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Recovery of Missing Samples in Multi-channel
Oversampling of Multi-banded Signals

J. M. Kim, and K. H. Kwon

Abstract— We show that in a two-channel sampling series expan-
sion of band-pass signals, any finitely many missing samples can
always be recovered via oversampling in a larger band-pass region.
We also obtain an analogous result for multi-channel oversampling
of harmonic signals.
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I. INTRODUCTION

FOR a bounded and closed band-region B, let PWB

be the Paley-Wiener space of finite energy (i.e. square
integrable) signals of which frequencies are confined in B.
That is,

PWB := {f(t) ∈ L2(R) : supp f̂(ξ) ⊂ B},
where F(f)(ξ) = f̂(ξ) := 1√

2π

∫ ∞
−∞ f(t)e−itξdt is the

Fourier transform of f(t) with inverse Fourier transform
f(t) = F−1(f̂)(t) := 1√

2π

∫ ∞
−∞ f̂(ξ)eitξdξ.

If a signal f(t) is single-banded with band-region B =
[−πω, πω] (ω > 0), then f(t) can be expanded as a Shannon
sampling series:

f(t) =
∑
n∈Z

f
(n

ω

) sinπ(t − n)
π(t − n)

,

in which all samples {f(n
ω ) : n ∈ Z} are independent.

However, if we oversample f(t) with higher rate than the
optimal Nyquist rate ω, then the resulting samples are depen-
dent. Using this observation, we may recover finitely many
missing samples([2,3,5,8]). When we join oversampling and
multi-channeling, we may or may not able to recover finitely
missing samples depending on the nature of the band-region
B and pre-filters used in channeling ([6,10]). In this work,
we show that in case of band-pass and harmonic signals,
any finitely many missing samples can be always recovered
through a multi-channel oversampling in a larger band-region
of the same type.

II. OVERSAMPLING OF BAND-PASS SIGNALS

Consider a band-pass region B = B−∪B+, where w0, w >
0 and

B− = [−π(ω0 + ω),−πω0] and B+ = [πω0, π(ω0 + ω)].

Then the optimal Nyquist rate for signals in PWB is ω
samples per second. For τ with 0 < τ ≤ w0, let B̃ = B̃−∪B̃+

be another band-pass region, where

B̃− = [−π(ω0 + ω + τ),−π(ω0 − τ)]
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and
B̃+ = [π(ω0 − τ), π(ω0 + ω + τ)].

We take τ so that r := 2ω0+ω
2τ+ω is a positive integer. Then B̃+ =

B̃− + rπ(2τ + ω) so that B̃ becomes a so-called selectively
tiled band-region([4]) of length 2πω̃ with ω̃ = ω + 2τ . Note
that the smallest such τ is obtained when we take r to be the
largest integer less than 1 + 2ω0

ω . We now take two pre-filters
of bounded measurable functions Aj(ξ) (j = 1, 2) on B̃. We
set

A(ξ) =
[

A1(ξ) A1(ξ + rπω̃)
A2(ξ) A2(ξ + rπω̃)

]
on B̃−

and assume for some constant α > 0, | detA(ξ)| ≥ α a.e. on
B̃−.

For any band-pass signal f(t) in PWB̃ , let

cj(f)(t) := F−1(Aj(ξ)f̂(ξ))(t) =
1√
2π

∫
B̃

Aj(ξ)f̂(ξ)eitξdξ

(1)
be the channeled output signals of the input signal f(t). Then
([4,7,8,9])

f(t) =
2∑

j=1

∑
n

cj(f)
(2n

ω̃

)
Sj,n(t), (2)

which converges in PWB̃ and also converges uniformly on R.
By taking Fourier transform on (2), we obtain

f̂(ξ) =
2∑

j=1

∑
n

cj(f)
(2n

ω̃

)
φj,n(ξ),

which converges in L2(B), where

φj,n(ξ) =
1
ω̃

√
2
π

Uj(ξ)e−i 2n
ω̃ ξ

and

A(ξ)−1 =
[

U1(ξ) U2(ξ)
U1(ξ + rπω̃) U2(ξ + rπω̃)

]
on B̃−. (3)

If f(t) is in PWB , i.e., supp f̂ ⊂ B, then

f̂(ξ) =
2∑

j=1

∑
n

cj(f)
(2n

ω̃

)
φj,n(ξ)χB(ξ) in L2(B), (4)

where χB(ξ) is the characteristic function of B. By taking
inverse Fourier transform on (4), we have

f(t) =
2∑

j=1

∑
n

cj(f)
(2n

ω̃

)
Tj,n(t) (5)

where Tj,n(t) = 1√
2π

∫
B

φj,neitξdξ. We may call (5) a two-
channel oversampling series expansion of f(t) in PWB .



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

396

III. RECOVERING MISSING SAMPLES

For a band-pass signal f(t) in PWB , consider its oversam-
pled expansion (5).

Lemma 1. We have for any integer m

ck(f)
(2m

ω̃

)
=

1
πω̃

∑
n

ck(f)
(2n

ω̃

) ∫
B−

ei 2
ω̃ (m−n)ξ (6)

for k = 1, 2.

Proof: By (1) and (4), we have

ck(f)(t) =
1√
2π

∫
B̃

Ak(ξ)f̂(ξ)eitξdξ

=
1

πω̃

2∑
j=1

∑
n

cj

(2n

ω̃

) ∫
B̃

Ak(ξ)Uj(ξ)χB(ξ)ei(t− 2n
ω̃ )ξdξ.

