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Abstract — This paper proposes a novel improvement of 
forecasting approach based on using time-invariant fuzzy time series. 
In contrast to traditional forecasting methods, fuzzy time series can 
be also applied to problems, in which historical data are linguistic 
values. It is shown that proposed time-invariant method improves the 
performance of forecasting process. Further, the effect of using 
different number of fuzzy sets is tested as well. As with the most of 
cited papers, historical enrollment of the University of Alabama is 
used in this study to illustrate the forecasting process. Subsequently, 
the performance of the proposed method is compared with existing 
fuzzy time series time-invariant models based on forecasting 
accuracy. It reveals a certain performance superiority of the proposed 
method over methods described in the literature. 

Keywords — Forecasting, fuzzy time series, linguistic values, 
student enrollment, time-invariant model. 

I. INTRODUCTION

ORECASTING plays a notable role in making both 
crucial and day-to-day decisions about the future. Weather 

prediction, staff scheduling, business and production planning 
and multistage management decision analysis are among 
distinctive examples of forecasting areas where people want to 
foresee, within existing limits, as closely as possible. 
Although, there are many well-known forecasting methods, 
they cannot solve forecasting problems, in which the historical 
data are available in linguistic form. Fuzzy time series allows 
to overcome this drawback [4]. However, fuzzy time series are 
not just limited to linguistic values, and can be used for the 
prediction of numerical values too.  

For the last decade the problem of forecasting based on 
fuzzy time series has been studied by several authors [1]-[6]. 
Based on definitions [1], Song and Chissom introduced time-
invariant and time-variant models for forecasting with fuzzy 
time series [2], [3]. Despite the fact that all necessary concepts 
and definitions are provided later on in section II, we need to 
clarify these two important notions. Fuzzy time series F(t)

with finite number of elements is called time-variant, if for 
any moment of time t , 1)F(tF(t) ; otherwise it is called 

a time-variant fuzzy time series [4]. In their studies Song and 
Chissom used the University of Alabama enrollment data to 
demonstrate the forecasting process based on model: 

R1)-F(t)t(F = ,               (1) 

where 1)-F(t is the enrollment of year 1t , )t(F is the 

forecasted enrollment of year t expressed by fuzzy sets, R is
a union of first-order fuzzy relations, i.e. relations that 
represent the relationship between enrollments of two 
consequent years (for more details see Section II), and, finally, 
symbol  denotes max-min composition operator. As it was 
shown in [2] and [3], the average error of time-invariant and 
time-variant model turned out to be %18.3  and %37.4 ,
correspondingly. 

Subsequently, Chen proposed a new model to simplify the 
computational complexity of forecasting process by means of 
using simple arithmetic operations instead of max-min 
composition operator on the same set of historical enrollment 
data [4]. The average forecasting error of Chen’s model was 

%23.3 . Apart from the fact that the result obtained improves 
a similar figure of Song-Chissom’s time-variant model [3], it 
appears to be more efficient as compared to both time-
invariant and time-variant models of Song and Chissom in 
respect to more simple computations.  

This paper is devoted to the description of a new (modified) 
time-invariant method to deal with forecasting problems. 
Unlike Song-Chissom and Chen approaches, the proposed 
method utilizes variations of the available historical data as 
fuzzy time series instead of direct usage of raw numeric 
values. Furthermore, the effect of changes in the number of 
fuzzy sets in the model is investigated. Results obtained are 
compared with those of Chen and Song-Chissom models for 
the purpose of forecasting accuracy.  

The rest of the paper is organized as follows. Section II 
recalls those basic concepts and definitions [1]-[2] that are 
directly relevant to fuzzy time series. Section III discusses the 
proposed time-invariant method by the example of university 
enrollment together with its advantages over existing models. 
Finally, the concluding remarks are drawn in the Section IV. 

II. FUZZY TIME SERIES DEFINITIONS

This section briefly summarizes basic fuzzy time series 
concepts [1], [2] needed for the subsequent text. 

Definition 1. Assume )t(Y R (real line), ...0,1,2,...,t = , to 

be a universe of discourse defined by the fuzzy set )t(f i .

)t(F consisting of )t(f i , ,...2,1i = , is defined as a fuzzy 
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time series on )t(Y . At that, )t(F can be understood as a 

linguistic variable, whereas )t(f i , ,...2,1i = , are possible 

linguistic values of )t(F .

