strategy 
of generating new candidate solutions for optimum design of 
planar steel sway frames. Recently, Lamberti and Pappalettere 
[13] introduced an improved BB-BC algorithm for weight 
minimization of truss structures and reported promising results 
using four benchmark truss optimization instances. Kaveh and 
Talatahari [14-16] developed hybrid variants of the BB-BC 
for design optimization of different types of skeletal 
structures. In addition, Kaveh et al. [17] employed a hybrid 
BB-BC algorithm for optimum seismic design of gravity 
retaining walls. A recent performance evaluation of the BB-
BC algorithm was carried out by Kazemzadeh Azad et al. 
[18], where efficiency of the method in benchmark 
engineering optimization problems is investigated. 

In the present study BB-BC algorithm is employed for 
discrete size optimum design of steel truss and frame 
structures. It is shown that a standard formulation of the BB-
BC algorithm may sometimes fail to provide acceptable 
solutions to discrete sizing problems in structural 
optimization. The observed deficiencies of the algorithm are 
attributed to ineffective manipulation of the two search 
parameters; namely, search dimensionality and step size. 
Reformulations of the BB-BC algorithm are then proposed, 
where the formula used by the standard algorithm for 
generating new candidate solutions around the center of mass 
is simplistically yet efficaciously reformulated, resulting in the 
so-called modified BB-BC (MBB-BC) and exponential BB-
BC (EBB-BC) variants for truss and frame type structures, 
respectively. The performances of the proposed algorithms are 
experimented and compared to its standard version as well as 
some other metaheuristic techniques using several practical 
design examples. In these examples the steel trusses and 
frames are sized for minimum weight subject to stress, 
stability and displacement limitations according to the 
provisions of AISC-ASD [19]. The numerical results confirm 
the efficiency of the proposed approaches in practical design 
optimization of steel structures. The outline of the paper is as 
follows. The second section includes a detailed statement of 
the optimization problem for skeletal steel structures based on 
AISC-ASD [19] specification. In the third section, the steps 
involved in implementation of a standard BB-BC algorithm 
are outlined. In the fourth section the observed deficiencies of 
the standard BB-BC algorithm in discrete design optimization 
of steel structures are discussed. In the fifth section the 
proposed reformulations of BB-BC algorithm (i.e., MBB-BC 
and EBB-BC) are discussed in detail. The performance 
evaluations of the proposed algorithms thorough numerical 
examples are carried out in the sixth section. The last section 
of the paper covers the concluding remarks. 

II.  PRACTICAL DESIGN OPTIMIZATION OF SKELETAL STEEL 
STRUCTURES 

For a steel structure consisting of mN  members that are 

collected in dN  member groups, the design optimization 
problem according to AISC-ASD [19] can be formulated as 
follows.  

The objective is to find a vector of integer values I  (Eq. 1) 
representing the sequence numbers of steel sections assigned 
to dN  member groups 
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where iA  and iρ  are the length and unit weight of the steel 

section adopted for member group i, respectively, tN  is the 

total number of members in group i, and jL  is the length of 

the member j which belongs to group i.  
The members subjected to a combination of axial 

compression and flexural stress must be sized to meet the 
following stress constraints: 
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If the flexural member is under tension, then the following 

formula is used instead: 
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in Eqs. (3-6), yF  is the material yield stress, and 

)/( APfa =  represents the computed axial stress, where A 
is the cross-sectional area of the member. The computed 
flexural stresses due to bending of the member about its major 
(x) and minor (y) principal axes are denoted by bxf  and byf , 

respectively. exF ′  and eyF ′  denote the Euler stresses about 

principal axes of the member that are divided by a factory of 
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safety of 23/12. aF  stands for the allowable axial stress under 
axial compression force alone, and is calculated depending on 
elastic or inelastic bucking failure mode of the member using 
Formulas 1.5-1 and 1.5-2 given in AISC-ASD [19]. The 
allowable bending compressive stresses about major and 
minor axes are designated by bxF  and byF , which are 

computed using the Formulas 1.5-6a or 1.5-6b and 1.5-7 given 
in AISC-ASD [19]. It is also required that the computed shear 
stresses ( vf ) in members are smaller than the allowable shear 

stresses vF( ) as formulated in Eq. (7) where vC  is referred to 
as web shear coefficient. 
 
                 yvvv FCFf 40.0=≤                           (7) 

  
Slenderness limitations are imposed on all members such 

that maximum slenderness ratio ( rKL /=λ ) is limited to 
300 and 200 for tension and compression members, 
respectively.  

