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Recovery of Missing Samples in Multi-channel
Oversampling of Multi-banded Signals
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Abstract— We show that in a two-channel sampling series expan-
sion of band-pass signals, any finitely many missing samples can
always be recovered via oversampling in a larger band-pass region.
We also obtain an analogous result for multi-channel oversampling
of harmonic signals.
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|I. INTRODUCTION

OR a bounded and closed band-region B, let PWpg

be the Paley-Wiener space of finite energy (i.e. square
integrable) signals of which frequencies are confined in B.
That is,

PWp = {f(t) € L*(R) : supp f(¢) C B},

where F(f)(&) = (&) = \/%ff‘;o f(t)e"edt is the
Fourier transform of f() with inverse Fourier transform
F(t) = FUH@) = = [72, F©)etde.

If a signal f(t) is single-banded With band-region B =
[—7mw, Tw] (w > 0), then f(t) can be expanded as a Shannon
sampling series:

n\sinz(t —n)
) = Zf(;) m(t—n)
neL

in which all samples {f(Z) : n € Z} are independent.
However, if we oversample f(¢) with higher rate than the
optimal Nyquist rate w, then the resulting samples are depen-
dent. Using this observation, we may recover finitely many
missing samples([2,3,5,8]). When we join oversampling and
multi-channeling, we may or may not able to recover finitely
missing samples depending on the nature of the band-region
B and pre-filters used in channeling ([6,10]). In this work,
we show that in case of band-pass and harmonic signals,
any finitely many missing samples can be always recovered
through a multi-channel oversampling in a larger band-region
of the same type.

I1. OVERSAMPLING OF BAND-PASS SIGNALS

Consider a band-pass region B = B_U B, where wg, w >
0 and

B-=[-

Then the optimal Nyquist rate for signals in PWp is w
samples per second. For 7 with 0 < 7 < wy, let B = B_UB,
be another band-pass region, where

Bo=|-

m(wo + w), —mwp] and By = [rwg, m(wo + w)].

m(wo +w +7),

—m(wog — 7)]
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and }
By = [n(wo—7),m(wo +w + 7)].

We take 7 so that r := 22‘”‘?“’ is a positive integer. Then B, =
B_ + rm(27 + w) so that B becomes a so-called selectively
tiled band-region([4]) of length 27& with & = w + 27. Note
that the smallest such  is obtained when we take r to be the
largest integer less than 1 + 2“0 . We now take two pre-filters

of bounded measurable functions A, i(€6) (j=1,2) on B. We

set 4 4 B
A(E) _ 1(5) 1(£+’I‘TFUJ) :| on B_

Ag(§)  Ax(§+rmo)

and assume for some constant o > 0, | det A(£)| > « a.e. on
B_.

For any band-pass signal f(¢) in PWB, let

G0 = FHAOAE)0 = 7= / A;(6)f(€)eede

@
be the channeled output signals of the input signal f(¢). Then
([4,7,8,9])

D=3 Y 6(2)50. @

which converges in P15 and also converges uniformly on R.
By taking Fourier transform on (2), we obtain

f(e) = f}ch<f>(2§)¢j,n<§>,

j=1 n

which converges in L?(B), where

Bin(§) = = ;Uj(é) Pe
and
1 UL(§) Us(§) B
AQ™ = { U1(£1+r7r&1) Uz(firmb) ] on B (3)

If £(t) isin PWp, i.e., supp f C B, then

=3 a2 )simxs@) in 12(B), @

j=1 n

where x (&) is the characteristic function of B. By taking
inverse Fourier transform on (4), we have

S NILIES

j=1 n

Tjn(t) ®)

where T, (t) = \/%7 [ ®jme’tdg. We may call (5) a two-
channel oversampling series expansion of f(¢) in PWg.
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I1l. RECOVERING MISSING SAMPLES

For a band-pass signal f(¢) in PWg, consider its oversam-
pled expansion (5).