Definition 2. If there exists a fuzzy relationship )1t,t(R ,

such that )1t,t(R)1t(F)t(F , where symbol is an 

operator, then )t(F is said to be caused (or, induced) by 

)1t(F . The existing relationship between )t(F and 

)1t(F can be denoted by the expression )t(F)1t(F .

Definition 3. Denoting )1t(F  by iA  and )t(F  by jA , the 

relationship between )1t(F and )t(F can be defined by a 

logical relationship ji AA .

Definition 4. Fuzzy logical relationships, which have the 
same left-hand sides, can be grouped together into fuzzy 
logical relationship groups. For example, for the identical left-
hand side iA  such grouping can be depicted as follows:

...,A,AA

............

AA

AA

2j1ji2ji

1ji

Definition 5. If )t(F is a time-invariant fuzzy time series, 

then the logical relationship )t(F)1t(F  is called a first-

order logical relationship. 

III. FORECASTING ENROLLMENTS WITH A NEW METHOD OF

TIME-INVARIANT FUZZY TIME SERIES

A. Forecasting  

The aim of this study is to propose a method that is aimed 
to attain better forecasting accuracy by using time-invariant 
fuzzy time series. It should be emphasized that for forecast it 
uses only historical data in the numerical form (number of 
students) without any additional pieces of knowledge.   

Based on actual historical data of enrollments of the 
University of Alabama, Song and Chissom set up models, i.e. 
relationships among values of interests at different moments 
of time [1]-[3]. Method developed by Chen [4] also provides 
for construction of fuzzy sets iA  being values of the linguistic 

variable (actual) enrollments. We propose modifications that 
mainly deal with two key aspects; (a) usage of variations of 
historical data instead of actual enrollment characteristics, and 
(b) calculation of relationship R  utilized for the prediction of 
future enrollments. In addition, the method is tested on 
different number of fuzzy sets for the purpose of examination 
of forecasting accuracy. 

Finally, step-by-step forecasting process looks as follows: 

Step 1: Define the universe of discourse (universal set U )
starting from variations of the historical enrollment data, 
Step 2: Partition U  into equally length intervals, 

Step 3: Define fuzzy sets iA ,

Step 4: Fuzzify variations of the historical enrollment data, 
Step 5: Determine fuzzy logical relationships ji AA ,

Step 6: Group fuzzy logical relationships (see Step 5) having 
the same left-hand side and calculate iR for each i-th fuzzy 

logical relationship group, 
Step 7: Forecast and deffuzify the forecasted outputs, 
Step 8: Calculate the forecasted enrollments. 

Hence, the approach that uses enrollments of the University 
of Alabama can be represented more comprehensively in the 
following way:  
Step 1: In accordance with the problem domain, universal set 
U  is defined – on this occasion yearly variations of the 
enrollments are used. Actual data and corresponding 
variations are listed in Table I (minimum and maximum 
variations are 955Vmin  and 1291Vmax , respectively). 

With the object of simplifying division of U into equally 

length intervals, accept U  as ]VV,VV[ 2max1min , where 

1V  and 2V  are positive numbers 45  and 109 , accordingly. 

As a result, ]1400,1000[U .

TABLE I
ACTUAL ENROLLMENTS AND VARIATIONS OF HISTORICAL DATA 

Years Actual 
enrollments 

Variations Years Actual 
enrollments 

Variations 

1971 13055  1982 15433 – 955 
1972 13563 + 508 1983 15497 + 64 
1973 13867 + 304 1984 15145 – 352 
1974 14696 + 829 1985 15163 + 18 
1975 15460 + 764 1986 15984 + 82 
1976 15311 – 149 1987 16859 + 875 
1977 15603 + 292 1988 18150 + 1291 
1978 15861 + 258 1989 18970 + 820 
1979 16807 + 946 1990 19328 + 358 
1980 16919 + 112 1991 19337 + 9 
1981 16388 – 531 1992 18876 – 461 

Step 2: We use 6 (six) fuzzy sets, i.e. U  is partitioned into six 

equal intervals iu , 6,1i , namely: ]600,1000[u1 ,

]200,600[u2 , … , 1400],1000[u6 (the number of 

fuzzy sets is not necessarily coincides with the number of 
intervals),

Step 3: We assume that linguistic variable variations of 

enrollments can take as fuzzy values: 1A (big decrease), 2A

(decrease), 3A (no change), 4A (increase), 5A  (big 

increase), 6A (too big increase), for example. Regardless of 

the fact that six fuzzy sets are listed here, with the purpose of 
comparison we also conducted extra experiments with 
different number of fuzzy sets. 

