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Fuzzy Control of Macroeconomic Models
André A. Keller

Abstract—The optimal control is one of the possible controllers
for a dynamic system, having a linear quadratic regulator and using
the Pontryagin’s principle or the dynamic programming method .
Stochastic disturbances may affect the coefficients (multiplicative
disturbances) or the equations (additive disturbances), provided that
the shocks are not too great . Nevertheless, this approach encounters
difficulties when uncertainties are very important or when the prob-
ability calculus is of no help with very imprecise data. The fuzzy
logic contributes to a pragmatic solution of such a problem since it
operates on fuzzy numbers. A fuzzy controller acts as an artificial
decision maker that operates in a closed-loop system in real time.
This contribution seeks to explore the tracking problem and control
of dynamic macroeconomic models using a fuzzy learning algorithm.
A two inputs - single output (TISO) fuzzy model is applied to the
linear fluctuation model of Phillips and to the nonlinear growth model
of Goodwin.

Keywords—fuzzy control, macroeconomic model, multiplier - ac-
celerator, nonlinear accelerator, stabilization policy.

I. INTRODUCTION

A
Macroeconomic model attempts to describe the dynamics

of an economy over short- and long-run time periods.

The model consists of differential or difference equations,

where the variables are of three main types : (1) endogenous

variables that describe the state of the economy,(2) control

variables that are the instruments of economic policy to guide

the trajectory towards an equilibrium target, and (3) exogenous

variables that describe an uncontrollable environment. Given

the sequence of exogenous variables, the dynamic optimal

stabilization problem consists in finding a sequence of con-

trols, so as to minimize some quadratic objective function

[27][28]. The optimal control is one of the possible controllers

for a dynamic system, having a linear quadratic regulator and

using the Pontryagin’s principle or the dynamic programming

method [10][19]]. Stochastic disturbances may affect the coef-

ficients (multiplicative disturbances) or the equations (additive

random term), provided that the chocks are not too great

[4][6][33]. Nevertheless, this approach encounters difficulties

when uncertainties are very important or when the probability

calculus is of no help with very imprecise data. The fuzzy

logic contributes to a pragmatic solution of such a problem

since it operates on fuzzy numbers. Lee[23] surveys the fuzzy

logic on control systems : methodology of constructing the

fuzzy logic controller (FLC), its performances, the fuzzifica-

tion and defuzzification strategies, the derivation of the data

base and control rules, the definition of fuzzy implication

and analysis of fuzzy reasoning mechanisms. The modeling

controllers using fuzzy relations is presented with applications

in [5][12][21][22][31][36] [37]. Afshari and Georgescu [1]

develop a single input-single output (SISO) fuzzy model for
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Fig. 1. Design the fuzzy controller

the design of optimal tracking control systems (a particular

class of quadratic control). The experimental results indicate

often better performances of the FLC than the conventional

PID controller and show its use to engineering problems [7].

In a fuzzy logic, the logical variables take continue values

between 0(false) and 1(true), while the classical Boolean logic

operates on binary values of either 0 or 1. Fuzzy sets are then

a natural extension of crisp sets. The most common shape

of their membership functions is triangular or trapezoidal.

This contribution seeks to explore the control of dynamic

macroeconomic models using a fuzzy learning algorithm.

Two basic multiplier-accelerator models for a closed econ-

omy are considered : the linear fluctuation model of Phillips

[2][3][25][26]and the nonlinear growth model of Goodwin

[2][15][17]. The computations are carried out using the pack-

ages MATHEMATICA’s FuzzyLogic 2 [20][30][35], MATLAB

R2008a & Simulink 7, & Control Systems, & Fuzzy Logic 2

[32].