Lemma 1. We have for any integer m

Ck(f)(%) = %ch(f) (%) /;’ eiE(m—n)¢ (6)
for k=1,2.
Proof: By (1) and (4), we have

- = ich (2”) / AU Ex5(©) 5 de.
Hence for ;:; integer m we have
e (22 =
;ZZ )] awoven
+ [, AU ©xs© ]
== 22: So(3) [, [neone

+ Ap(€& +rr@)U; (€ + m@)} Y (63 mmge,

Ck (t

(5)61% (m—n) d¢

from which (6) comes since A (&)U; (&) + Ap(§+70)U;(E+
7@) = 8; by (3). O

Theorem 1. For any finite index sets of integers I; and I, any
finite missing samples {c1(f)(22) : m € 1} U {ca(f)(22) :

n € Iy} can be uniquely recovered.

Proof: Set I = {m1,7n2,"' ,mM} if I # (;5 and
Iy ={ny,ng, -+ ,nn} if Iy # ¢. Then we have from (6)

M
20) = LS g e () (P2

W
k=1

Cl(f)( ) + 915 (7)

w
for1<j< M and

N

2n 1 2n
a(N(Z2) = = D g mea() (2

k=1

> +9g2;  (8)
for 1 < j < N where g;;’s and go;’s are known quantities

and
r(m,n) := /

We may write (7-8) in a vector form as :

(I — Sl)Cl =g
{ (I —S2)c = g; ©)

ei%(m_")fdf for m,n € Z.

where
c = <C1(f)(27;1),'“,61(f)(27ZM))T7
C = <02(f)(2gl),---,cz(f)(2ZN>>T:
9 (g11, - o))"
G = (g921,---,92n)",
and
S1 = {%T-Unj,mk)]j::l, Sy = [%r(nﬁnk)}jk:l.

Note that S; and S, are self-adjoint. Now for any u =
(uh'" au]\'f) € C\{O}’

M
1
(Sru,u)y = s Z r(mg, my)urty
7,k=1
M
S 2
/— P BERGL
JB- '3
M
J, 1 et ae= Zw
B_ '3
since {—A=¢?&m¢}, o, is an orthonormal basis of L2(B_).

Hence, ﬂnnot be an eigenvalue of S;. Similarly, 1 cannot
be an eigenvalue of S5. Therefore, both equations in (9) have
unique solutions c¢; and c,. O

Above process can be readily extended to multi-channel
oversampling of harmonic signals (see [1] and Chaper 13 in
[4]). Let f(¢) be a harmonic signal in PWg, where

N
B = U [ai, bz]
i=1
is a harmonic band-region and

w(l<i<N)
aiv1—b; = 2mwy (1 <i< N) for w, wy > 0.

bi—ai =

For 0 < 7 < wp, let B 1= uN 1B be another harmonic band-
region, where

B; = [a; — 77, b; + 7] for 1 <4 < N.

We take 7 so that r := 22t s a positive integer. Then

Bj = B; + (j —i)rm(2r + w) for 1 <i < j < N so that
B becomes a so-called selectively tiled band-region of total
length N7w, where & = w + 27. We now take N pre-filters
A;(€) (j=1,2,---,N) of bounded measurable functions on
B We set A(g) be the N x N matrix whose (7, k)th component
is given by

Ajr(§) =

and assume |det A(¢)| > a > 0 ae. on By. Let

A+ (k- 1)rmw)

i (F)(t) = FH(A;(O) F(€)() &) f(&)e™de

=7 o
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be the channeled output signals. Proceeding as in Section 2, we
can obtain an oversampling formula for any harmonic signal
f(t) in PWpg (but viewed as a signal in PW3) as

N
70 =3 et () Tnto). (10)

j=1 n

Then, we have the following multi-channel analog of Theorem
3.2.

Theorem 2. For any finite index sets of integers I;(i =
1,2,---,N), any finite missing samples UX, {c;(f)(22)

w

m € I;} from the oversampling (10) can be uniquely recov-
ered.
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