As for the displacement constraints, the maximum lateral 
displacements are restricted to be less than H/400, and upper 
limit of story drift is set to be h/400 for frame type structures, 
where H is the total height of the frame building and h is the 
height of a story. 

Finally, we consider geometric constraints between beams 
and columns framing into each other at a common joint for 
practicality of an optimum solution generated. For the two 
beams B1 and B2 and the column shown in Fig. 1, one can 
write the following geometric constraints: 
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where fbb , fbb′  and fcb  are the flange width of the beam B1, 

the beam B2 and the column, respectively, cd  is the depth of 

the column, and ft  is the flange width of the column.  (8) 

simply ensures that the flange width of the beam B1 remains 
smaller than that of the column. On the other hand, (9) enables 
that flange width of the beam B2 remains smaller than clear 
distance between the flanges of the column )2( fc td − . 

Further details of the problem formulation can be found in 
Hasançebi et al. [20]. 
 

 

 

Fig. 1 Beam-column geometric constraints 

III. STANDARD BB-BC ALGORITHM 
Big bang-big crunch optimization method, developed by Erol 

and Eksin’s study [8], is inspired from the big bang and big 
crunch theories of the universe evolution. The method is based 
on continuous application of two successive stages, namely 
big bang and big crunch phases. During big bang phase, new 
solution candidates are randomly generated around a point 
called center of mass. This point is recalculated and updated 
every time in the big crunch phase with respect to the solution 
candidates generated. 

The steps in the implementation of a standard BB-BC 
algorithm can be outlined as follows. 

Step 1. Initial population: Form an initial population by 
randomly spreading individuals (solutions) over all the search 
space (first big bang) in a uniform manner. This step is 
applied once. 

Step 2. Evaluation: The initial population is evaluated, 
where structural analyses of all individuals are performed with 
the set of steel sections selected for design variables, and force 
and deformation responses are obtained under the loads. The 
objective function values of the feasible individuals that 
satisfy all problem constraints are directly calculated from (2). 
However, infeasible individuals that violate some of the 
problem constraints are penalized using an external penalty 
function approach, and their objective function values are 
calculated according to (10). 
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 In Eq. (10), φ  is the constrained objective function value, 

ic  is  i-th problem constraint and p  is the penalty coefficient 
used to tune the intensity of penalization as a whole. This 
parameter is generally set to an appropriate static value 
of 1=p . The fitness scores of the individuals are then 
calculated by taking the inverse of their objective function 
values (i.e. fitness = 1/W or 1/φ  for feasible and infeasible 
solutions, respectively). The fitness scores are assigned as the 
mass values for the individuals. 
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 Step 3. Big crunch phase: Calculate the center of mass by 
taking the weighted average using the coordinates (design 
variables) and the mass values of every single individual or 
choose the fittest individual amongst all as their center of mass 
(the latter approach is adopted in the present study). 

 Step 4. Big bang phase: Generate new individuals by using 
normal distribution (big bang phase). For a continuous 
variable optimization problem, Eq. (11) is used at each 
iteration to generate new solutions around the center of mass. 
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where c

ix  is the value of i-th continuous design variable in the 

fittest individual, min
ix  and max

ix  are the lower and upper 
bounds on the value of i-th design variable, respectively, 

iN )1,0(  is a random number generated according to a 

standard normal distribution with mean (μ) zero and standard 
deviation (σ) equal to one, k is the iteration number, and α is a 
constant.  

In the present study, however, a discrete list of ready 
sections is used for sizing members of a steel structure. Hence, 
Eq. (12) is employed instead to round off the real values to 
nearest integers representing the sequence number of ready 
sections in a given section list 
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where c

iI  is the value of i-th discrete design variable in the 

fittest individual, and min
iI  and max

iI  are its lower and upper 
bounds, respectively. 

Step 5. Elitism: Keep the fittest individual found so far in a 
separate place or as a member of the population. 

Step 6. Termination: Go to Step 2 until a stopping criterion 
is satisfied, which can be imposed as a maximum number of 
iterations or no improvement of the best design over a certain 
number of iterations. 

IV. SEARCH DIMENSIONALITY AND STEP SIZE 
Metaheuristic search techniques offer a general solution 

methodology for solving a wide range of optimization 
problems from different disciplines. On the other hand, each 
optimization problem has unique features of its own, and in 
most cases a problem-wise reformulation is necessary to 
achieve the best performance of the algorithm for a particular 
class of problems. In the following the observed deficiencies 
of the standard BB-BC algorithm in discrete design 
optimization of steel structures are discussed in detail. The 
poor performance of the standard algorithm is attributed to 
ineffective manipulations of the two search parameters; 
namely search dimensionality and step size. 