II. FUZZY MODELING AND CONTROL

A. Fuzzy modeling

1) Fuzzy logic controller: A FLC acts as an artificial

decision maker that operates in a closed-loop system in real

time[24]. Fig.1 shows a simple control problem, keeping a

desired value of a single variable. There are two conditions

: the error and the derivative of the error. This controller

has four components : (1) a fuzzification interface to convert

crisp input data into fuzzy values, (2) a static set of ”If-Then”

control rules which represents the quantification of the expert’s

linguistic evaluation of how to achieve a good control, (3) a

dynamic inference mechanism to evaluate which control rules

are relevant, and (4) the defuzzification interface that converts

the fuzzy conclusions into crisp inputs of the process1. These

are the actions taken by the FLC. The process consists of three

1The commonly used centroid method will take the center of mass. It favors
the rule with the output of greatest area. The height method takes the value
of the biggest contributor.
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Fig. 2. (a) Crisp set, (b) Triangular MF, (c) Trapezoidal MF

Fig. 3. Membership functions of the two inputs and one output

main stages : at the input stage (1) the inputs are mapped to

appropriate functions, at the processing stage (2) appropriate

rules are used and the results are combined, at the output stage

(3) the combined results are converted to a crisp value input

for the process.

2) Fuzzification:

a) Membership functions: A membership function (MF)

assigns to each element x of the universe of discourse X ,

a grade of membership µ(x), such that µ : X �→ [0, 1].
The Fig.2 compares the crisp number to commonly used

linear piesewise shapes : a triangular-shaped MF and a

trapezoidal-shaped MF 2. The triangular MF is defined by

µ(x) = max

{

min

{

x−a

b−a
, c−x

c−b

}

, 0

}

, where a < b < c. The

trapezoidal MF is defined by max

{

min

{

x−a

b−a
, 1, d−x

d−c

}

, 0

}

,

where a < b < c < d. A fuzzy set Ã is then defined as a set of

ordered pairs Ã = {x, µ
Ã
(x)|x ∈ X}. According to the fuzzy

Zadeh operators, we have : µ(Ã ∧ B̃) = min{µ(Ã), µ(B̃)},

µ(Ã ∨ B̃) = max{µ(Ã), µ(B̃)} and µ(¬Ã) = 1 − µ(Ã)
The overlapping MFs of the two inputs error and change-

in-error and the MF of the output control-action show the

most common triangular form in figure 3. The linguistic label

of these MFs are ”Negative”, ”Zero” and ”Positive” over the

range [−100, 100] for the two inputs and over the range [−1, 1]
for the output.

2A smooth representation (π-curve) may be obtained using s- and z-

curves. The s-curve is defined by s(x; a, b) = 0,if x < a, 1

2
(1 +

cos x−b

b−a
π), if a ≤ x ≤ b, 1 if x > b and by z(x; b, c) = 0,if x <

b, 1

2
(1 + cos x−b

c−b
π), if b ≤ x ≤ c, 1 if x > c . The π − curve is

then and π((x; a, b, c)) = min s(x; a, b), z(x; b, c) .

Fig. 4. Fuzzy rule base 1:NL-Negative Large, ZE-Zero error,PL-Positive
Large

Fig. 5. Fuzzy surface

b) Fuzzy rules: Fuzzy rules are coming from expert

knowledge and consist of ”If-Then” statements. The linguistic

rules consist of an antecedent block between ”If” and ”Then”

and a consequent block following ”Then” 3. Let the continuous

differentiable variables e(t) and ė(t) denote the error and the

derivative of error in the simple stabilization problem of Fig.

1. The conditional recommendations are of the type

If < e, ė > is A × B Then v is C, where

[A×B](x, y) = min[A(x), B(y)], x ∈ [−a, a], y ∈ [−b, b].

These FAM(Fuzzy Associative Memory)-rules 4are those of

the Fig.4. The commonly linguistic states of the TISO model

are denoted by the simple linguistic set A = {NL, ZE;PL}.

The binary input-output FAM-rules are then triples such as

(NL, NL;NL): ”If” input e is Negative Large and ė is

Negative Large ”Then” control action v is Negative Large.

