
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4281

Abstract—Ontologies play an important role in semantic web

applications and are often developed by different groups and
continues to evolve over time. The knowledge in ontologies changes
very rapidly that make the applications outdated if they continue to
use old versions or unstable if they jump to new versions. Temporal
frames using frame versioning and slot versioning are used to take
care of dynamic nature of the ontologies. The paper proposes new
tags and restructured OWL format enabling the applications to work
with the old or new version of ontologies. Gene Ontology, a very
dynamic ontology, has been used as a case study to explain the OWL
Ontology with Temporal Tags.

Keywords—Frame and slot Versioning, OWL, Ontology
Versioning, Semantic Web.

I. INTRODUCTION
ITH the increasing popularity of the semantic web
among the researchers, the semantic web applications

are being conceived in the variety of domains in different
streams of the society. For the development of semantic web
applications, knowledge representation in the form of
ontologies becomes the core issue of research. Researchers
worked together to create standards, tools and languages to
speed up the development of ontologies. A single ontology is
often developed by different groups, may be separated
geographically and continue to evolve over time. Due to the
distributed and dynamic nature of the web, the knowledge
component of these applications changes more rapidly than
the other components of the applications. Ontologies being the
knowledge representation technique in semantic web
applications need to handle this change. Research in ontology
engineering nowadays is more focused on ontology
management problems rather than ontology creation and
ontology formalism. Noy [4] [5] [10] has listed and classified
the core issues in the ontology management. These include
maintain libraries of ontologies, import and reuse ontologies,
translate ontologies from one formalism to another, provide
support for ontology versioning, specify transformation rules
between different ontologies and versions of the same
ontology, merge ontologies, align and map between

Manuscript received November 9, 2006.
Sudeep Marwaha, is a research scholar in the Department of Computer

Science, University of Delhi and scientist in the Division of Computer
Applications, Indian Agricultural Statistics Research Institute, Delhi, India.
(e-mail: sudeep_iasri@yahoo.com).

Dr. Punam Bedi is head and reader in the Department of Computer Science,
University of Delhi, Delhi. (phone: 91-11-27667591; fax: 91-11-27662553; e-
mail: pbedi@ cs.du.ac.in)

ontologies, extract semantically independent parts of the
ontology, support inference across multiple ontologies, and
support query across multiple ontologies.

In [9] ontology has been defined with the versioning and
backward compatibility by keeping each version in different
file. In a business world, organizations tend to keep the
applications running for years once they reach to stable
version as they have invested huge money in building and
deploying them. Web is dynamic, huge and a vast resource
with millions of applications and people interacting with each
other. Keeping multiple versions of a single ontology
simultaneously and allowing the dependent applications to
choose from the version they depend upon causes some
serious problems. First, there will be many of the version files
existing at a single moment and they will grow in number very
rapidly. Second, it creates confusion to choose from the
different versions for the dependent applications. Third,
someone has to put resources in terms of money, space, time
and efforts to maintain all these versions. Fourth, dependent
application requires at least some programming effort each
time the application is synchronized with the latest version of
ontology. Synchronization with latest version is needed as the
knowledgebase applications can not provide good results if
they do not update their knowledgebase.

OntoView [8] includes structural comparison of source
ontologies. The system identifies different types of changes
between versions of the same concept and allows its users to
enlist a conceptual description of how the concept has
changed. However, if the concept name has changed,
OntoView does not attempt to determine that the concept with
the new name is just an image of old concept.

This paper focuses on the problems related with ontology
versioning, ontology aligning and mapping and specifying
transformation rules between different versions of the same
ontology. These problems need to address issues such as
identifying ontology versions, specifying explicitly logs of
changes between versions and determining a set of additional
ontology changes that each change specified by the user
incurs. Identifying an ontology version is required as one
needs to fetch a particular version that suit the requirements of
an application or to analyze the differences between a set of
versions against the novelty of concepts or usage of different
versions. In our approach, we propose that identification of
different versions will be carried out very easily as all these
versions are stored in a single file and proposed changes in
RDF attributes will ensure that at any point of time the
particular OWL ontology version will be generated on the fly
for the desired user or application. This is possible by

Temporal Extension to OWL Ontologies
Sudeep Marwaha, Punam Bedi

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4282

deploying a web service that extracts a particular version from
the ontology with temporal extension rather than keeping a
static OWL file at the server. The service sends the extracted
ontology to the requesting semantic web application. Given
the decentralized nature of ontology development, logs of
changes may not always be available so it becomes all the
more difficult to align and map different concepts or
determining additional ontology changes that each change
incurs in the ontology. Introduction of new tags and the
modified structure of the OWL file tackle this problem very
effectively. Comparing our approach with the existing systems
of managing ontology versioning such as OntoView, we
found our approach becomes very easy and efficient as it
introduces the changes in the RDF attributes that forces the
ontology developers to take care of these issues while
developing and updating the ontology rather than the
identifying changes after the development and release of each
version.