Search dimensionality (SD) is defined as the number of 
design variables that are perturbed to generate a new design 
through Eq. (12). Perhaps a more general term to quantify the 
degree of search dimensionality irrespective of problem size 
will be search dimensionality ratio (SDR), which is computed 
by proportioning the number of perturbed design variables 
( pN ) to the total number of design variables ( dN ) used in a 

problem, Eq. (13).  
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It may be expected that SDR will be different for each 

individual in the population, and the average search 
dimensionality ratio for a population, aveSDR)( , is obtained 
by averaging SDR values of all the individuals (Eq. 14), where 
(SDR)j is search dimensionality ratio for individual j and Npop 
is the population size referring to the total number of 
individuals in the population.  
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For continuous optimization problems aveSDR)( will 

always have a value equal or close to 1.0, since all design 
variables -except those on the value bounds- are subjected to 
perturbation during generation of a new individual. That is to 
say an N-dimensional search is performed by the algorithm at 
any time during the search process. However, for discrete 
optimization problems some design variables will remain 
unchanged owing to the fact that the second term on the right 
hand side of Eq. (12) is rounded off to zero when the random 
number ir  generated by normal distribution is too small, 
which implicitly drive aveSDR)( to low values especially 
when the iteration number k increases. 

On the other hand, the step size for a single design variable 
is equal to c

i
new
i II − . Hence at any iteration one can define 

an average step size for an individual and the entire population 
as formulated in Eqs. (15)  and (16) 
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where avejSS ,)(  and aveSS)(  denote the average step size 

for j-th individual and entire population, respectively. 
Typical results obtained from numerical investigations with 
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the BB-BC algorithm on discrete sizing optimization problem 
are reflected in Fig. 2, which shows the variations of  

aveSDR)(  and aveSS)(  parameters in the course of search 
process. It is noted that the average search dimensionality 
ratio of a population is generally in the order of 0.9 in the first 
iterations, which results in extreme changes in the individuals. 
Although this helps provide a diverse population, this amount 
of diversity is more likely to result in convergence difficulties 
in case of discrete structural design optimization. A useful 
starting value of aveSDR)(  will be in the range of [0.25, 
0.50] based on experiments with an evolution strategies 
integrated search process [21]. On the other hand, towards the 
later stages, search is implemented mostly in a single direction 
per design. As the iterations continue, a somewhat decreased 
search dimensionality might be useful in the sense that it 
boosts more exploitative search in the design space. 
Nevertheless, the search capability of the algorithm is 
significantly restricted when it is limited too much, as 
observed in the BB-BC algorithm.  
 

 
 (a) 

 
    (b) 

Fig. 2 The variations of (a) aveSDR)(  and, (b) aveSS)(  in a typical 
run of BB-BC 

V.  REFORMULATIONS OF BB-BC ALGORITHM 
 Noticing the drawbacks of the standard algorithm discussed 
above, Eq. (17) is proposed in lieu of Eq. (12) to improve the 

efficiency of the BB-BC algorithm in discrete structural 
design optimization. In the new formulation the use of n-th 
power (n ≥ 2) of a random number ir  is motivated using any 
appropriate statistical distribution.   
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The rationale behind Eq. (17) is to achieve a satisfactory 

trade-off or compromise between the following two 
conflicting requirements needed to eliminate the shortcomings 
of the standard formulation: (i) diminishing search 
dimensionality in the beginning of the search process and 
increasing it somewhat towards the latest stage and (ii) 
enabling large step size from time to time at later optimization 
stages to facilitate design transitions to new design regions 
and thereby preventing entrapment of the search in local 
optima. In fact, at times when the random number is sampled 
at values below 1, taking n-th power of ir  makes it even much 
smaller, which helps to fulfill the first requirement. On the 
other hand, at times when it is sampled at values above 1, it 
might be amplified to fairly large values by taking its n-th 
power, helping to satisfy the second requirement.  

Two instances of Eq. (17) are generated in Eqs. (18) and 
(19) by selecting the type of statistical distribution used to 
sample the random number, where the power of random 
number n is set to 3 based on extensive numerical 
experiments.  
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 (18) refers to the third power reformulation of big crunch 

phase according to a normally distributed random number. 
This reformulation will be referred to as modified BB-BC 
(MBB-BC) hereafter, and is introduced in relation to discrete 
design optimization of truss structures [22].  

