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Abstract—Reliable water level forecasts are particularly 

important for warning against dangerous flood and inundation. The 
current study aims at investigating the suitability of the adaptive 
network based fuzzy inference system for continuous water level 
modeling. A hybrid learning algorithm, which combines the least 
square method and the back propagation algorithm, is used to 
identify the parameters of the network. For this study, water levels 
data are available for a hydrological year of 2002 with a sampling 
interval of 1-hour. The number of antecedent water level that should 
be included in the input variables is determined by two statistical 
methods, i.e. autocorrelation function and partial autocorrelation 
function between the variables. Forecasting was done for 1-hour until 
12-hour ahead in order to compare the models generalization at 
higher horizons. The results demonstrate that the adaptive network-
based fuzzy inference system model can be applied successfully and 
provide high accuracy and reliability for river water level estimation. 
In general, the adaptive network-based fuzzy inference system 
provides accurate and reliable water level prediction for 1-hour ahead 
where the MAPE=1.15% and correlation=0.98 was achieved. Up to 
12-hour ahead prediction, the model still shows relatively good 
performance where the error of prediction resulted was less than 
9.65%. The information gathered from the preliminary results 
provide a useful guidance or reference for flood early warning 
system design in which the magnitude and the timing of a potential 
extreme flood are indicated.  
 

Keywords— Neural Network, Fuzzy, River, Forecasting 

I. INTRODUCTION 
 HE design, planning and operation of river systems 
depend largely on relevant information derived from 

extreme events forecasting and estimation. Reliable flood 
forecasts are particularly important for warning against 
dangerous flood and inundation as well as in the case of multi-
purpose reservoirs. Hydrological data estimation is also 
significant since the time series data often exhibits some form 
of deficiency due to the presence of gaps, discontinuities and 
inadequate length. There are many forecasting techniques 
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have been developed to simulate the hydrological time series 
such as empirical black box, conceptual, and physically based 
distributed models. Conceptual and physically based 
distributed models are designed to simulate the physical 
mechanisms that determine the hydrological circle, and use to 
involve water transference physical laws, and parameters 
associated with the characteristics of the catchment area [1]. 
Such models may require sophisticated mathematical tools, a 
significant amount of calibration data, and some degree of 
expertise and experience with the model [2]. Therefore in 
practical situations, the uses of a simple model such as linear 
system models or black box models more commonly used. 
However, these simpler models normally fail to represent the 
non-linear dynamics, which are inherent in the process of 
rainfall-discharge transformation. By considering the 
complexity of phenomena involved there is a strong need to 
explore alternative solutions through modeling direct 
relationship between the input and output data without having 
the complete physical understanding of the system. While 
data-driven models do not provide any physics of the 
hydrologic processes, they are in particular, very useful for 
modeling hydrological time series where the main concern is 
to predict accurate flows at specific watershed locations [3]. 

Recently, intelligent computation methods have been 
adopted in water resources forecasting studies as a powerful 
alternative modeling tools. These methods offer advantages 
over conventional modeling, including the ability to handle 
large amounts of noisy data from dynamic and nonlinear 
systems, especially where the underlying physical 
relationships are not fully understood. Other associated 
benefits include improvement of model performance, faster 
model development and calculation times, and improved 
opportunities to provide estimates of prediction confidence 
through comprehensive bootstrapping operations [4]. 
Successful applications of adaptive network-based fuzzy 
inference system based modeling in water resources 
forecasting have been widely reported such as used neuro-
fuzzy and neural networks model for short-term water level 
prediction [5], a fuzzy neural network model for inflow 
forecast into electric power plant [6]. Also, the performance of 
the adaptive network-based fuzzy inference system is 
significantly improved if the input data are transformed into 
the normal domain prior to model building [7]. Demonstration 
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on the use of Takagi-Sugeno models for predicting discharge 
from rainfall time series by comparing grid partitioning, 
subtractive clustering and Gustafson-Kessel clustering 
identification method for constructing the models [8]. 

The current paper reports an outcome of a study aims at 
investigating the suitability of the adaptive network based 
fuzzy inference system for continuous water level modeling.  
The information gathered from the preliminary results will be 
used to design the warning system in which the magnitude and 
the timing of a potential extreme flood are indicated. 