The antecedent (input) fuzzy sets are implicitly combined with

conjunction ”And”. The control surface of this TISO control

strategy is given by Fig.5

c) Fuzzy inference: In Fig.6, the system combines logi-

cally input crisp values with minimum, since the conjunction

”And” is used. Fig.7 produces the output set, combining all the

3See Braae and Rutherford [7] for fuzzy relations in a FLC and their
influences to select more appropriate operations.

4Choosing an appropriate dimension of the rule sets is discussed by Chopra
and al.[11]. The compared rules bases dimension 9(for 3 MFs), 25 (5 MFs),
49 (7 MFs), 81 (9 MFs) and 121 (11 MFs).
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Fig. 6. FAM influence procedure with crisp input measurements

Fig. 7. Output fuzzy set from crisp input measurements

rules of the simple control example, given crisp input values

of the pair (e, ė).
3) Defuzzification: The fuzzy output for all rules are ag-

gregated to a fuzzy set as in Fig.7. Several methods can be

used to convert the output fuzzy set into a crisp value for

the control-action variable v. The centroid method (or center

of gravity (COG) method) is the center of mass of the area

under the graph of the MF of the output set in Fig.7. The COG

corresponds the expected value

vc =

∫

vµ(v)dv
∫

µ(v)dv
.

In this example, vc = −.124 for the pair of crisp inputs

(e, ė) = (−55, 20).

B. TISO Mamdani fuzzy controller

Let us consider the simple control example. The fuzzy

controller uses identical input fuzzy sets, namely ”Negative”,

”Zero” and ”Positive” MFs. Fig.8 uses the 9 numbered fuzzy

rules of Fig.4. Let suppose the system output to follow

x(t) = 4 + e−t/5(−4 cos t + 3
√

6 sin t).

The error is defined by e(t) = r(t) − x(t), where r(t) is the

reference input, supposed to be constant (a setpoint)5. Then

we have d

dt
e(t) = ė = −ẋ.. These nine rules will cover all

the possible situation. According to rule 1 (NL, NL;NL),
the system output is above the setpoint (negative error) and is

increasing at this point. The controller output should then be

5Scaling factors may be used to modify easily the universe of discourse of
inputs. We then have the scaled inputs Kee(t) and Kr ė(t)

Fig. 8. System output and fuzzy rules

increased. On the contrary, according to rule 9 (PL, PL;PL),
the system output is below the setpoint (positive error) and is

decreasing at this point. The controller output should then be

decreased.

III. APPLICATION TO ECONOMICS

Stabilization problem are considered with time-continuous

multiplier-accelerator models: the linear Phillips fluctuation

model and the nonlinear Goodwin growth model6.

A. The linear Phillips model

1) Presentation: The equations of the Phillips’model

[2][16][25][26][29]are

Z(t) = C(t) + I(t) + G(t), (1)

C(t) = c.Y (t) − u(t), (2)

dI(t)

dt
= −β

(

I(t) − v
dY (t)

dt

)

, (3)

dY (t)

dt
= −α

(

Y (t) − Z(t)

)

. (4)

All yearly variables are continuous twice-differentiable func-

tions of time and all measured in deviation from the initial

equilibrium value. The aggregate demand Z consists of con-

sumption C, investment I and autonomous expenditures of

government G in ( 1). Consumption C depends on income Y

without delay and is disturbed by a spontaneous change u at

time t = 0 in (2). The variable u(t) is then defined by the step

function u(t) = 0, for t < 0 and u(t) = 1 for t ≥ 1.The

coefficient c is the marginal propensity to consume. The

equation (3) is the linear accelerator of investment, where

investment is related to the variation in demand. The coeffi-

cient v is the acceleration coefficient and β denotes the speed

of response of investment to changes in production, the time

constant of the acceleration lag being 1

β
years. The equation

(4) describes a continuous gradual production adjustment to

demand. The rate of change of production Y at any time is

proportional to the difference between demand and production

6The use of closed-loop theory in economics is due to Tustin[34].
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Fig. 9. Phase diagram of the Phillips’ model

at that time. The coefficient α is the speed of response of

production to changes in demand. Simple exponential time

lags are then used in this model.7

2) Dynamics of the unregulated model: The unregulated

model (with G = 0 and u = 1) is governed by the linear

second-order differential equation in Y

Ÿ +

(

α(1 − c) + β − αβv

)

Ẏ + αβ(1 − c)Y (t) = −αβ,

when t > 0 with the initial conditions Y (0) = 0, Ẏ (0) = −α.