For 6 intervals given 6,1i,ui , the fact that each iu

belongs to a particular 1,6j,A j , is expressed by the real 

value from the range [0,1]: 
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}u/1,u/0.5,u/0,u/0,u/0,u/0{A

}u/0.5,u/1,u/0.5,u/0,u/0,u/0{A

}u/0,u/0.5,u/1,u/0.5,u/0,u/0{A

}u/0,u/0,u/0.5,u/1,u/0.5,u/0{A

}u/0,u/0,u/0,u/0.5,u/1,u/5.0{A

}u/0,u/0,u/0,u/0,u/0.5,u/1{A

6543216

6543215

6543214

6543213

6543212

6543211

where Uui are elements of the universal set, and the 

number that precedes slash symbol “/ ” is the membership 

degree )u( i  to respective 1,6j,A j .

Step 4: Find a proper fuzzy set for each year’s variation. In 
other words, if the variation of the year t  is iup , and there 

is a value represented by a fuzzy set jA  with the maximum 

membership value falling on iu , then p is fuzzified as jA .

Fuzzification results are summarized in Table II. 

Step 5: Determine first-order relations, i.e. obtain a set of 
logical relationship between two consequent variations as 
shown in Table III. Following [2], we assume that 

CBD , or using product operator  defined on two 1-

vectors, j
T
iij CB]d[D . Fuzzy relationship (element of 

matrix D ) is calculated as )C,Bmin(d jiij , where iB and 

jC are the thi and thj , n,1j,i , elements of vectors B

and C , respectively.  

Step 6: Combine fuzzy relationships (FR) into FR groups 
starting from identical left-hand sides (Table IV). After that 

calculate 1,6i,Ri , as a union of logical relationships in 

each group (we operate with six fuzzy sets). Thus, 

5
T
66

6
T
55

T
54

T
53

T
55

5
T
44

T
43

T
44

5
T
34

T
32

T
33

3
T
21

T
22

3
T
11

AAR

AAAAAAAAR

AAAAAAR

AAAAAAR

AAAAR

AAR

where  is a union operator.  

Step 7: Determine fuzzy logical relationship group based upon 
known variation 1iA  of the previous year as follows 

If j1i AA , then ji RR , 6,1j .

As a result, iR  obtained is used in the definition of 

forecasting compositional model 

i1ii RAA ,                 (2) 

where iA is a forecasted variation of year i in terms of fuzzy 

set. 
 For example, consider forecasting of variation for the year 

1973 (University of Alabama data) in the presence of known 
variation of 1972. Data of the Table II makes it clear that 

4i RR . From (2) it follows that 44 RA)1973(F , or 

0.5]1110.50[)1973(F . Remaining forecasted 

fuzzy outputs are calculated in a similar manner (third column 
of the Table V). 

