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Abstract— In this paper we propose a simple adaptive algorithm
iteratively solving the unit-norm constrained optimization prob-
lem. Instead of conventional parameter norm based normalization,
the proposed algorithm incorporates scalar normalization which is
computationally much simpler. The analysis of stationary point is
presented to show that the proposed algorithm indeed solves the
constrained optimization problem. The simulation results illustrate
that the proposed algorithm performs as good as conventional ones
while being computationally simpler.
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component analysis.

I. INTRODUCTION

Constrained optimization is the minimization of an objec-
tive function subjected to constraints on the possible val-
ues of the independent parameters. A typical problem aris-
ing in signal processing for the parameter vector w =
[ w(0) w(1) · · · w(K − 1) ]T is to minimize a quadratic
cost function of an error

ei = (di − wT xi)2 (1)

where d(i) is the desired data and xi denotes the (K×1) input
vector, x = [ xi(0) xi(1) · · · xi(K − 1) ]T . A general
form of the constrained optimization is

min
w

J(w) = f(ei) (2)

subject to

‖w‖2 =
K−1∑
k=0

|w(k)|2 = 1.

This is one of the basic and fundamental problems in com-
munications, controls and adaptive signal processing [1]–[7].

The well-known stochastic gradient algorithm for minimiz-
ing (2) has the following form

w̃i = wi−1 − μ
∂J(w)
∂wi−1

= wi−1 − μ
∂f(ei)

∂ei

∂ei

∂wi−1

= wi−1 + μφixi (3)

wi =
w̃i

‖w̃i‖ , (4)

where wi is an estimate at iteration i, μ is the step-size, φi =
∂f(ei)

∂ei
and ∂ei

∂wi−1
= −xi. The adaptive algorithm is realized
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in two steps. The first step is the same as the conventional
stochastic gradient adaptive algorithm which minimizes J(w)
itself without any constraint. Then, in the second step, the
constraint is separately kept by normalizing w̃i by ‖w̃i‖ so
that the algorithm satisfies ‖wi‖ = 1 at every iteration.

II. THE PROPOSED ADAPTIVE ALGORITHM WITH SCALAR

NORMALIZATION

Here we propose a simpler adaptive algorithm solving unit-
norm constrained optimization problem. Instead of conven-
tional parameter norm based normalization in (3)-(4), the
proposed method incorporates scalar normalization:

w̃i = wi−1 + μφixi, and

wi =
w̃i

1 + μφiyi
, (5)

where yi = wT
i xi.

Now to verify that the proposed method in (5) solves the
unit-norm constrained optimization problem in (2), we provide
the steady-state analysis. The equation in (5) can be written
in

wi =
wi−1 + μφixi

1 + μφiyi
. (6)

Subtracting wi−1 from both sides of (6), we get

wi − wi−1 =
wi−1 + μφixi

1 + μφiyi
− wi−1

=
μφi(xi − yiwi−1)

1 + μφiyi
(7)

Since the denominator in the left side of (7) is

1
1 + μφiyi

= 1 + O(μ), (8)

the equation in (7) becomes

wi − wi−1 = μφi(xi − yiwi−1) + O(μ2) (9)

Taking expectation in (9) and using E[wi] = E[wi−1] = w
in the steady-state, we obtain

0 = μE[φi(xi − yiw)] + E[O(μ2)] (10)

Ignoring E[O(μ2)] for a small μ, the steady-state condition in
(10) approximates to

E[φi(xi − yiw)] ≈ 0 (11)

Multiplying w in both sides of (11), we get

E[φi(wT xi − yiwT w)] = E[φi(yi − yi‖w‖2)] ≈ 0 (12)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1841

TABLE I

COMPARISON OF COMPUTATIONAL COMPLEXITY

Algorithms × ÷ √·
unit-norm in (3)-(4) K K 1

proposed in (5) 1 K 0

Also the equation in (12) can be rewritten as

E[φiyi](1 − ‖w‖2) ≈ 0 (13)

From (13), in the steady-state, we can easily check that the
proposed algorithm satisfies the unit-norm constraint

‖w‖2 = 1

or
E[φiyi] = 0.

In addition to the unit-norm constrain, the propose algorithm
has the other stationary point, E[φiyi] = 0. Although we do
not provide the rigorous analysis for the condition E[φiyi] =
0, the extensive simulation results indicate that the algorithm
hardly results in the undesired solution.

Table I describes the computational complexity required for
performing the normalization steps.

III. APPLICATIONS

To demonstrate the proposed method indeed solves the
constrained optimization problem, we apply the method to two
well-known signal processing problems: constrained mean-
square optimization and principle component analysis (PCA).