Semantic web applications require a framework [5] that is
independent of the ontology versioning and do not need
previous ontology versions to exist simultaneously along with
the latest version.

We discuss our approach with the very popular Gene
Ontology [2] as a case study. In the current research
environment, where new genome sequences are being rapidly
generated, and where comparative genome analysis requires
the integration of data from multiple sources, it is especially
germane to provide rigorous ontologies that can be shared by
the community. We have chosen the Gene Ontology because
it is perhaps the most dynamic ontology with over few
thousands of new additions each year. The Gene Ontology
consortium releases a new version of the ontology monthly.
Daily versions in OWL format can also be downloaded which
are generated from the Concurrent Versions System (CVS).

The rest of this paper is organized as follows: section 2
discusses the knowledge representation using frames,
temporal frames and slot versioning. Section 3 describes
knowledge representation for the web using Ontologies, and
versioning of OWL ontologies. Section 4 deals with the
problem of ontology versioning and our approach of using
temporal tagged ontologies by extending OWL to solve it.
Ontology integration is another key issue in solving queries
that require merging of knowledge from various sources.
Section 5 details the integration of ontologies with temporal
extension. A case study of Gene Ontology is given in section
6 in which transformation of existing OWL Gene Ontology, to
the temporal tagged OWL Gene Ontology is described.
Section 7 concludes the paper with merits of the approach.

II. KNOWLEDGE REPRESENTATION USING FRAMES
A frame is basically a structure for holding various types of

knowledge. Frames are given names, with the presumption
that the knowledge contained within a particular frame is in
some way interrelated. Many authors and speakers may refer
to frame-like structures as units, objects, concepts, schemas or

entities. Frames are structured ways of representing
descriptive information & they provide a natural mapping for
the kind of knowledge that is centred around one concept or
object. The organization allows efficient searching because
there is immediate access to relevant information. Frame
structure provides a natural method for representing
hierarchies of information, thus allowing the inheritance of
values. Although frames were conceived independently of the
object-oriented paradigm they are in fact consistent with it,
and provide an excellent demonstration of their power. Indeed
frames are capable of representing both specific and general
knowledge, and are capable of accommodating both
descriptive and prescriptive computations.

Frame Based Systems have many advantages like
immediate access to relevant information, easy to include
default information and detect missing values etc. Frames can
be used easily with Production rules, thereby facilitating
partitioning, indexing and organizing production rules of a
system. The implicit hierarchy available in frame taxonomies
also permits hierarchical segmentation of rules. All these
merits of the frame allow it to be the basis for knowledge
representation technique called Ontology for the web.

A. Temporal Frame Representation
The inherent capability of Frame Based System for

structuring knowledge has been the motivation for enhancing
its capabilities by adding various dimensions to it. In some
situations, it is not appropriate to discard the old information.
The temporal (time) dimension [3] is added keeping these
situations in mind. Knowledge in these temporal frame
systems has the period of validity, which is attached to either
frames or its slots or both. If the period of validity is attached
to frames, it is called frame versioning and if attached to its
slots, it is called slot versioning. The Tframe system [1] is
based on slot versioning in contrast to frame versioning in
order to achieve efficiency in terms of time and space. The
system based on slot versioning is better because frame
versioning approach has high degree of redundancy owing to
duplication of the entire frame, especially when the changed
portion is relatively small compared with the unchanged
portion.

III. KNOWLEDGE REPRESENTATION USING ONTOLOGIES
Ontologies are structures or models of known knowledge.

Ontology is a partial and explicit account of a
conceptualization. The degree of specification of the
conceptualization, which underlies the language used by a
particular knowledge base, varies in dependence of our
purposes. An ontological commitment is thus a partial
semantic account of the intended conceptualization. In OWL
ontology, concepts are arranged in hierarchical format with
each concept is represented by a node in the hierarchy. An
OWL class having various properties and relationships with
the other classes represents each node. Relating it with the
frames and slots, a class in ontology is based on the frame and
its properties are slots of the frames. The relationships among

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4283

different classes or frames are established by referencing
related classes or instances of classes in slots or properties.

A. Resource Description Framework (RDF)
Resource Description Framework (RDF) [7] is the web

metadata language. It is used to describe information about
web resources. The semantics associated with this information
enables web applications interoperability. An RDF model that
describes some web resources is also called an RDF instance.
An RDF schema can be used to define application specific
vocabularies. This schema can be associated with an RDF
instance in order to validate the instance. Both RDF instance
and RDF schema are RDF models. RDF is designed to
represent information in a minimally constraining, flexible
way. It can be used in isolated applications, where
individually designed formats might be more direct and easily
understood, but RDF's generality offers greater value from
sharing. The value of information thus increases as it becomes
accessible to more applications across the entire Internet.