TABLE II 
FUZZIFIED HISTORICAL ENROLLMENTS BASED ON VARIATIONS 

Years Variations Fuzzified
variations 

Years Variations Fuzzified 
variations 

1971 1982 – 955 
1A

1972 + 508 
4A 1983 + 64 

3A

1973 + 304 
4A 1984 – 352 

2A

1974 + 829 
5A 1985 + 18 

3A

1975 + 764 
5A 1986 + 82 

5A

1976 – 149 
3A 1987 + 875 5A

1977 + 292 
4A 1988 + 1291 

6A

1978 + 258 
4A 1989 + 820 

5A

1979 + 946 
5A 1990 + 358 

4A

1980 + 112 
3A 1991 + 9 

3A

1981 – 531 
2A 1992 – 461

2A

TABLE III
VARIATIONS FUZZY LOGICAL RELATIONSHIPS 

44 AA 31 AA

54 AA 32 AA

55 AA 53 AA

35 AA 65 AA

43 AA 56 AA

23 AA 45 AA

12 AA 34 AA

TABLE IV 
VARIATIONS FUZZY LOGICAL RELATIONSHIPS GROUPS 

31 AA

312 A,AA

5423 A,A,AA

5434 A,A,AA

65435 A,A,A,AA

56 AA

Step 8: Results (fuzzy forecasted variations) of the previous 
step are summarized to obtain crisp integer value (forecasted 
enrollment) for each year under consideration. This process is 
known as defuzzification. In this paper, the defuzzification 
approach as it is proposed by Song and Chissom [2]-[3] is 
used – its essential principles can be brought to the following: 
(a) If all membership values of the output are 0 (zeros), then 
the forecasted variation is 0 too,  
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(b) If the membership of output has exactly one maximum, 
then midpoint of interval, on which this value is reached, is 
the forecasted variation, 

(c) If the membership of output has two or more consecutive 
maximums, the midpoint of corresponding conjunct intervals 
is taken for the forecasted variation, 

(d) Otherwise, standardize the fuzzy output and use the 
midpoint of each interval to apply centroid method for 
calculation of defuzzified forecasted variation. 

When the fuzzy variation is obtained, it is summed up with 
actual enrollment of the last (previous) year. For instance, if 
the calculated forecasted variation (year 1979) is 400 , and the 
actual enrollment (year 1978) is 15861 , then the forecasted 
enrollment (year 1979) is 1626140015861 . The results 
for the University of Alabama are shown in Table V. 

TABLE V
FORECASTED OUTPUTS AND ENROLLMENTS FROM 1973 TO 1993 

Year Actual 
enrollments 

Fuzzy Outputs Forecasted 
enrollments 

1973 13867 0  0.5  1  1  1  0.5 13963

1974 14696 0  0.5  1  1  1  0.5 14267

1975 15460 0  0.5  1  1  1  1 15296

1976 15311 0  0.5  1  1  1  1 16060

1977 15603 0.5  1  0.5  1 1 0.5 15530
… … …   …  … … 

1988 18150 0  0.5  1  1  1  1 17459

1989 18970 0  0  0  0.5  1  0.5 18950

1990 19328 0  0.5  1  1  1  1 19570

1991 19337 0  0.5  1  1  1  0.5 19728

1992 18876 0.5  1  0.5  1  1  0.5 19556

1993  1  0.5  1  0.5  0  0 18663

B. Discussion 

The proposed time-invariant method achieved better results 
in comparison with Song-Chissom and Chen’s models. The 
average forecasting errors and the forecasted enrollments of 
these methods based on using six fuzzy sets are given in Table 
VI/Figure 1, respectively. 

TABLE VI
AVERAGE FORECASTING ERRORS OF TIME-INVARIANT METHODS

Song and 
Chissom 

time-invariant 
model 

Chen’s 
time-invariant 

model

Proposed 
time-invariant 

method 

Average 
forecasting errors

%18.3 %23.3 %42.2

100
enrollmentact.

enrollmentforecast.-enrollmentact.
errorgforecastinActual

Furthermore, it is worth mentioning that the number of 
fuzzy sets ( FSN ) used in the model affects the average 

forecasting error. Table VII shows it clearly that forecasting 
accuracy increases with the growth of FSN . In particular, the 

increase of FSN  value from 5  to 9  results in decrease of 

average forecasting error by more than %25  in relative units. 

TABLE VII

AVERAGE FORECASTING ERRORS FOR DIFFERENT FSN

Proposed 
time-invariant 

method 

5 fuzzy 
sets 

6 fuzzy 
sets 

7 fuzzy 
sets 

8 fuzzy 
sets 

9 fuzzy 
sets 

Average 
forecasting 

errors 

%75.2 %42.2 %50.2 %02.2 %02.2

Figure 1. Forecasted enrollments of different models with actual enrollments 

IV. CONCLUSION

In this paper, we presented a novel time-invariant fuzzy 
time series method for forecasting university enrollments. To 
illustrate the forecasting process, historical data of the 
University of Alabama were used as they are summarized in 
[2]-[4] and [6]. The advantage of the proposed modification 
lies in utilization of automated forecasting method that 
operates on sorely available historical data (variations). To 
study the performance of the method, which significantly 
improves forecasting accuracy as against [2] and [4], we 
conducted experiments with different number of linguistic 
terms ( 27  information span of immediate human memory). 
As appears from Table VII, the method described turns down 
average forecasting error below %3  for all cases examined.  
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