Hence for any integer m we have

ck(f)
(2m

ω̃

)
=

1
πω̃

2∑
j=1

∑
n

cj

(2n

ω̃

)[ ∫
B̃−

Ak(ξ)Uj(ξ)χB(ξ)ei 2
ω̃ (m−n)dξ

+
∫

B̃+

Ak(ξ)Uj(ξ)χB(ξ)ei 2
ω̃ (m−n)dξ

]

=
1

πω̃

2∑
j=1

∑
n

cj

(2n

ω̃

) ∫
B̃−

[
Ak(ξ)Uj(ξ)

+ Ak(ξ + rπω̃)Uj(ξ + rπω̃)
]
χB−(ξ)ei 2

ω̃ (m−n)dξ,

from which (6) comes since Ak(ξ)Uj(ξ)+Ak(ξ +πω̃)Uj(ξ +
πω̃) = δjk by (3).

Theorem 1. For any finite index sets of integers I1 and I2, any
finite missing samples {c1(f)( 2m

ω̃ ) : m ∈ I1} ∪ {c2(f)( 2n
ω̃ ) :

n ∈ I2} can be uniquely recovered.

Proof: Set I1 = {m1,m2, · · · ,mM} if I1 �= φ and
I2 = {n1, n2, · · · , nN} if I2 �= φ. Then we have from (6)

c1(f)
(2mj

ω̃

)
=

1
πω̃

M∑
k=1

r(mj ,mk)c1(f)
(2mk

ω̃

)
+ g1j (7)

for 1 ≤ j ≤ M and

c2(f)
(2nj

ω̃

)
=

1
πω̃

N∑
k=1

r(nj , nk)c2(f)
(2nk

ω̃

)
+ g2j (8)

for 1 ≤ j ≤ N where g1j’s and g2j’s are known quantities
and

r(m, n) :=
∫

B−
ei 2

ω̃ (m−n)ξdξ for m,n ∈ Z.

We may write (7-8) in a vector form as :{
(I − S1)c1 = g1

(I − S2)c2 = g2
(9)

where

c1 :=
(
c1(f)

(2m1

ω̃

)
, · · · , c1(f)

(2mM

ω̃

))T

,

c2 :=
(
c2(f)

(2n1

ω̃

)
, · · · , c2(f)

(2nN

ω̃

))T

,

g1 := (g11, · · · , g1M )T ,

g2 := (g21, · · · , g2N )T ,

and

S1 =
[ 1
πω̃

r(mj ,mk)
]M

j,k=1
, S2 =

[ 1
πω̃

r(nj , nk)
]N

j,k=1
.

Note that S1 and S2 are self-adjoint. Now for any u =
(u1, · · · , uM ) ∈ C \ {0},

〈S1u, u〉 =
1

πω̃

M∑
j,k=1

r(mj , mk)ukuj

=
∫

B̃−

∣∣∣ M∑
j=1

uj
1√
πω̃

ei 2
ω̃ mjξ

∣∣∣2χB−(ξ)dξ

<

∫
B̃−

∣∣∣ M∑
j=1

uj
1√
πω̃

ei 2
ω̃ mjξ

∣∣∣2dξ =
M∑

j=1

|uj |2

since { 1√
πω̃

ei 2
ω̃ mξ}m∈Z is an orthonormal basis of L2(B̃−).

Hence, 1 cannot be an eigenvalue of S1. Similarly, 1 cannot
be an eigenvalue of S2. Therefore, both equations in (9) have
unique solutions c1 and c2.

Above process can be readily extended to multi-channel
oversampling of harmonic signals (see [1] and Chaper 13 in
[4]). Let f(t) be a harmonic signal in PWB , where

B :=
N⋃

i=1

[ai, bi]

is a harmonic band-region and

bi − ai = πω (1 ≤ i ≤ N)
ai+1 − bi = 2πω0 (1 ≤ i < N) for ω, ω0 > 0.

For 0 < τ ≤ ω0, let B̃ := ∪N
i=1B̃i be another harmonic band-

region, where

B̃i = [ai − πτ, bi + πτ ] for 1 ≤ i ≤ N.

We take τ so that r := 2ω0+ω
2τ+ω is a positive integer. Then

B̃j = B̃i + (j − i)rπ(2τ + ω) for 1 ≤ i < j ≤ N so that
B̃ becomes a so-called selectively tiled band-region of total
length Nπω̃, where ω̃ = ω + 2τ . We now take N pre-filters
Aj(ξ) (j = 1, 2, · · · , N) of bounded measurable functions on
B̃. We set A(ξ) be the N×N matrix whose (j, k)th component
is given by

Ajk(ξ) = Aj(ξ + (k − 1)rπω̃)

and assume | detA(ξ)| ≥ α > 0 a.e. on B̃1. Let

cj(f)(t) := F−1(Aj(ξ)f̂(ξ))(t) =
1√
2π

∫
B̃

Aj(ξ)f̂(ξ)eitξdξ
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be the channeled output signals. Proceeding as in Section 2, we
can obtain an oversampling formula for any harmonic signal
f(t) in PWB (but viewed as a signal in PWB̃) as

f(t) =
N∑

j=1

∑
n

cj(f)
(2n

ω̃

)
Tj,n(t). (10)

Then, we have the following multi-channel analog of Theorem
3.2.

Theorem 2. For any finite index sets of integers Ii(i =
1, 2, · · · , N), any finite missing samples ∪N

i=1{ci(f)( 2m
ω̃ ) :

m ∈ Ii} from the oversampling (10) can be uniquely recov-
ered.
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