B. Ontology Web Language (OWL)
The OWL, Web Ontology Language is a language for

defining and instantiating Web Ontologies. OWL is evolved
from a number of technologies such as its predecessor
DAML+OIL, from Description Logics, from the frames
paradigm and from RDF. The formal specification of the
language is on Description Logics, the surface structure of the
language is based on the frames paradigm and has RDF/XML
exchange syntax for upwards compatibility with RDF.

C. Versioning of OWL Ontologies
Version Support in OWL is very limited and can be

described at two levels viz., at ontology level and at class or
property level. At ontology level, owl:priorVersion property
links to a previous version of the ontology being defined and
can be used to track the version history of an ontology.
Ontology versions may not be compatible with each other.
Within an owl:Ontology element, we use the tags
owl:backwardCompatibleWith and owl:incompatibleWith to
indicate compatibility or the lack thereof with previous
ontology versions. At class or property level, owl:versionInfo
is provided. As opposed to the previous three tags, the object
of owl:versionInfo is a literal and the tag can be used to
annotate classes and properties in addition to ontologies. For
many purposes, doing version tracking at the granularity of an
entire ontology is not enough. Maintainers may wish to keep
version information for classes, properties, and individuals -
and even that may not be sufficient. The incremental nature of
class expressions in OWL implies that one ontology may add
restrictions to a (named) class defined in another ontology,
and these additional restrictions themselves may require
version information. OWL Full provides the expressive power
to make any sort of assertion about a class, i.e. that it is an
instance of another class, or that it (and not its instances) has a
property and a value for that property. This framework can be
used to build ontology of classes and properties for tracking
version information. The OWL namespace includes two pre-

defined classes that can be used for this purpose:
owl:DeprecatedClass and owl:DeprecatedProperty. They are
intended to indicate that the class or property will likely be
changing in an incompatible manner in a forthcoming release.
The versions are mostly maintained by version control systems
such as CVS that are developed for keeping track of the code of
traditional software.

IV. TEMPORAL EXTENSION TO OWL ONTOLOGIES
OWL class contains rdf:Id or rdf:Resource or rdf:About tag

and all the properties of the class has rdf:Resource or
rdf:About tag for naming and identification which in turn
becomes their globally unique identification when seen in
combination with the URI of the XML document. Relating the
OWL with frames and slots, we introduce the concept of
frame and slot versioning in OWL. The existing standard of
OWL contains only an annotation property for capturing the
version of the ontology. When the value of a property of a
class has changed or name of the property has changed
between two versions, the slot versioning is used to capture
the change. According to slot versioning, only the version of
changed property is created and inserted above the existing
latest version in the same OWL file. When the class name or
the intrinsic attribute of the class has changed then we use the
frame versioning and the whole is inserted above the existing
version in the same OWL file. The unique identity of different
concepts are maintained by modifying the format of rdf:Id,
rdf:About and rdf:Resource value. The values of these
attributes are appended to the corresponding version number
separated by the delimiter @. We propose to introduce two
new tags in the underlying RDF viz. rdf:Validity and
rdf:Timestamp. These two attributes will be used along with
the rdf:Id and rdf:Resource to identify the changes that occur
in subsequent versions of the ontology. The rdf:Validity
attribute will have one of the four possible values viz. Always
True, Latest, Past or Deleted. The rdf:Timestamp attribute will
be used to represent the time when the concept has changed. It
will be of the format YYYY-MM-DDThh:mm:ssTZD as
specified in ISO 8601. These two attributes will be used to
identify the same concepts of the different versions of the
ontology. At any point of time the concepts of latest version of
the ontology will have the value of rdf:Validity set to Always
True or Latest and the value of rdf:Timestamp attribute is set
to release date and time. If rdf:Validity is Always True then it
means the concept is marked as universal truth and can not be
changed in new versions. The Always True value is for the
basic concepts, changing which the ontology itself become so
much different than the previous version that it will be better
to term it as new ontology. If the concept has value Latest
then that it will be treated as the concept of the latest version
of the ontology. Latest value should be unique among the
different versions of the same concept. The value of
rdf:Timestamp attribute will be used to extract a particular
version on request of the user/application. The changed
concept will be added as a new line having all other attribute

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4284

same as the older one except for the rdf:Id / rdf:Resource,
rdf:Timestamp, rdf:Validity and the updated information. The
rdf:Timestamp will contain a new date and time while
rdf:Validity will have Latest as its value. The rdf:Resource
and rdf:Id will be appended by a @ and the number of the
version. This is necessary to maintain the uniqueness of the
resource or id. The same name before the @ signifies that the
new added concept is essentially the next version of the
existing concept. The ontology will still keep all the concepts
including the latest as well as the past. The new concepts in
the ontology can be added by choosing the appropriate
location with the Latest as the value of rdf:Validity and
current date and time as the value for rdf:Timestamp. The
concepts that are obsolete and need to be removed can be
deleted from the latest version only by changing the value of
the rdf:Validity as Deleted. The concept will remain there in
the older version with its existing values of rdf:Validity,
rdf:Timestamp and rdf:Resource and rdf:Id tags. The non
deletion of the deleted concept of the latest version in the
older versions will keep the older versions compatible with
the applications that are running on it. The concepts that are
added after the latest release will contain the date and time at
which they are incorporated in the ontology. This value will
be modified to the release date and time when the next version
will be released. By that time the concepts will be present in
the ontology as valid changes for the next version.