The second reformulation (Eq. 19) is referred to as 
exponential BB-BC (EBB-BC), where the use of an 
exponential distribution (E) in conjunction with the third 
power of random number is favoured when solving problems 
from discrete design optimization of steel frame structures 
[23]. It is important to note that unlike normal distribution 
which samples both positive and negative real numbers, 
exponential distribution only generates positive numbers. 
Hence, the rounded term on the right hand side of Eq. (19) 
should be added to or subtracted from c

iI  under equal 
probability to allow for both increase and decrease in the 
value of a design variable.  

Fig. 3 and 4 are displayed to demonstrate the influence of 
the proposed reformulation on a BB-BC integrated search 
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process. They show typical variations of aveSDR)(  and 

aveSS)(  parameters during a search captured while performing 
numerical investigations with the MBB-BC and EBB-BC 
algorithms, respectively. Figs 3a and 4a indicate that the 
starting value of average search dimensionality ratio in both 
MBB-BC and EBB-BC algorithms is around 0.60-0.70. 
Although this is slightly more than the upper limit of the 
recommended range, it leads to a more appropriate diversity in 
the population as compared to the standard algorithm, and 
provides a more suitable search mechanism in the initial 
iterations. As the iterations increase, the aveSDR)(  parameter 
is dragged to smaller values, implying that an explorative 
search is progressively replaced and dominated by an 
exploitative one. However, unlike the standard algorithm 
where a rapid and linear reduction is observed in aveSDR)(  
towards unfavorably too low values, the reduction happens to 
be slower and more gradual in both the MBB-BC and EBB-
BC algorithms. Besides, it is observed that aveSDR)(  is 
always kept at sufficiently high values in both MBB-BC and 
EBB-BC algorithms, which in turn prevents the search from 
becoming inefficient or restricted. The EBB-BC algorithm 
usually provides greater aveSDR)( values in comparison to 

the MBB-BC. The rate of decrease of aveSDR)(  is slower 
and steadier in EBB-BC algorithm, whereas in the MBB-BC 
algorithm aveSDR)(  is brought down to its minimum value 
more rapidly and it is practically stabilized around this 
minimum value thereafter. 

Figs 3(b) and 4(b) show that both MBB-BC and EBB-BC 
algorithms accommodate fairly larger step sizes as compared 
to the standard algorithm. As the search process goes on, 

while aveSS)(  parameter is strictly reduced to one in the 
standard algorithm, it takes place in the range of [2, 8] for 
MBB-BC and of [2, 40] for EBB-BC even in the latest 
iterations of the optimization. These occasional large step 
sizes are quite useful for steering the search towards new 
design regions when the search gets stuck in local optima. 
This characteristic of the proposed reformulation provide an 
efficient mechanism to avoid local optima while the standard 
algorithm is likely to get trapped in local optima.  
 

 

        (a)     

 
                                     (b) 

Fig. 3 The variations of (a) 
aveSDR)(  and, (b) 

aveSS )(  in a typical run 
of MBB-BC 

 

 
                   (a)       

  

 
                                                     (b) 

Fig. 4 The variations of (a) aveSDR)(  and, (b) aveSS)(  in a typical 
run of EBB-BC 
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(c) Plan view 

Fig. 5 693-bar braced barrel vault 

VI. NUMERICAL EXAMPLES 
 Several design examples are used to experiment and 

quantify the performance of MBB-BC in optimum design of 
steel trusses and MBB-BC algorithms in optimum design of 
steel frames. The design examples include a 693-bar braced 
barrel vault (example 1), a 960-bar double layer grid (example 
2), a 132-member unbraced steel frame (example 3) and a 
209-member industrial factory building (example 4). The 
optimum solutions produced for these structures with MBB-
BC and EBB-BC algorithms are compared to those achieved 
using the standard version (BB-BC algorithm) as well as other 
metaheuristic techniques. For a fair comparison of results, the 
maximum number of structural analyses is limited to the 
previously reported values in the literature, which is 50,000 
for examples 1, 3 and 4, and 100,000 for example 2. For 
numerical applications, the value of parameter α in Eqs. (12), 
(18) and (19) is taken as 0.5 for examples 1 and 2, and 0.25 

for examples 3 and 4. A population size of 50 is used for all 
algorithms. The material properties of steel used in all 
examples are as follows: modulus of elasticity = 29,000 ksi 
(203,893.6 MPa) and yield stress = 36 ksi (253.1 MPa). 

