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Effect of thermal radiation on temperature variation
in 2-D stagnation-point flow
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Abstract—Non-isothermal stagnation-point flow with considera-
tion of thermal radiation is studied numerically. A set of partial
differential equations that governing the fluid flow and energy is
converted into a set of ordinary differential equations which is solved
by Runge-Kutta method with shooting algorithm. Dimensionless wall
temperature gradient and temperature boundary layer thickness for
different combinaton of values of Prandtl number Pr and radiation
parameter NR are presented graphically. Analyses of results show
that the presence of thermal radiation in the stagnation-point flow is
to increase the temperature boundary layer thickness and decrease
the dimensionless wall temperature gradient.
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I. INTRODUCTION

STAGNATION-POINT flow is a flow in which the com-
ponent of velocity normal to a wall is toward the wall

everywhere in the region concerned, so that the vorticity
created at the wall will be convected toward the wall, in oppo-
sition to viscous diffusion away from it. Stagnation-point flow
has been found in numerous applications in engineering and
technology[1]. Hiemenz[2] discovered that stagnation-point
flow can be analyzed by the Navier-Stokes (NS) equations
through similarity solution in which the number of variables
can be reduced by on or more by a coordinate transformation.
Chiam[3] studied heat transfer in stagnation-point flow with
variable conductivity. Wang[4] found a similarity solution of
stagnation slip flow and convective heat transfer on a moving
plate.

Stagnation-point flow with consideration of thermal ra-
diation is rarely and this is important for flow with high
temperature environment[5][6]. Recently Bataller[7] consider
the radiation effects in the Blasius flow over a flat plate with
different Prandtle number and radiation parameter.

The present paper extends the results of [7] by considering
the effect of radiation effect in non-isothermal stagnation-point
flow. The Navier-Stokes and energy equations are transferred
to two uncoupled ordinary different equations which are
solved numerically by the shooting method given in [8]. The
outline of the paper is as follows. In Section 2, we introduce
governing equations for non-isothemal stagnation-point flow
with thermal radiation and the process of finding similarity
solution. Numerical results of the similarity solution are given
and discussed in Section 3. Finally conclusions are drawn in
Section 4.
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II. GOVERNING EQUATIONS AND SIMILARITY SOLUTION

The Governing equations for 2-dimensional non-isothermal
stagnation-point flow with thermal radiation can be written as
[6][9]
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where u and v are velocity along the wall direction ( x-
direction) and normal to the wall (y direction), p is pressure, ν
is kinematic viscosity, k is thermal conductivity, cp is specific
heat at constant pressure, ρ is density, T is temperature, and
qr is radiative hear flux. The boundary conditions are

u = 0, v = 0, T = Tw at y = 0
u = 0, v = −V, T = T∞ at y → ∞.

(5)

Where V is ambient fluid velocity approaching to the wall
normally, Tw is wall temperature, T∞ is ambient fluid tem-
perature. It is noted that viscous dissipation is neglected and
constant Tw and T∞ are assumed, so that T ≈ T (y) only.

Following the approach of [6][7], the radiative heat flux is
given as

qr = −4σ∗

3k∗
∂T 4

∂y
. (6)

Where σ∗ and k∗ are the Stefan-Boltzmann constant and the
mean absorption coefficient, respectively. It is further assumed
that the term T 4 due to radiation within the flow can be
expressed as a linear function of temperature itself. Hence
T 4 can be expanded as a Taylor series about T∞ and can be
approximated as[7]

T 4 ≈ 4T 3
∞T − 3T 4

∞ (7)

after neglecting the higher-order terms. Using Eqs. (6) and (7),
we can rewrite Eq. (3) as
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Where α = k
ρcp

is the molecular thermal diffusivity. Eq.
(8) indicates that the presence of thermal radiation can be
interpreted as an increase in the molecular thermal diffusivity.
Let NR = kk∗

4σ∗T 3∞
be the radiation parameter, Eq. (8) can be

rewritten as
u
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, (9)

where αeff = α
k0

and k0 = 3NR

3NR+4 . It can be seen that the
effect of thermal radiation is to replace the original molecular
diffusivity, α, by an an effective molecular diffusivity, αeff,
in the energy equation at which no thermal radiation is
considered. It should be noted that k0 ≤ 1 and αeff ≥ α. The
condition that k0 = 1 or NR → ∞ represents the stagnation-
point flow without thermal radiation.

Following [9] by introducing a similarity variable η, a
dimensionless stream function F (η), a dimensionless temper-
ature θ, and the Prandtl number Pr, such that
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where B is a constant. Eq. (1) is satisfied automatically. Eqs.
(2), (3), and (9) can be reduced to two uncoupled ordinary
differential equations

F ′′′ + FF ′ + (1 − F ′2) = 0 (12)

θ′′ + Prk0Fθ′ = 0. (13)

The boundary conditions are

F (0) = F ′(0) = F ′(∞) − 1 = 0 (14)

θ(0) = θ(∞) − 1 = 0. (15)

The two-point boundary value problem of Eqs. (12)-(15)
is solved numerically with Runge-Kutta method of fourth-
order[8].