The introduced tags rdf:Validity and rdf:Timestamp and
changed format of the ID and Resource tags are required as it
becomes very efficient to extract the older versions from the
master ontology. The OWL ontologies with temporal tags can
be created from the OWL ontologies using an algorithm given
below.

Algorithm: Creation of OWL Ontologies with temporal tags
Phase-I : Transforming OWL Ontology to OWL

Ontology with Temporal Tags
Input : OWL Ontology

Read an existing OWL ontology
Insert the rdf:Validity and rdf:Timestamp tags in every
rdf:Resource or rdf:Id statement.
Value of rdf:validity is set to “Latest” and value of
rdf:Timestamp is set to current date and time.
Get the version number from the user or search it in
version annotation property and save it in
Current_Version.
Append the Current_Version after the value of rdf:Id
and rdf:Resource tags with @ as delimiter.
Output the ontology as a new file.

Updating in the ontology concepts mean change in the class
names, slot names, slot values, addition of classes, deletion of
classes, addition of properties, deletion of classes, deletion of
properties, change in the value of properties. Change in
classes position in the hierarchy with respect to the other
classes will be treated independently by addition of class at
new position and deletion of class at the present position. The
statement in this algorithm means the block of statements if it
is a container statement like class and a single line statement if

it is just a property. The rdfs:Comment, rdfs:Label and other
tags having neither rdf:Id nor rdf:Resource attribute are taken
from the latest version and older values are deleted as they
don’t affect the semantics of the ontology.

Phase-II : Updating the Temporal Tagged OWL Ontologies
Input: Temporal tagged OWL Ontology from phase-I
For any subsequent change in the concept in Ontology do
 Identify the concept and its location that has changed

Check the rdf:Validity tag value for each version of
the concept

 If it is “Always True” then
Exit and print not a valid change

If it is “Latest” then
If the task is to update the concept then

Change the value of rdf:Validity to “Past”
Insert the new statement describing the updated
concept before the current statement
Set rdf:Validity of new statement to “Latest”
and rdf:Timestamp set to current date and time.
Append the next version number after value of
the rdf:Id or rdf:Resource or rdf:About of new
statement with @ as delimiter.
Exit

If the task is to add a new concept then
Insert the new concept statement/statements at
the desired location with its rdf:Id or
rdf:Resource or rdf:About appended with the
new version number.
Set the rdf:Validity to “Latest” and
rdf:Timestamp to current date and time.

 Exit
If the task is to delete the concept then

Insert the new statement for deleting the
concept before the concept to be deleted.
Set the rdf:Validity to “Deleted” and set the
rdf:Timestamp value in the new statement.
Change the rdf:Validity to “Past” in the already
present statement of the concept.
Exit

If it is “Past” then
 Exit
 If it is Deleted” then
 Exit

End loop
End Loop

The algorithm matches the value of the rdf:Validity tag,
rdf:Timestamp and version number appended after the
resource with the information given for requested version. The
version can be extracted using the given version number as
well as the latest version up till the given date and time.
Capturing of latest knowledge in ontology with temporal
extension will grow its size continuously and resulting in a
huge file. We argue that the management of this huge file
should not be the problem as it is to be used by the agents and
meant for human consumption. Moreover, one can also adopt
mechanisms to restrict its size by deleting few older versions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4285

of some concepts. The older versions can be deleted after a
particular time lapsed or by fixing their maximum number or
hybrid of above two approaches or by a user customized
approach. The exact mechanism can be dependent upon the
particular application and can be built into the web service
that is used to access a particular version of the ontology.
Putting the restricting mechanism out of the ontology with
temporal extension makes it customizable as well as allows
the applications to avoid it if the size is manageable.