A. 693-Bar Braced Barrel Vault 
 The first example shown in Fig. 5 is a spatial braced 

barrel vault [24] consisting of 259 joints and 693 members 
that are grouped into 23 independent sizing variables 
considering the symmetry of the structure about the centerline. 
The member grouping scheme is given in Fig. 5a and the 
dimensions of the structure are shown in Figs 5b and 5c. It is 
assumed that the barrel vault is subjected to a uniform dead 
load (DL) pressure of 35 kg/m2, a positive wind load (WL) 
pressure of 160 kg/m2 (32.77 lb/ft2) and a negative wind load 
(WL) pressure of 240 kg/m2 (49.16 lb/ft2). Here, these loads 
are combined under two separate load cases as follows: (i) 
1.5DL+1.5WL = 1.5(35+160)= +292.5 kg/m2 (59.91 lb/ft2) 
and (ii) 1.5DL–1.5WL = 1.5(35–240)= –307.5 kg/m2 (62.98 
lb/ft2), along z-direction. The displacements of all joints in all 
the x, y, and z directions are limited to a maximum value of 
0.254 cm (0.1 in). The strength and stability requirements of 
steel members are imposed according to AISC-ASD [19]. For 
design optimization, the structural members are selected from 
a list of 37 circular hollow sections issued in AISC-ASD [19] 
code.  

In Table I the design optimization results of 693-bar barrel 
vault obtained using the MBB-BC and BB-BC algorithms are 
compared to the previously reported results by Hasançebi et 
al. [25] with different metaheuristic techniques. According to 
these results, the best solution is attained by the MBB-BC 
algorithm, which is 4805.96 kg (10595.33 lb). In this 
example, the BB-BC algorithm shows a more promising 
performance compared to the other metaheuristic techniques 
and yields the second best solution, which is 4925.75 kg 
(10859.42 lb). Amongst the other solutions are 4989.15 kg 
(10999.20 lb) by ant colony optimization (ACO), 5095.07 kg 
(11232.71 lb) by harmony search (HS) and 5456.48 kg 
(12029.49 lb) by simple genetic algorithm (SGA). 

B. 960-Bar Double Layer Grid 
Fig. 6 shows the second design example which is a double 

layer grid consisting of 263 joints and 960 members. The 
symmetry of the structure around x and y axes is used to 
group the 960 members into 251 independent sizing variables. 
They are adopted from a database of 28 circular hollow 
sections in AISC-ASD [19] steel profile list. The lower and 
upper bounds on sizing variables are set to 1.07 in.2 (6.90 cm2) 
and 21.3 in.2 (137.42 cm2), respectively. The structure is 
subjected to a single load case of snow load under design 
snow pressure of 0.754 kN/m2 (15.75 lb/ft2). The stress and 
stability limitations of the members are computed in 
accordance with the provisions of AISC-ASD [19]. Further, 
the displacements of all nodes are limited to a maximum value 
of 4.16 in. (10.57 cm) in any direction. 

The 960-bar double layer grid is a challenging design 
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example due to high number of design variables considered. It 
is noted that only the stress and slenderness ratio constraints 
are active for this example. The lightest design for the double 
layer grid system is attained by MBB-BC algorithm, which is 
 

TABLE I 
COMPARISON OF RESULTS FOR 693-BAR BRACED BARREL VAULT 

Sizing 
variables ACO  HS  GA  BB-BC MBB-BC 

1 PXX2.5 PX3.5 PX3 PXX2.5 PX3.5 

2 P1 PX.75 P1.25 P1 P1 

3 P1 P1 PX1 P.75 P.75 

4 P1 P1 P1 P1.25 P1 

5 P1 PX.75 P.75 P.75 P.75 

6 P.75 P4 PX4 PX3.5 PX3.5 

7 PX1 P1.25 PX1 P1 P1 

8 P.75 P.75 P.75 P1 P1 

9 P3.5 P3.5 PXX2 P1 P1 

10 PXX2.5 P1 PX1 P.75 P.75 

11 P1 P1.25 P1.25 PX2.5 P3 

12 PX1 PX1.25 P1.5 P1.5 P1.5 

13 PX1.25 PX1.5 PX1.5 PX1.5 PX1.5 

14 PX1 PX1.25 P1.5 P1 P1 

15 P.75 P.75 P1 P.75 P.75 

16 PX1 PX1.25 P1.25 PX1.5 PX1.25 

17 PX1.25 PX1.25 PX1.5 P1.25 P1.25 

18 P1 P1.25 P1.5 P2.5 P3 

19 P1.25 PX1 P1.25 P1.25 P1 

20 P.75 P.75 P.75 P.75 P.75 

21 P2.5 P2.5 P3 P1 P1 

22 P1.25 P1 P1.25 P1 P.75 

23 P1 PX1 PX.75 P.75 P.75 

Weight, lb 
(kg) 