Taking the following values for the parameters : c = 3

4
, v = 3

5
,

α = 4 (T = 1

α
= 3 months)and β = 1 (time constant of the

lag 1 year), the differential equation is

5Ÿ − 2Ẏ + 5Y (t) = −20, t > 0,

with initial conditions Y (0) = 0, Ẏ (0) = −4.The solution of

the unregulated model is

Y (t) = −4 + 2et/5(2 cos
2
√

6

5
−

√

6 sin
2
√

6

5
), t > 0

or

Y (t) = −4 + 6.32et/5 cos(0.98t + 0.89), t > 0.

The graph of Y (t) is plotted in Fig.10(a). The phase diagram

in Fig.9 shows an unstable equilibrium which justifies stabi-

lization policies.

3) Proportional+ Integral+ Derivative Stabilization poli-

cies: The stabilization of the model proposed by Phillips

[25] consists of three additive policies : the proportional P-

stabilization policy, the proportional+integral PI-stabilization

policy, the proportional+integral+derivative PID-stabilization

policy. Modifications are introduced by adding terms to the

7The differential form of the delay is the production lag α

D+α
where the

operator D is the differentiation w.r.t time. The distribution form is

Y (t) =
∞

τ=0

w(τ)Z(t − τ)dτ,

given by the weighting function w(t) = αe−αt. The response function is
F (t) = 1 − e−αt for the path of Y following a unit step-change in Z.

consumption equation (2). For a P-stabilization, the consump-

tion equation will be

C(t) = c.Y (t) − u(t) −
λ

D + λ
KpY (t),

where Kp denotes the proportional correction factor and

λ the speed of response of policy demand to changes in

potential policy demand 8. In the numerical applications, we

will retain λ = 2 (a correction lag with time constant of 6

months).The dynamic equation of the model is a linear third-

order differential equation in Y . We have

Y (3) +

(

α(1 − c) + β + λ − αβv

)

Ÿ

+

(

βλ + (1 − c)α(β + λ) + αλKp − αβλv

)

Ẏ

+ αβλ

(

1 − c + Kp

)

Y (t) = −αβλu(t).

Taking c = 3

4
, v = 3

5
, α = 4, β = 1, λ = 2, Kp = 2, u = 1,

the differential equation is

5Y (3) + 8Ÿ + 81Ẏ + 90Y (t) = −40, t > 0,

with initial conditions Y (0) = 0, Ẏ (0) = −4, Ÿ (0) = −5.6.

The solution (for tt > 0) is

Y (t) = −.44 − .03e−1.15t
− 1.1e−.23t sin(−3.96t + .44)

The graph of the P-controlled Y (t) is plotted in Fig.10(b).The

system is stable according to the Routh-Hurwitz stability

conditions. 9 Moreover, the stability conditions for Kp are

Kp ≤ −0.25 and Kp ≥ 0.35.

For a PI-stabilization policy, the consumption equation (2)

will be

C(t) = c.Y (t) − u(t) −
λ

D + λ

{

KpY (t) + Ki

∫

Y (t)dt

}

,

where Ki denotes the integral correction factor. The dynamic

equation of the model is a linear fourth-order differential

equation in Y . We have

Y (4) +

(

α(1 − c) + β + λ − αβv

)

Y (3)

+

(

α(1 − c)(β + λ) + βλ + αλKp − αβλv

)

Ÿ

+

(

αβλ(1−c)+αβλKp+αλKi

)

Ẏ (t)+αβλKiY (t) = 0.