V. INTEGRATION OF ONTOLOGIES WITH TEMPORAL
EXTENSION

In literature terms such as mapping and integration have been
used in various ways by organizations according to their
understandings and requirements. In Gruber’s ontology
definition [12], an ontology O with a specific domain model,
T is defined. Thus a conceptualization ∑ is a pair of < C,R >,
where C represents a set of concepts, and R stands for a set of
relations over these concepts. A specification is a pair of <
∑,Ψ > to describe that ∑ satisfies the axioms Ψ derived from
the domain model. In the following, notation C(O) is used to
annotate concepts C of the ontology O. These notations are
extended to denote the temporal extension to ontology. A
conceptualization, valid during a time interval k, ∑k is a pair
of < Ck, Rk >, where Ck represents a set of concepts valid
during time interval k, and Rk stands for a set of relations
over these concepts during time interval k. A specification,
valid during time interval k, is a pair of <∑k,Ψk> to describe
that ∑k satisfies the axioms Ψk during k, derived from the
domain model.
Below are three kinds of mutually exclusive semantic
relations between existing concept classes from two different
ontologies with temporal extension. We assume that Oi and Oj
are in the same domain (i, j ∈ N, where N: natural numbers).
cik where cik ∈Cik(Oi) and cjl where cjl ∈ Cjl(Oj) are two
different concepts valid during time intervals k and l
respectively.
Definition (Temporal Equivalent): Two concepts are
semantically equivalent at time t, if ∃ cik, cjl , s.t. cik ∼ cjl .
Namely, these two concepts: (1) have the same denotation
names (e.g. labels) at time t; (2) are synonyms at time t; or (3)
their attributes are same at time t, where t ∈ k∩l.
Definition (Temporal Inclusive): Two concepts are
semantically inclusive at time t (t ∈ k∩l), if ∃ cik, cjl , s.t. cik ≤
cjl (e.g. cik is a kind of cjl) or cik ≥ cjl (e.g. cjl is a kind of cik).
Namely, the attributes of one concept are also the attributes of
the other.
Definition (Temporal Disjoint): Two concepts are disjoint at
time t, (t ∈ k∩ l), if ∃ cik, cjl , s.t. cik ∩ cjl = Φ. Namely, there
is no common attribute between them.
For the purpose of ontology integration with temporal
extensions, we need to consider the consistency issue of an
integrated ontology. The ontology consistency is defined as
follows.
Definition (Temporal Consistent): An ontology is consistent at
any time t, if no sub-concepts of a particular concept c is a
sub-concept of concept disjoint with concept c i.e. if ∀cm

ik ,

cn
ik , co

ik (cm
ik , cn

ik, co
ik ∈ Ci(Oi), and cm

ik≠ cn
ik≠ co

ik (m,n,o
∈N), cm

ik ≤ cn
ik and cn

ik ∩ co
ik = Φ, s.t. cm

ik is not ≤ co
ik, t ∈

k..
Definition (Temporal Mapping): An mapping ℜk between
two ontologies Oi and Oj exists at any time t, if ∃cik, cjl ,s.t.
ℜ(cik, cjl) ∈ {∼, ≤ , ≥ }, t ∈ k∩ l.
Definition (Integration of Ontology with temporal extension):
Reusing available source ontologies with temporal extension
within a range to build a new ontology with temporal
extension. The new ontology serves at a higher level in the
application than that of various ontologies in ontology
libraries. It is associated with temporal semantic integration.
Research on integration of ontologies has been the focus of
researchers for quite a long time. In [13] integration is treated
as a process and its various activities are defined. PROMPT
[10] and Chimaera [14] are the tools for merging alignment
and testing of large ontologies. In [15] an agent based
approach is considered for integration of ontologies. A MAS
is presented that integrates the given ontologies and these can
be reused within the framework. In this section, we argue that
integration of ontologies with temporal extension require
small modification within the existing mechanisms. All the
existing tools can be enhanced to incorporate the temporal
extensions by considering the latest version of the concepts at
the merge time. The version history of the matched concepts
can be included in the derived ontology in the format
described in Section IV. The mechanism adopted in [15] is
investigated and the three cases described while mapping the
concepts between two ontologies are considered for any
possible modification. The two concepts can be semantically
equivalent, inclusive or no semantic equivalence for the
current two concepts but their corresponding direct ancestors
are semantically equivalent. Consider two latest concepts x13
and y25 in two ontologies O1 and O2. The concept x13 is the
third version of the concept x in ontology O1 and concept y25
is the fifth version of the concept y in ontology O2. Suppose,
x13 has two sub concepts and y25 has three sub concepts then
all these sub concepts have different version history. Consider
a situation where the ontology O2 is to be merged in O1. The
ontology in which concepts are merged i.e. O1 is treated as
primary ontology and ontology whose concepts are merged
i.e. O2 is treated as secondary ontology. After matching the
concepts between O1 and O2, x13 and y25 matches, so these
concepts are temporally and semantically equivalent at the
merger time and it becomes one of the merging points of the
ontologies. There can be two possibilities, firstly x13, y25 are
temporally equivalent but uses different names and secondly
they use the same name. If they use different names then in
the merged ontology an equivalent relation can be established
between them and both concepts can maintain their version
history. If x13 and y25 have a same name then only the concept
of the primary ontology (x13 in this case) will be able to keep
its version history. Version history of all other semantically
disjoint concepts (i.e for above mentioned other two cases) of
both the ontologies is maintained. Here, it is emphasized that
only the latest version at the merge time is used for matching,
but version history is maintained for all concepts except the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4286

ones that are having same name and are also temporally and
semantically equivalent.