10999.20 
(4989.15) 

11232.71 
(5095.07) 

12029.49  
(5456.48) 

10859.42 
(4925.75) 

10595.33  
(4805.96) 

 
24266.7 kg (53498.8 lb). The other designs are 24388.3 kg 
(53656.7 lb) by simulated annealing (SA), 24780.2 kg 
(54631.0 lb) by evolution strategies (ESs), 24973.5 kg 
(55057.1 lb) by particle swarm optimization (PSO), 25320.0 
kg (55821.1 lb) by tabu search (TS), 29556.6 kg (65161.2 lb) 
by ant colony optimization (ACO), 32338.5 kg (71294.2 lb) 
by simple genetic algorithm (SGA) and 40133.8 kg (88479.9 
lb) by harmony search (HS) according to Hasançebi et al. 
[27]. No feasible solution is obtained with the BB-BC 
algorithm when the initial population is generated randomly. 
To facilitate design transitions to feasible regions during the 
search, the algorithm is started from one feasible design point 
such that all the member groups are assigned to the strongest 
section of the discrete set in one individual, while all other 
individuals in the initial population are created randomly in a 

usual manner.  The BB-BC algorithm employed under this 
case produces a final design weight of 31119.8 kg (68607.4 
lb).  

C. 132-Member Unbraced Space Steel Structure  
The third design example depicted in Fig. 7 is a three 

dimensional unbraced (swaying) steel frame composed of 70 
joints and 132 members that are grouped into 30 independent 
sizing variables (Fig. 7b) to satisfy practical fabrication 
requirements. The columns are adopted from the complete W-
shape profile list consisting of 297 ready sections, whereas a 
discrete set of 171 economical sections selected from W-shape 
profile list based on area and inertia properties is used to size 
beam members. Here, both gravity and lateral loads are 
considered in designing the structure. Gravity loads (G) 
consisting dead, live and snow loads are calculated according 
to ASCE 7-05 [26] based on the following design values: a 
design dead load of 60.13 lb/ft2 (2.88 kN/m2), a design live 
load of 50 lb/ft2 (2.39 kN/m2), and a ground snow load of 25 
lb/ft2 (1.20 kN/m2). This yields the uniformly distributed loads 
on the outer and inner beams of the roof and floors given in 
Table 2.  As for the lateral forces, earthquake loads (E) are 
considered. These loads are calculated based on the equivalent 
lateral force procedure outlined in ASCE 7-05 [26], resulting 
in the values given in Table 2 that are applied at the center of 
gravity of each story as joint loads. Gravity (G) and 
earthquake (E) loads are combined under two loading 
conditions for the frame: (i) 1.0G + 1.0E (in x-direction), and 
(ii) 1.0G + 1.0E (in y-direction). The combined stress, 
stability and geometric constraints are imposed as explained in 
Section 2. The joint displacements in x and y directions are 
limited to 1.53 in (3.59 cm) which is obtained as height of 
frame/400. Additionally, story drift constraints are applied to 
each story of the frame which is equal to height of each 
story/400. 
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a ) 3D view 

2.75 m 
(9.02 ft) 

2.25 m 
(7.38 ft) 

2.75 m 
(9.02 ft) 

2.75 m 
(9.02 

10 x 3.25 m (10.66 ft) = 32.5 m (106.63 ft) 

2.5 m 
(8.2 ft)

2.5 m 
(8.2 ft)

8 x 3.25 m ( 10.66 ft ) 
=  

26 m (85.3 ft) 

b ) Top view  
Fig. 6 960-bar double layer grid 

 

 
 (a) 3D view 

 

 
       (b) front view 

 

 
       (c) plan view 

    Fig. 7 132-member space steel frame 
 

The BB-BC and EBB-BC algorithms are employed to 
minimize the weight of the 132-member steel frame. In Table 
3 the minimum weight designs of the frame obtained by these 
algorithms are compared to the previously reported results by 
Hasançebi et al. [28] using different metaheuristic techniques; 
namely simulated annealing (SA), tabu search (TS) and 
harmony search (HS). The EBB-BC algorithm produces a 
design weight of 60804.31 kg (134050.55 lb) for the frame 
which is the best solution of this problem reported so far. 
Relatively higher design weights have been obtained for the 
frame with other metaheuristic algorithms; namely 62993.55 
kg (138874.67 lb) by SA, 64733.69 kg (142710.96) by TS, 
64926.17 kg (143135.29) by HS. On the other hand, the BB-
BC algorithm exhibits a very poor performance and produces 
a final design weight of 87468.21 kg (192834.39 lb). Such a 
significant difference between the results clearly demonstrates 
the usefulness of the proposed refinement on the performance 
of the standard algorithm. 
 