A. Constrained Mean-Square Optimization

Here we consider

J(w) = f(ei) = E[e2
i ] (14)

Then
∂J(w)
∂wi−1

= −E[eixi] (15)

Taking instantaneous value of E[eixi] and comparing (15)
with (3),

φi = ei (16)

Therefore, the proposed adaptive algorithm in (5) becomes

wi =
wi−1 + μeixi

1 + μeiyi
. (17)

The desired data di is modelled as the output of the finite
impulse response (FIR) filter, w◦

di = w◦T xi + vi (18)

where we set w◦ = [1 0.5 0.2 − 0.5 0.3]T and the
zero mean white Gaussian noise is added such that the signal-
to-noise ratio is 20dB. We want to find w such that

min
w

(J(w) = f(ei) = E[e2
i ]) (19)
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Fig. 1. Performance of two adaptive algorithms in constrained mean-square
optimization (conventional vs. proposed)
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Fig. 2. Unit-norm constraint of the proposed algorithm, ‖wi‖.

subject to

‖w‖2 =
K−1∑
k=0

|w(k)|2 = 1.

The optimal solution of (19) is

w∗ = w◦/‖w◦‖. (20)

In the adaptive algorithm in (17) we choose the adaptive
filter length K = 4, and μ = 0.001. The initial condition is
set to w0 = [0 0 0 0 0]T . For comparison purposes,
the conventional algorithm in (3) and (4) is also tested using
the same model.

Fig. 1 shows the mean-square deviation (MSD) of two
algorithms,

MSD = 10 log10 ‖w∗ − wi−1‖2.

Each plot is averaged over 100 independent trials. Dashed line
is the result of the conventional algorithm and the solid is that
of the proposed. As can be seen in Fig. 1, the proposed works
as good as the conventional while keeping low computational
complexity. We also plot ‖wi‖ in Fig. 1 checking the unit-
norm constraint.

B. Principle Component Analysis (PCA)

PCA is a well-established technique for dimension reduc-
tion. Its applications include data compression, image pro-
cessing, data visualization, pattern recognition, and time series
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prediction [2]–[4]. Let x ∈ �K denote an K-dimensional zero
mean random vector. Consider a single neural network whose
output yi is given by

yi = wT
i−1xi. (21)

The PCA aims at finding a vector wi such that the variance
of yi is maximized, i.e.,

w = arg max E[y2
i ] (22)

subject to
‖w‖ = 1

. It is well-known that the solution w corresponds to the
normalized eigenvector associated with the largest eigenvalue
of the covariance matrix Rxx = E[xixT

i ]. A conventional
adaptive algorithm finding w is

w̃i = wi−1 + μyixi, and

wi =
w̃i

‖w̃i‖ . (23)

Here we can easily derive a simple PCA algorithm based
on single parameter normalization. From (22),

J(w) = f(ei) = E[y2
i ]

Then
∂J(w)
∂wi−1

= yixi (24)

Comparing (24) with (3), we get

φi = yi (25)

Therefore, replacing φi with yi in (5) the proposed adaptive
algorithm for PCA becomes

wi =
wi−1 + μyixi

1 + y2
i

. (26)

Using the approximation in (9), the algorithm in (26) reduces
to

wi = wi−1 + μ(yixi − y2
i wi−1) + O(μ2) (27)

Neglecting O(μ2) for a small μ, the algorithm in (27) is
exactly the same as the well-known Oja’s rule [8]–[9]. Also
the steady-state condition in (13) becomes

E[φiyi](1 − ‖w‖2) = E[y2
i ](1 − ‖w‖2 ≈ 0 (28)

Since E[y2
i ] = wT Rxxw > 0, the only solution of (28) is

‖w‖2 = 1.

In the simulation the input vector x is chosen to have the
covariance matrix of

Rxx =

⎛
⎜⎜⎝

1.00 0.80 0.59 0.30
0.80 1.00 0.60 0.49
0.59 0.60 1.00 0.80
0.30 0.49 0.80 1.00

⎞
⎟⎟⎠ ,

whose the normalized eigenvector associated with the largest
eigenvalue is

w∗ = [0.4617 0.5356 0.5356 0.4616]T .
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Fig. 3. Performance of two adaptive algorithms in PCA (conventional vs.
proposed method)
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Fig. 4. Unit-norm constraint of the proposed PCA algorithm, ‖wi‖.

Also the initial condition is set to w0 =
[0.1 0 0 0 0]T . We set K = 2 and μ = 0.001.
For comparison we plot the norm squared parameter error,
‖w∗ − wi−1‖2. Each plot is averaged over 100 independent
trials.

As shown in Fig. 3, the proposed adaptive algorithm con-
verges as good as the conventional one while being compu-
tationally simpler. We also plot ‖wi‖ in Fig. 4 to check the
unit-norm constraint.

IV. CONCLUSIONS

We have proposed an simple adaptive algorithm for the unit-
norm constrained optimization. From simulation results, the
proposed scalar normalization works as good as the conven-
tional norm-based normalization while being computationally
simpler. Although only two applications have been illustrated
here, we believe the proposed method may trigger other
applications based on the unit-norm constrained optimization.
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