VI. TRANSFORMING OWL GENE ONTOLOGY TO OWL GENE
ONTOLOGY WITH TEMPORAL TAGS – A CASE STUDY

The Gene Ontology (GO) [2] project is a collaborative effort
to address the need for consistent descriptions of gene
products in different databases. The GO collaborators are
developing three structured, ontologies that describe gene
products in terms of their associated biological processes,
cellular components and molecular functions in a species-
independent manner.

A. Gene Ontology with Temporal Extension
 The concept of temporal tagged ontologies is applied to the
Gene Ontology to make it version independent and a
particular ontology version can be generated on the fly
depending upon the requirement of the user or application.
We applied the first phase of creation of OWL ontology using
temporal tags algorithm for transforming the Gene Ontology.
According to algorithm, the ontology is read, construct by
construct from top to bottom and transformation happens for
each construct containing either the rdf:Id and rdf:Resource
tag. The rdf:Validity and rdf:Timestamp tags are introduced in
them and value of rdf:Resource and rdf:Id are modified by
appending version number to them. The sample output is
shown in table 1 wherein first column contains original Gene
Ontology and second contains the transformed one. At the end
of the first phase the value of rdf:Validity is set to Latest for
all the constructs and a default version number 1.0.0 is
appended to the rdf:Id and rdf:Resource values. Current date
and time is set for the rdf:Timestamp. The output of phase I
was fed to the phase II algorithm for maintaining any
subsequent updating of the concepts. Table 2 shows a
temporal OWL ontology class that has changed over time. The
class has got an another rdf:Resource and owl:Restriction. The
addition of these causes a change in the structure of the class,
due to the change in the underlying frame structure. These
types of updates need frame versioning and are very frequent
in the Gene Ontology as different users for the use of new
applications enrich the existing classes. The updated and old
classes exist simultaneously in the ontology for the seamless
integration of temporal tagged OWL ontology with the
existing applications.

TABLE I

GENE ONTOLOGY AND TRANSFORMED GENE ONTOLOGY
OWL Gene Ontology Transformed OWL Gene

Ontology with Temporal
Tags

<owl:Class
rdf:ID="GO_0005952">

 <rdfs:label>cAMP-
dependent protein kinase
complex</rdfs:label>

<owl:Class
rdf:ID="GO_0005952@1.0.
0" rdf:Validity="Latest"
rdf:Timestamp="01:02:2006
#05:05:00"/>
<rdfs:label>cAMP-
dependent protein kinase
complex</rdfs:label>

 <rdfs:comment
rdf:datatype="http://www.w
3.org/2001/XMLSchema#str
ing">An enzyme complex,
composed of regulatory and
catalytic subunits,………..
.</rdfs:comment>
 <!-- unlocalized protein
complex -->
 <rdfs:subClassOf
rdf:resource="#GO_000594
1"/>

 </owl:Class>

 <rdfs:comment
rdf:datatype="http://www.w
3.org/2001/XMLSchema#str
ing">An enzyme complex,
composed of regulatory and
catalytic subunits,………….
</rdfs:comment>
<!-- unlocalized protein
complex -->
 <rdfs:subClassOf
rdf:resource="#GO_0005941
@1.0.0"
rdf:Validity="Latest"
rdf:Timestamp="01:02:2006
#05:05:00"/>
</owl:Class>

TABLE II

PHASE II OUTPUT FOR A CLASS WITH FRAME VERSIONING
Phase II OWL Ontology with Temporal Tags

 <owl:Class rdf:ID="GO_0005952@1.1.0" rdf:Validity
="Latest" rdf:Timestamp="03:09:2006#10:30:00">
<rdfs:label>cAMP-dependent protein kinase complex
</rdfs:label>
<rdfs:comment rdf:datatype= "http://www.w3.org/2001
/XMLSchema#string">An enzyme complex, composed of
regulatory and catalytic…………</rdfs:comment>
<!-- protein complex -->
<rdfs:subClassOf rdf:resource="#GO_0043234@1.1.0"
rdf:Validity="Latest"
rdf:Timestamp="03:09:2006#03:30:00" />

 <rdfs:subClassOf><owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#part_of"/>
 </owl:onProperty>

<owl:someValuesFrom rdf:resource=
"#GO_0005622@1.1.0" rdf:Validity="Latest"

rdf:Timestamp="03:09:2006#03:30:00"/>
 </owl:Restriction>
 <!-- intracellular -->
 </rdfs:subClassOf>

 </owl:Class>
<owl:Class rdf:ID="GO_0005952@1.0.0"
rdf:Validity="Past"
rdf:Timestamp="09:09:2006#05:30:00">
<rdfs:label>cAMP-dependent protein kinase
complex</rdfs:label>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">An enzyme complex, composed of
regulatory and catalytic……..</rdfs:comment>

<!-- unlocalized protein complex -->
<rdfs:subClassOf rdf:resource="#GO_0005941@1.0.0"
rdf:Validity="Past"
rdf:Timestamp="09:09:2006#05:30:00"/>
</owl:Class>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4287

At the end of the first phase the value of rdf:Validity is set
to Latest for all the constructs and a default version number
1.0.0 is appended to the rdf:Id and rdf:Resource values.
Current date and time is set for the rdf:Timestamp.