 
 
 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:7, No:2, 2013

217

 

 

 
TABLE II 

THE GRAVITY AND LATERAL LOADING ON 132-MEMBER SPACE STEEL FRAME 
Gravity Loads 

Beam Type 
Uniformly Distributed Load  

Outer Span Beams Inner Span Beams 
(lb/ft) (kN/m) (lb/ft) (kN/m) 

Roof beams (Dead + Snow) 1011.74 14.77 1193.84 17.42 
Floor beams (Dead + Live) 1468.40 21.49 1732.70 25.29 

Lateral Loads 

Floor Number Earthquake Design Load 
(kips) (kN) 

1 6.57 29.23 
2 12.43 55.28 
3 18.52 82.35 
4 24.76 110.15 

 

D. 209-Member Industrial Factory Building   
In this example, the design optimization of an industrial 

factory building (Fig. 8) composed of 100 joints and 209 
members is considered. The main system of the structure 
consists of five identical frameworks lying 6.1 m (20ft) apart 
from each other in x-z plane. As shown in Fig. 8 (b), each 
framework includes two side frames and a gable roof truss in 
between them. The lateral stability of the structure against 
wind loads in x-z plane is provided through columns fixed at 
the base as well as the rigid connections of the side frames. 
Therefore, all the beams and columns in the side frames are 
designed as moment-resisting axial-flexural members. On the 
other hand, the gable roof truss is designed to transmit only 
axial forces through pin-jointed connections. Hence, the web 
and chord members in the gable roof are all designed as axial 
members. For longitudinal stability (along y-axis) of the 
structure, bracing is used in the end bays in the walls and the 
roof. Considering the symmetry of the structure as well as the 
fabrication requirements of structural members, the totals of 
209 members are collected in 14 member groups (sizing 
design variables). Fig. 8 (a) gives the member grouping 
details. 

 
TABLE III 

COMPARISON OF RESULTS FOR 132-MEMBER SPACE STEEL FRAME 
Sizing 
vars. SA TS HS BB-BC EBB-BC 

1 W8X35 W8X31 W14X53 W24X176 W10X33

2 W18X86 W12X65 W12X120 W21X132 W12X79

3 W12X79 W27X129 W30X48 W27X336 W40X167

4 W18X65 W8X58 W16X77 W24X279 W12X65

5 W12X65 W12X79 W18X119 W14X193 W14X120 

6 W27X161 W12X106 W24X104 W14X109 W14X109

7 W24X117 W18X97 W30X148 W12X87 W14X99

8 W10X54 W8X58 W10X68 W27X94 W14X90

9 W18X86 W12X72 W18X158 W30X292 W10X100

10 W12X96 W14X90 W12X120 W18X283 W12X106 

11 W10X60 W36X135 W36X150 W10X49 W33X152

12 W10X49 W10X49 W16X67 W21X62 W12X53

13 W12X87 W12X96 W10X112 W18X311 W14X90

14 W12X50 W10X49 W24X117 W33X141 W36X160

15 W24X55 W24X55 W18X40 W18X40 W18X40

16 W24X55 W10X33 W14X61 W12X210 W12X53

17 W12X58 W18X76 W12X65 W16X67 W21X111 

18 W12X67 W21X83 W18X119 W12X65 W12X65

19 W12X40 W8X40 W14X82 W14X211 W14X43

20 W10X49 W14X61 W18X86 W14X211 W10X60

21 W12X72 W18X76 W14X90 W40X277 W12X106

22 W12X79 W12X72 W18X97 W33X141 W10X88 

23 W8X48 W12X40 W21X73 W12X65 W8X48

24 W24X68 W24X76 W12X87 W30X326 W27X84

25 W14X61 W10X77 W18X71 W12X72 W14X61

26 W21X50 W16X50 W27X102 W8X28 W10X39

27 W8X40 W10X49 W8X48 W30X124 W12X40 

28 W8X67 W14X61 W24X117 W24X94 W18X76

29 W10X39 W18X97 W18X97 W16X89 W24X68

30 W21X44 W16X45 W16X40 W21X44 W18X40

Weight, 
lb(kg) 

138874.67 
(62993.55
)

142710.96  
(64733.69
)

143135.29 
(64926.17
) 

192834.39 
(87468.21
) 

134050.55 
(60804.31
)

 
 

For the design of this industrial building three different 
types of loads namely dead, crane and wind loads are 
considered in six load combinations. The details of the 
loadings considered can be found in [28]. All structural 
members are sized using the AISC standard sections. 
Accordingly, the beam and column members are adopted from 
wide-flange sections (W), and side wall and roof bracings are 
chosen from back to back equal leg double angle sections. The 
combined stress, stability and geometric constraints are 
imposed according to AISC-ASD [19] provisions. Further, 
displacements of all the joints in x and y directions are limited 
to 3.43 cm (1.25 in), and the maximum allowable value of 
inter-story drifts is taken as 1.52 cm (0.6 in). 
 