II. ADAPTIVE NETWORK INFERENCE SYSTEM 
Adaptive network-based fuzzy inference system (ANFIS) 

used a feed forward network to search for fuzzy decision rules 
that perform well on a given task. Using a given input-output 
data set, ANFIS creates a FIS whose membership function 
parameters are adjusted using a backpropagation algorithm 
alone or combination between a backpropagation algorithm 
with a least squares method. This allows the fuzzy systems to 
learn from the data being modeled. ANFIS provide a method 
for the fuzzy modeling procedure to learn information from 
the data set, followed by creating the membership function 
parameters that best allow the associated FIS to well perform 
the given task [9]. Consider a first order Takagi-Sugeno fuzzy 
model with a two input, one output system having two 
membership functions for each input as shown in Fig. 1(a). 
Then the equivalent ANFIS architecture of the first order 
Takagi-Sugeno inference system is shown in Fig. 1(b). The 
functioning of ANFIS is a five layered feed forward neural 
structure and the functionality of the nodes in these layers can 
be summarized as follows:  

Layer 1: Every node i in this layer is an adaptive node with 
a node output defined by: 

( ),,1 xO
iAi µ=  (1) 

( ),
2,1 yO

iBi −
= µ  (2) 

where x(or y) is the input to the node; Ai (or Bi-2) is a fuzzy set 
associated with this node, characterized by the shape of the 
membership function in this node and can be any appropriate 
functions that are continuous and piecewise differentiable 
such as Gaussian, generalized bell shaped, trapezoidal shaped 
and triangular shaped functions. Assuming a Gaussian 
function as the membership function, Ai can be computed as, 

( ) ( )( )[ ]2/5.0exp iii cxxA σµ −−=  (3) 
where {σi, ci} are the parameter set. Parameters in this layer 
are referred to as premise (antecedent) parameters. 

Layer 2: Every node in this layer is a fixed node labeled Π , 
which multiplies the incoming signals and outputs the 
product. For instance, 

( ) ( )yxwO
ii BAii µµ ×==,2  (4) 

Each node output represents the firing strength of a rule.  
Layer 3: Every node in this layer is a circle node labeled N. 

The ith node calculates the ratio of the ith rule's firing strength 
to the sum of all rule's firing strengths. Output of this layer 
will be called normalized firing strengths.  

 
 

Layer 4: Node i in this layer compute the contribution of 
the ith rule towards the model output, with the following node 
functions: 

( )iiiiiii ryqxpwfwO ++==,4  (6) 

Where iw  is the output of layer 3 and {pi, qi, ri} is the 
parameter set. Parameters in this layer will be referred to as 
consequent parameters.  

Layer 5: The single node in this layer is a fixed node 
labeled ∑ that computes the overall output as the summation 
of all incoming signals. 
Overall output = i

i
ii fwO ∑=,5  (7) 

The learning algorithm for ANFIS is a hybrid algorithm, 
which is a combination between gradient descent and least-
squares method [9]. For simplicity, the adaptive network has 

only one output and is assumed to be 
Output = F( I

r
,S) (8) 

where I
r

is the set of input variables and S is the set of 
parameters. If there exists a function H such that the 
composite function H oF is linear in some of the elements of 
S, then these elements can be identified by the least squares 
method. More formally, if the parameter set S can be 
decomposed into two sets 
S = S1 ⊕  S2 (9) 
(where ⊕ represents direct sum) such that H oF is linear in 
the element S2, then upon applying H to Eq. (8), we have 
H(output) = H o F ( I

r
,S) (10) 

which is linear in the elements of S2. Now given values of 
elements of S1, the P training data can be plugged into Eq. (9) 
and obtain a matrix equation 
AX = B (11) 

2,1,
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+
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Fig. 1 (a) Fuzzy inference system. (b) Equivalent ANFIS architecture
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where X is an unknown vector whose elements are parameters 
in S2. Let |S2|=M, then the dimensions of A, X and B are P×M, 
M×1 and P×1, respectively. Since the number of training data 
pairs (P) is usually greater than the number of linear 
parameters (M), this is an over-determined problem and 
generally there is no exact solution to Eq. (11). Instead, a least 
squares estimate of X can be sought that minimizes the 
squared error ||AX−B||2. 

 Based on the ANFIS architecture shown in the Fig. 1, we 
observe that the values of the premise parameters are fixed, 
and the overall output can be expressed as a linear 
combination of the consequent parameters. In symbols, the 
output f in the Fig. 1 can be rewritten as 

2
21

2
1

21

1 f
ww

w
f

ww
w

f
+

+
+

=  

2211 fwfw +=  (12) 

( ) ( ) ( ) ( ) ( ) ( ) 222222111111 rwqywpxwrwqywpxw +++++=
 
which is linear in the consequent parameters (p1, q1, r1 ; p2, q2, 
and r2 ). As a result, the set of total parameters (S) can be 
separated into two such that S1 = set of premise parameters 
and S2 = set of consequent parameters. Consequently the 
hybrid-learning algorithm can be used for an effective search 
of the optimal parameters of the ANFIS. More specifically, in 
the forward pass of the hybrid learning algorithm, node 
outputs go forward until layer 4 and the consequent 
parameters are identified by the least-squares method. In the 
backward pass, the error signals propagate backward and the 
premise parameters are updated by gradient descent. 