Table 3 shows another class that has become obsolete in the
new version. The class just contains rdfs:label and
rdfs:comment in the new version but was having a
owl:Restriction in the old version. Semantic web applications
that are dependent on the old version will have problem due to
the change in the OWL class but in case of Temporal tagged
OWL class, the application will still continue to work fine.
Fig. 1 shows a portion of the class hierarchy in Gene
Ontology. The classes of the latest version are depicted in
white and classes of the past version are in gray. The class
GO_0007275@1.0.0 has a sub class GO_0009835@1.0.0 that
has changed to GO_0009835@1.1.0 between the two versions
taken in the case study. Due to the change, the sub classes of
GO_0009835@1.0.0 should become the subclasses of the
latest version GO_0009835@1.1.0. Since, the sub classes of
GO_0009835@1.0.0 contains only a slot or resource that
points to it base class, slot versioning is applied here and the
rdfs:subClassOf tag is replicated with its resource pointing to
the new version. The new version of resource is depicted in
white and old version in gray, similar to the classes. The new
version of the class GO_0009835@1.1.0 is appeared under
another class GO_0048608@1.0.0. The dotted line in the
figure1 depicts that there are many other classes present in
between that are not shown in the figure. Other classes shown
in the Fig. 1 are not expanded to show their resources, as they
have not changed between these versions. One can judge from
the code of temporal tagged ontology presented in Table 1,
Table 2 and Table 3 that the temporal tagged ontologies will
be having larger size due to the presence of extra tags and due
to the repetition of constructs for each version.

TABLE III

 PHASE II OUTPUT FOR AN OBSOLETE CLASS WITH FRAME
VERSIONING

Phase II - OWL Ontology with Temporal Tags
<owl:Class rdf:ID="GO_0000067@1.1.0"
rdf:Validity="Latest"
rdf:Timestamp="03:03:2006#05:05:00">
<rdfs:label>DNA replication and chromosome
cycle</rdfs:label>
<rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
> OBSOLETE (was not defined before being made
obsolete).</rdfs:comment>
</owl:Class>
 <owl:Class rdf:ID="GO_0000067@1.0.0"
rdf:Validity="Past" rdf:Timestamp="03:09:2005#05:05:00">
<rdfs:label>DNA replication and chromosome
cycle</rdfs:label>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#part_of"/>
 </owl:onProperty>
 <owl:someValuesFrom

rdf:resource="#GO_0007049@1.0.0" rdf:Validity="Past"
rdf:Timestamp="03:09:2005#05:05:00"/>

 </owl:Restriction>
 <!-- cell cycle -->
 </rdfs:subClassOf>

</owl:Class>

Fig. 1 Portion of class hierarchy of OWL Gene Ontology with

Temporal Tags

The code has also become less readable because of the
replication. We argue that both the size and readability of
OWL files are having very low effect on the performance of
OWL ontologies because these ontologies are primarily
designed for the semantic web applications usage and
particular OWL ontology version can always be generated
back from them.

VII. CONCLUSION
In this paper an approach providing consistent and dynamic
ontology support to knowledgebase applications is presented.
The approach combines the concepts of temporal frame and
slot versioning with the ontology to create temporal tagged
ontologies with embedded versioning. We also propose to
enhance the existing OWL to enable the creation of temporal
tagged OWL ontologies. The two new tags i.e. rdf:Validity
and rdf:Timestamp are introduced and a scheme is presented
for the value of the rdf:Id, rdf:About and rdf:Resource tags
for making the temporal tagged ontologies consistent with the
non-temporal ontologies. The existing mechanisms of
ontology integration can easily be extended to incorporate
temporal extensions. OWL temporal tagged ontologies are
designed for the machine consumption and not for human

C GO 0007566@1.0.0
C GO 0030582@1.0.0

 R GO 0009835@1.1.0
 R GO 0009835@1.0.0

C GO 0009836@1.1.0

C GO 0009837@1.1.0

 R GO 0009835@1.1.0
 R GO 0009835@1.0.0

CGO 0009835@1.0.0

CGO 0007275@1.0.0

 C GO 0030583@1.0.0
 C GO 0030584@1.0.0

C GO 0048608@1.0.0

C GO 0009835@1.1.0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4288

readability as it includes repetition of concepts with even
minor changes. These ontologies will be of great use for the
semantic web applications and will make them independent of
the ontology versions. This means that the semantic web
applications developer can devote more attention to the
application logic and agent behaviors development without
worrying the ongoing changes in the domain knowledge. The
dynamic behavior of the temporal tagged ontologies will
allow the application to use the most recent concepts of the
ontology without sacrificing the stability of the application.