 
(a) 3D view 
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(b) Front view 

 

 
(c) Side view 

 

 
(d) First floor plan view 

 

 
(e) Member grouping 

Fig. 8 209-member industrial factory building 
 
 
 
 

TABLE IV 
COMPARISON OF RESULTS FOR 209-MEMBER INDUSTRIAL FACTORY BUILDING 

Sizing 
vars. HS  AHS  BB-BC EBB-BC 

1 W8X31 W8X31 W16X57 W10X33

2 W12X40 W10X39 W16X57 W10X33

3 W8X31 W12X26 W8X28 W8X24

4 W8X40 W8X40 W21X68 W10X33 

5 W24X62 W24X62 W24X62 W24X62

6 W12X26 W10X26 W21X44 W12X26

7 2L2.5X2X3/16 2L2X2X1/8 2L5X5X5/8 2L2X2X1/8

8 2L2X2X1/8 2L2X2X1/8 2L2X2X1/8 2L2X2X1/8

9 2L3X3X3/16 2L3X3X3/16 2L4X4X5/8 2L3X3X3/1
6

10 2L3X2.5X5/16 2L2X2X1/8 
2L2.5X2.5X3/1
6 2L2X2X1/8 

11 2L6X6X7/16 2L6X6X5/16 2L6X6X3/4 2L6X6X5/1
6

12 2L6X6X3/8 2L6X6X5/16 2L8X8X3/4 2L6X6X5/1
6

13 2L6X6X5/16 2L6X6X5/16 2L6X6X5/8 2L6X6X5/1
6

14 2L6X6X5/16 2L5X5X5/16 2L5X5X7/16 2L5X5X5/1
6

Weight, 
lb (kg) 

102924.73   
(46685.83) 

97121.3  
(44053.45) 

161764.99 
(73375.37) 

94631.38 
(42924.07) 

 
The BB-BC and EBB-BC algorithms are employed to 

minimize the weight of the industrial factory building. In 
Table 4 the minimum weight designs of the structure obtained 
by these algorithms are compared to the previously reported 
results by Saka and Hasançebi [28] using harmony search 
(HS) and its adaptive variant (AHS) techniques. Again the 
EBB-BC algorithm performs very well and produces the best 
known solution of the problem, which is 42924.07 kg 
(94631.38 lb). The final designs attained for this problem with 
AHS and HS techniques were 44053.45 kg (97121.3 lb) and 
46685.83 kg (102924.73 lb), respectively. On the other hand, 
a substandard performance is exhibited by BB-BC algorithm, 
in which the structural weight could only be decreased to 
73375.37 kg (161764.99 lb). 

VII. CONCLUSION 
 In the present study an easy-to-implement and efficient 
design optimization algorithm based on a big bang-big crunch 
algorithm is implemented for discrete sizing optimization of 
steel structures. Through simple modifications of the standard 
algorithm (BB-BC) two enhanced variants of the algorithm; 
namely MBB-BC and EBB-BC are introduced and applied for 
practical design optimization of steel trusses and frames, 
respectively. The numerical efficiencies of the proposed 
algorithms are quantified using four different practical design 
examples; namely a 693-bar braced barrel vault (example 1), a 
960-bar double layer grid (example 2), a 132-member 
unbraced steel frame (example 3) and a 209-member industrial 
factory building (example 4). In all the examples, the steel 
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structures are designed for minimum weight subject to 
strength and serviceability limitations according to AISC-
ASD specification. Based on the results obtained in these 
examples it is shown that the performance of the BB-BC 
algorithm can be improved to a great extent with the proposed 
reformulations. Further, in comparison to the previously 
reported results with various meta-heuristic techniques, the 
MBB-BC and EBB-BC algorithms consistently obtained 
lighter designs, demonstrating the robustness of the 
optimization process with the latter. The advantages of the 
proposed algorithms are basically due to their abilities to 
provide more advantageous mechanism for adjusting search 
dimensionality ratio when dealing with discrete design 
optimization problems as well as making it possible to have 
occasional increments in the step size values throughout the 
optimization process.  
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