III. MODEL DEVELOPMENT 

A. Study Area and Data Set 
The study area is located in the Purwakarta Regency, West 

Java Indonesia.  The total drainage area of the river basin is 
approximately 60.17 km2. The climate of the catchment is 
generally dry, except during the monsoon months from 
December to April. Mean annual precipitation is 3000 mm but 
varies considerably from one year to another. Average air 
temperature ranges from 26.0 - 28.0°C during the rainy season 
of the northwest monsoon and 27.0 - 30.0°C during the dry 
season of the southeast monsoon. Satellite image of the river 
is shown in Fig. 2. For this study, data were available for a 
hydrological year of 2002 with a sampling interval of 6 
minute. In this study, the performance of the Takagi-Sugeno 
fuzzy model was examined on hourly intervals. To achieve 
this, the 6-minute data series was converted first into hourly 
data before proceeding into the network. The data were 
divided into three independent subsets: a training subset 
includes 4000 data sets; the verification subset has 2500 data 
sets; and the testing subset has the remaining 2000 data sets.  

B. Model Development 
The current study employed two statistical methods, i.e. 

autocorrelation (ACF) and partial autocorrelation (PACF) to 

identify the appropriate input parameters. The ACF and PACF 
are generally used to gather information about the 
autoregressive process of the data series [10]. The number of 
antecedent water level to be included that should be included 
in the input variables are usually determined by placing a 95% 
confidence interval on the autocorrelation and partial 
autocorrelation plots.  

The ACF and the corresponding 95% confidence intervals 
of the river water level series for lag 0 to lag 20 are presented 
in Fig. 3. Similarly, the PACF and the corresponding 95% 
confidence intervals of the river water level series are 
presented in Fig. 4. The ACF (Fig. 3) showed a significant 
correlation at 95% confidence level interval up to 14 hours of 
water level lag. In addition, the PACF showed significant 
correlation up to lag of 3 (3 hours). Result of correlogram 
plots of the data series shown in Figs. 3 and 4 imply that 
incorporating the water level values up to lag 3 hours can best 
represent the process in the catchment area under examination. 
Therefore, in this study, three antecedent values of water level 
are selected as input variables. 

Using a given input/output data set, we construct a fuzzy 
inference in which partition the input space to reflect the 
premise part of the fuzzy inference system. As there are no 
preferable membership functions, we created an initial set of 
membership functions using grid partition method. In the 
common grid partitioning method, at the beginning of 
training, a uniformly partitioned grid is taken as the initial 
state. In this study, grid partition method was used to create 
the initial membership function matrix using the global bell 
functions for each of the input variables. We selected three 
membership functions for water level at t-2, t-1, and t 
respectively. As the parameters in the premise membership 
functions are adjusted, the grid evolves. After computing the 
gradient vector of the parameters of the membership 
functions, ANFIS employed an optimization technique to 
adjust the parameters to reduce some error measure (usually 
defined by sum of the squared difference between actual and 

 
 

Fig. 2 Satellite image of the river (acquired on Sep 4 2005) 
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desired outputs). 
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Fig. 3 Autocorrelation plot of the river water level 
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Fig. 4 Partial autocorrelation plot of the river water level 
 

The ANFIS model applied in this study uses the hybrid 
learning algorithm, a combination of least square estimation 
and backpropagation (the gradient descent model), for 
membership function parameter estimation. In the forward 
pass of the hybrid learning algorithm, node outputs go 
forward until layer 4 and the consequent parameters are 
identified by the least-squares method. In the backward pass, 
the error signals propagate backward and the premise 
parameters are updated by gradient descent. The final fuzzy 
inference system model would ordinary be the one associated 
with minimum training error. 

The performances of the models developed in this study 
were assessed using various standard statistical performance 
evaluation criteria. The statistical measures considered were 
correlation coefficient (r) and mean absolute percentage error 
(MAPE). 

 
 

 
 
 
 
 
 
 
 
 
 
Where o

iWL and p
iWL are the observed and predicted water level at 

time t respectively; oWL and pWL are the mean of the observed and 
predicted water level; and n is the number of data. 