8The time constant of the correction lag is 1

λ
years.

9Let be the polynomial equation with real coefficients

a0λn + a1λn−1 + · · · + an−1λ + an = 0, (a0 > 0).

The Routh-Hurwitz theorem states that necessary and sufficient conditions to
have negative real part are given by the conditions that all the leading principal
minors of a matrix must be positive. In this case, the 3 × 3 matrix is

a1 a3 0
a0 a2 0
0 a1 a3

.

We have all the positive leading principal minors : ∆1 = 1, ∆2 = 7.9 and
∆3 = 142.5.
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Taking c = 3

4
, v = 3

5
, α = 4, β = 1, λ = 2, Kp = Ki =

2, u = 1, the differential equation is

5Y (4) + 8Y (3) + 81Ÿ + 170Ẏ + 80Y (t) = 0, t > 0,

with initial conditions Y (0) = 0, Ẏ (0) = −4, Ÿ (0) =
−5.6, Y (3) = 96. The solution (for t > 0) is

Y (t) = −.07e−1.43t
− .13e−.69t +1.08e.26t sin(−4.03t+ .19).

The graph of the PI-controlled Y (t) is plotted in Fig.10(c).

The system is unstable, since the Routh-Hurwitz conditions

are not all satisfied 10. Given Kp = 2, the stability conditions

on Ki are Ki ∈ [0, .8987].
For a PID-stabilization policy, the consumption equation (2)

will be

C(t) = c.Y (t) − u(t)

−
λ

D + λ

{

KpY (t) + Ki

∫

Y (t)dt + KdDY (t)

}

, (5)

where Kd denotes the derivative correction factor. The dy-

namic equation of the model is a linear fourth-order differen-

tial equation in Y . We have

Y (4) +

(

α(1 − c) + β + λ + αλKd − αβv

)

Y (3)

+

(

(1 − c + λKd − λv)αβ + (1 − c + Kp)αλ + βλ

)

Ÿ

+

(

αβλ(1 − c + Kp) + αλKi

)

Ẏ + αβλKiY (t) = 0.

Taking c = 3

4
, v = 3

5
, α = 4, β = 1, λ = 2, Kp = Ki =

2, Kd = .55, u = 1, the differential equation is

Y (4) + 6Y (3) + 20.6Ÿ + 34Ẏ + 16Y (t) = 0, t > 0,

with initial conditions Y (0) = 0, Ẏ (0) = −4, Ÿ (0) =
12, Y (3) = 2.4. The solution (for t > 0) is

Y (t) = −.07e−2.16t
− .12e−.74t

+ 1.40e−1.55t cos(2.76t + 1.54)

The graph of the PID-controlled Y (t) is plotted in Fig.10(d).

The system is stable, since the Routh-Hurwitz conditions are

all satisfied 11. Given Kp = Ki = 2, the stability conditions on

Kd are Kd < −3.92 and Kd ≥ .07. The Fig.10 illustrates and

compares the results The curve without stabilization policy

shows the response of the activity Y to the unit initial

decrease of demand. The acceleration coefficient (v = .8)
generates explosive fluctuations 12.The proportional tuning

corrects the level of production but not the oscillations. The

oscillations grow worse by the integral tuning. The combined

PI-stabilization 13 renders the system unstable. The additional

derivative stabilization is then introduced and the combined

PID-policy stabilize the system.

10We have the leading principal minors :∆1 = 1, ∆2 = −8.0, ∆3 =
−274.7 and ∆3 = −5050.8.

11We have the leading principal minors : ∆1 = 1, ∆2 = 89.6, ∆3 =
3046.4 and ∆3 = 39526.4.

12Damped oscillations are obtained when the acceleration coefficient lies
in the interval [0, .5].

13The integral correction is rarely used alone.