REFERENCES
[1] P. Bedi, K. D. Sharma, S. Kaushik, “Time Dimension to Frame

Systems”, Journal of Information Science and Technology, Vol.2, No.3,
pp.212-228, April 1993.

[2] Gene Ontology Consortium, “The Gene Ontology (GO) Database and
Informatics Resource” Nucleic Acids Research, Vol. 32, Database Issue,
pp. 258-261, 2004.

[3] R. Maiocchi and B. Pernici, “Temporal Data Management Systems: A
Comparative View”, IEEE Trans. on Knowledge & Data Engg., Vol.3,
No.4, Dec.1991.

[4] N. F. Noy, and M. Klein, , “Ontology Evolution: Not the Same as
Schema Evolution” Knowledge and Information Systems, Vol. 6, pp.
428–440, 2004.

[5] N. F. Noy, and M. A. Musen, “Ontology Versioning in an Ontology
Management Framework” Intelligent Systems, IEEE, Vol. 19, No. 4., pp.
6-13, 2004.

[6] P. Bedi, and S. Marwaha, “Framework for Ontology Based Expert
Systems: Disease & Pests Identification in Crops - A Case Study”, in:
Proceedings of the International Conference of Artificial Intelligence
(IC-AI) 2005: 256-259, 2005.

[7] D. Brickley, and R. V. Guha, “RDF Vocabulary Description Language
1.0: RDF Schema”, W3C Note, World Wide Web Consortium, URL
http://www.w3.org/TR/rdf-schema/ , February 2004.

[8] M. C. A. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, “Ontology
Versioning and Change Detection on the Web”, in: Proceedings of the
13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW02), Spain, LNCS vol. 2473, pp 197-
212, October 1-4, 2002.

[9] J. Heflin, and Z. Pan, “A Model Theoretic Semantics for Ontology
Versioning” 3rd International Semantic Web Conference 2004, Lecture
Notes in Computer Science vol. 3298, Springer-Verlag, pp. 62–76, 2004.

[10] N. F. Noy, and M. A. Musen, “PromptDiff: A Fixed-Point Algorithm
for Comparing Ontology Versions,” in Proc. 18th Nat’l Conf. Artificial
Intelligence (AAAI 2002), AAAI Press, pp. 744–750, 2002.

[11] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL Web Ontology
Language Guide”. W3C Note, World Wide Web Consortium, February
2004. URL http://www.w3.org/TR/owl-guide/ .

[12] Gruber, T. R., Toward principles for the design of ontologies used for
knowledge sharing, KSL-93-04, Knowledge Systems Laboratory,
Stanford University, 2003. http://ksl-web.stanford.edu/ .

[13] Pinto, H. S., and Martins, P. J., A methodology for ontology integration,
in proc. of the International Conference on Knowledge Capture, pp 131-
138, 2001, Victoria, British Columbia, Canada.

[14] McGuinness, D., Fikes, R., Rice, J., and Wilder, S., An environment for
merging and testing large ontologies, in Proc. of the 7th
Internationational Conference on Principles of Knowledge
Representation and Reasoning (KR2000), pp483-493, 2003,
Breckenridge, Colorado, USA.

[15] Li, L., Wu, B., and Yang, Y., Agent-based Ontology Integration for
Ontology-based Applications, in Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 58, 2005.

Mr. Sudeep Marwaha has got his
masters degree in Computer Science
from the IARI, New Delhi in 1998. His
research interests include
Intelligent Information Systems,
Knowledge Representation, Expert
Systems, Ontologies, Semantic Web, and
Multi-Agent Systems.

He is a research scholar in the
Department of Computer Science, University of Delhi and is a scientist at
Division of Computer Applications, Indian Agricultural Statistics Research
Institute, Delhi, India. He is working as a scientist in the Institute since 1999.
He has got about 10 publications in reputed international conferences and
journals.
Mr. Marwaha is a life member of the Indian Society of Agricultural Statistics.

Dr. Punam Bedi has got her Ph.D. in

Computer Science from the Department of
Computer Science, University of Delhi, Delhi,
India in 1999. She has received her M.Tech
from IIT Delhi, Delhi, India. Her research
interests include Artificial Intelligence, Web
Intelligence, Semantic Web,
Intelligent Information Systems, Intelligent
Software Engineering, Intelligent Agents,
Intelligent User Interfaces, Fuzzy Logic,
Genetic Algorithms, Knowledge
Representation, Ontologies AI approaches to

Software Engineering, Software Engineering and Data Mining, Software
Reliability, Software Metrics, Requirement Engineering, Human Computer
Interaction (HCI), Trust, Information Retrieval, Personalization.

She is head and reader in the Department of Computer Science, University
of Delhi. She has 18 years of experience in research and teaching in different
capacities with University of Delhi. She has about 30 publications in reputed
journals and conferences.

Dr. Bedi is a member of IEEE and life member of Computer Society of
India.