 

IV. RESULT AND DISCUSSIONS 
 
The fuzzy inference system has a total of 8 rules, and all of 

the rules include all the three input variables. In order to find 
the optimum membership parameters for the input models, the 
Sugeno-style ANFIS is employed. Therefore, the model 
contains 8 (2x2x2) rules. 
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Fig. 5 Error curves during the learning process 

 
The training RMSE as well as the variation of step-size for 

the input model at each-iteration is shown in Fig. 5. Usually 
the step size profile should be a curve, which goes uphill 
initially and reaches some maximum, then goes downhill till 
the end of training. This ideal step size is achieved by 
adjusting the initial step size and the increase and decrease 
rates. The membership functions of water level after training 
are shown in Fig. 6. From Fig. 6 we see how the final 
membership functions are trying to catch the local features of 
the training set. 
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Fig. 6 The final membership functions for input parameters 
 
Performance of the ANFIS model is compared in three data 

sets: (1) training sets, (2) verification sets, and (3) testing sets. 
Fig. 7 shows the observed water level on x-axis against the 
forecasted value on y-axis during the training, verification and 
testing respectively. In each of the scatter diagrams, the more 
perfectly the model was tested, the closer the points fall on the 
straight line. As could be concluded from those figures, the 
ANFIS was successful in learning the relationship between the 
input and output data. As shown in Fig. 7, the result of 
forecasting using the ANFIS model falls relatively close to the 
45o line. The results indicate that the generalization properties 
of the ANFIS model during the training, verification, and 
testing are comparable. 
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Fig. 7 Scatter plot of observed and forecasted water level during 

the training, verification and testing 
 
A comparative prediction accuracy of the ANFIS model 

using two statistical indices (MAPE and correlation) at lead 
time 1-hour indicates that the ANFIS model is accurate and 
consistent in different subsets, where the value of MAPE are 
smaller (training = 2.15%, verification = 1.34% and testing = 
1.15%) whereas all correlation values are also close to unity 
(training = 0.95, verification = 0.97 and testing = 0.98). 
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Fig. 8 The correlation values at different lead-time 
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Fig. 9 The MAPE values at different lead-time 

 
As a next task, a multi-step ahead prediction (12-hours 

ahead) is performed. Although the model has been trained in a 
one-step ahead forecast, it is desirable to investigate their 
performance in a multi-step ahead prediction.  In this 
particular case, the predicted outputs were feed back into the 
networks to predict more values. It is to be noted that as the 
number of steps ahead increases, it is expected that the 
prediction error variance should also increase. For a prediction 
of shorter lead time, the performance indices of each model 
were comparable to each other and resulted in a high 
prediction accuracy as shown in Fig. 7. However, as the lead 
times increases, the performance of all models diminishes 
rapidly particularly at lead times >8 hour (Figs. 8 and 9). For 
12-hour ahead forecast, the MAPE < 9.65 and correlation > 
0.78 were obtained by ANFIS model. This result might 
suggest that the ANFIS has a great ability to learn from input-
output patterns, which only represent three antecedent value 
of water level to produce a good generalization. 
 

V.  CONCLUSION  
The current paper reports an outcome of a study aims at 

investigating the suitability of the adaptive network based 
fuzzy inference system for continuous water level modeling. A 
hybrid learning algorithm, which combines the least square 
method and the back propagation algorithm, is used to identify 
the parameters of the ANFIS. To illustrate the practical 
application of the adaptive network-based fuzzy inference 
system, the Cilalawi River was used as a case study. The 
Cilalawi River is located in the West Java Province, Indonesia. 
For this study, water levels data were available for a 
hydrological year of 2002 with a sampling interval of 1 hour. 
The number of antecedent water level that should be included 
in the input variables is determined by two statistical methods, 
i.e. autocorrelation function and partial autocorrelation 
function between the variables. Forecasting was done for 1-h 
until 12-h ahead in order to compare the models 
generalization at higher horizons.  

The results demonstrate that the adaptive network-based 
fuzzy inference system model can be applied successfully and 
provide high accuracy and reliability for river water level 
estimation. In general, the adaptive network-based fuzzy 
inference system provide accurate and reliable water level 
prediction for 1-hour ahead where the MAPE=1.15% and 
correlation=0.98 was achieved. However the model accuracy 
deteriorates as the lead-time increases. Up to 12-hour ahead 
prediction, the adaptive network-based fuzzy inference system 
still shows relatively good performance where the error of 
prediction resulted was less than 9.65%. Therefore we 
conclude that the information gathered from the preliminary 
results provide a useful guidance or reference for flood early 
warning system design in which the magnitude and the timing 
of a potential extreme flood in the study area are indicated.  
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