Fig. 10. Stabilization policies over a 3-6 years period : (a)no stabilization
policy, (b)P-stabilization policy,(c)PI-stabilization policy, (d)PID-stabilization
policy

4) Block-diagram of the Phillips’model: The block-

diagram of the whole input-output system (without PID tun-

ing) is shown in Fig.11with simulation results. The Fig.12

represents block-diagram of the linear multiplier-accelerator

subsystem. The multiplier-accelerator subsystem shows two

distinct feedbacks : the multiplier and the accelerator feed-

backs.

5) System analysis: Let denote the Laplace transform of

X(t) by

X̄(s) ≡ L[X(t)] =

∫

∞

0

e−stX(t)dt.

Omitting the disturbance u(t), the model (1) to (4) is

Z̄(s) = C̄(s) + Ī(s) + Ḡ(s), (6)

C̄(s) = cȲ (s), (7)

sĪ(s) = −βĪ(s) + βvsȲ (s), (8)

sȲ (s) = −αȲ (s) + αZ̄(s). (9)

The transfer function (TF) of the system is

H(s) ≡
Ȳ (s)

Ḡ(s)
=

αs + α

s2 +

(

α(1 − c) + β − αβv

)

s + αβ(1 − c)

.
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Fig. 11. Block diagram of the system and simulation results

Fig. 12. Block diagram of the linear multiplier-accelerator subsystem

Taking a unit investment time-lag with β = 1 together with

α = 4, c = 3

4
and v = 3

5
, we have

H(s) = 20
s + 1

5s2 − 2s + 5
.

The constant of the TF is then 4, the zero is at s = −1
and poles are at the complex conjugates s = .2 ± j. The

Bode magnitude and phase plots are shown in Fig.13.The

magnitude expressed in decibels (20 log10) is plotted with

a log-frequency axis. The diagram shows a low frequency

asymptote, a resonant peak and a decreasing high frequency

asymptote. The cross-over frequency is 4 (rad/sec).To know

how much a frequency will be phase-shifted, the phase (in

degrees) in plotted with the a log-frequency axis. The phase

cross over is near 1 (rad/sec). The TF of system is also

H(jω) =
20jω + 20

5ω2 − 2jω + 5
.

When ω varies, the TF of the system is represented in Fig. 14

by the Nyquist diagram on the complex plane.

6) PID control: The block-diagram of the closed-loop

system with PID tuning is shown in Fig.15. The PID controller

Fig. 13. Bode diagrams of the transfer function

Fig. 14. Nyquist diagram of the transfer function

invokes three coefficients. The proportional gain Kpe(t) de-

termines the reaction to the current error. The integral gain

Ki =
∫ t

0
e(τ)dτ bases the reaction on sum of past errors. The

derivative gain Kd
d

dt
e(t) determines the reaction to the rate

of change of error. The PID controller is a weighted sum of

the three actions. A larger Kp will induce a faster response

and the process will oscillate and be unstable for a excessive

gain. A larger Ki eliminates steady states errors. A larger Kd

decreases overshoot[9].14 A PID controller is also described

by the following TF in the continuous s-domain [13]

HC(s) = Kp +
Ki

s
+ sKd.

The block-diagram of the PID controller is shown in Fig.16.

14The Ziegler-Nichols method is a formal PID tuning method : the I and D
gains are first set to zero. The P gain is then increased until to a critical gain
Kc at which the output of the loop starts to oscillate.Let denote by Tc the

oscillation period, the gains are set to .5Kc for a P-control, to .45Kc+1.2
Kp

Tc

for a PI-control, to .6Kc + 2
Kp

Tc
+

KpTc

8
for a PID-control.
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Fig. 15. Block diagram of the closed-looped system

Fig. 16. Block diagram of the PID Controller

7) Fuzzy control: The closed-loop block-diagram of the

Phillips’model is represented in Fig.17 with simulation results.

It consists of the FLC block and of the TF of the model.The

properties of the FLC controller have been described in

Fig.1(design of the controller), Fig.3(membership functions),

Fig.4(fuzzy rule base), Fig.5 (fuzzy surface)and Fig.7(output

fuzzy set). The figures Fig.18 show the efficiency of such a

stabilization policy. The range of the fluctuations has been

notably reduced with a fuzzy control. Up to six years, the

initial range [−12, 12] goes to [−3, 3].

Fig. 17. Block diagram of the Phillips model with Fuzzy Control

Fig. 18. Fuzzy Stabilization of the Phillips’ model

B. The nonlinear Goodwin model

1) Presentation: The extended model of Goodwin

[2][15][17] is a multiplier-accelerator with a nonlinear

accelerator. The system is

Z(t) = C(t) + I(t), (10)

C(t) = cY (t) − u(t), (11)

dI(t)

dt
= −β

(

I(t) − B(t)

)

, (12)

B(t) = Φ

(

v
d

dt
Y (t)

)

, (13)

dY (t)

dt
= −α

(

Y (t) − Z(t)

)

. (14)

The aggregate demand Z in ( 10)is the sum of consumption

C and total investment I 15. The consumption function in (

11)is not lagged on income Y . The investment (expenditures

and deliveries) is determined in two stages : at the first

stage, investment I in ( 12)depends on the amount of the

investment decision B with an exponential lag; at the second

stage the decision to invest B in ( 13)depends non linearly by

15The autonomous constant component is ignored since Y is measured
from a stationary level
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Fig. 19. Nonlinear accelerator in the Goodwin’s model

Fig. 20. Block-diagrams of the Nonlinear accelerator

Φ on the rate of change of the production Y . The equation

( 14)describes a continuous gradual production adjustment to

demand. The rate of change of supply Y is proportional to the

difference between demand and production at that time (with

speed of response α. The nonlinear accelerator Φ is defined

by

Φ(Ẏ ) = M

(

L + M

Le−vẎ + M
− 1

)

,

where M is the scrapping rate of capital equipment and L the

net capacity of the capital-goods trades. It is also subject to

the restrictions

B = 0 if Ẏ = 0, B → L as Ẏ → +∞,

B → −M as Ẏ rightarrow −∞. (15)

The graph of this function is shown in Fig.19.

2) Block-diagrams: The block-diagrams of the nonlinear

multiplier-accelerator are described in Fig.20.

Fig. 21. Simulation of Nonlinear accelerator

Fig. 22. Simulation of sinusoidal input

3) Dynamics of the Goodwin’s model: The simulation

results show strong and regular oscillations in Fig.21. The

Fig.22 shows how a sinusoidal input is transformed by the

nonlinearities. The amplitude is strongly amplified, and the

phase is shifted.

4) PID control of the Goodwin Model: The Fig.23 shows

the block-diagram of the closed-loop system. It consists of a

PID controller and of the subsystem of Fig.20. The Fig.24

shows the simulation results which objective is to maintain

the system at a desired level equal to 2.5. This objective is

reached with oscillations within a time-period of three years

Thereafter, the system is completely stabilized.

Fig. 23. Block-diagram of the PID Controlled Goodwin model
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Fig. 24. Simulation of the PID Controlled Goodwin model

Fig. 25. Block-diagram of the fuzzy Controlled Goodwin model

5) Fuzzy control of the Goodwin Model: The Fig.25 shows

the block-diagram of the controlled system. It consists of a

fuzzy controller and of the subsystem of the Goodwin model

(See Fig.20). The FLC controller is unchanged. The simulation

results in Fig.26 show an efficient and fast stabilization. The

system is stable within five time-periods, and then fluctuates

in an explosive way but restricted to an extremely close range.

IV. CONCLUSION

Compared to a PID control, the simulation results of a

linear and nonlinear multiplier-accelerator model show a more

Fig. 26. Simulation of the fuzzy Controlled Goodwin model

efficient stabilization of the economy within an acceptable

time-period of few years in a fuzzy environment.
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