III. RESULTS AND DISCUSSION

In present study of non-isothermal stagnation-point flow, the
fluid flow problem governing by Eq. (12) is uncoupled with
the thermal problem of Eq. (13). Hence change of the values
of Pr and NR will have no effect on the fluid flow velocity.
Eqs. (12)-(15) are solved with Δη = 0.005. Three quantities
of interest in this study are wall heat flux which is related to
dimensionless wall temperature gradient θ′(0), dimensionless
temperature boundary layer thickness ηδ , and dimensionless
parameter η∞. The dimensionless temperature boundary layer
thickness ηδ is defined as the distance (η) away from the wall
such that θ(ηδ) = 0.99. The dimensionless parameter η∞ is
defined as the value of η at which θ′(η∞) = 10−4.

Numerical results of variation of θ′(0), ηδ , and η∞ with Pr
without thermal radiation (i.e., k0 = 1) are given in Table 1.
It is noted that the dimensionless wall temperature gradient

TABLE I
Numerical results of θ′(0), ηδ , and η∞ for different values of Prandtl

number (Pr) without thermal radiation(k0 = 1)

k0 Pr θ′(0) ηδ η∞
1 0.5 0.4334 4.1224 6.4111

1 0.5705 3.0517 4.7726
5 1.0434 1.5925 2.4942
10 1.3388 1.2244 1.9180
50 2.3527 0.6849 1.0750
100 2.9864 0.5362 0.8456
1000 6.5293 0.2427 0.3895

TABLE II
Numerical results of θ′(0), ηδ , and η∞ for different values of radiation

parameter (NR) with thermal radiation at Pr = 5

Pr NR θ′(0) ηδ η∞
5 0.5 0.6431 2.6789 4.1961

1 0.7633 2.2247 3.4865
5 0.9572 1.7446 2.7342
10 0.9970 1.6732 2.6182
50 1.0335 1.6085 2.5208
100 1.0384 1.6005 2.5075
1000 1.0429 1.5952 2.4968

TABLE III
Numerical results of θ′(0), ηδ , and η∞ for different values of Prandtl

number (Pr) with thermal radiation (NR = 5)

NR Pr θ′(0) ηδ η∞
5 0.5 0.3936 4.5819 7.1047

1 0.5200 3.3771 5.2736
5 0.9572 1.7446 2.7342
10 1.2304 1.3394 2.0980
50 2.1678 0.7442 1.1684
100 2.7536 0.5842 0.9176
1000 6.0286 0.2644 0.4205

θ′(0) increases with increase of Prandtl number, but both the
temperature boundary layer thickness ηδ and the dimensionless
parameter η∞ decrease with increase of Prandtl number Pr.
It can be explained by the definition of Prandtl number that
Prandtl number is inversely proportional to the molecular
thermal diffusivity α. Table 2 gives variation of results with
NR for 0.5 ≤ NR ≤ 1000 at Pr = 5. It is observed that values
of the dimensionless wall temperature gradient θ′(0) increases
with increasing NR, but both the temperature boundary layer
thickness ηδ and dimensionless parameter η∞ decrease with
NR. It should be noted that all values of θ′(0) obtained in
Table 2 with the presence of thermal radiation at Pr = 5 are
less than 1.0434, which is the value of θ′(0) calculated in Table
1 without thermal radiation at Pr = 5. Effect of variation of
Pr for 0.5 ≤ Pr ≤ 1000 at NR = 5 on the numerical results
are shown in Table 3. Again increase of θ′(0), as well as
decrease of both ηδ and η∞ with increasing Pr are found.

Temperature profiles for three different values of radiation
parameter (NR = 0.5, 1, 10) and three different values of
Prandtl number (Pr = 0.5, 5, 10) are given in Figs. 1-3.
Results obtained for the case without thermal radiation (i.e.,
k0 = 1) are also shown in these figures for comparison. When
we compare all these figures, it is found that in Figs. 1 and
2 which are for small value of NR, or large effect of thermal
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Fig. 1. Dimensionless temperature profiles for three different values
of Pr with thermal radiation (NR = 0.5) and without thermal
radiatin (k0 = 1).
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Fig. 2. Dimensionless temperature profiles for three different values
of Pr with thermal radiation (NR = 1) and without thermal radiatin
(k0 = 1).

radiation, the difference in temperature distribution for the
cases with and without thermal radiation is quite large for
all three values of Pr. When the value of NR is large, or
the effect of thermal radiation is small, as shown in Fig. 3,
it is found that the temperature distribution with or without
thermal radiation are close each other for all values of Pr.
This is physically consistent because of the fact that k0 equals
to one, or NR tends to infinity, represents the case without
thermal radiation. On the other hand the effect of variation
of Pr on the thermal boundary layer is more pronounced for
small value of NR, especially in the case where Pr is less
than one. This is consistent with the founding given in Table
3. It is attributed to the fact that decreasing either the Pr or
NR will increase α or αeff, which in turn, will increase the
temperature boundary layer thickness.

It is also seen from Figs. 1-3 that the effect of thermal radi-
ation is to increase the temperature boundary layer thickness
for a fixed value of Prandtl number. This effect is diminishing
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Fig. 3. Dimensionless temperature profiles for three different values
of Pr with thermal radiation (NR = 10) and without thermal radiatin
(k0 = 1).

when NR is increasing as expected because a large value of
NR represent a decreasing of thermal radiation effect. All these
findings in Figs. 1-3 are consistent with the results shown in
Table 2.

IV. CONCLUDING REMARK

Numerical calculation of non-isothermal stagnation-point
flow with thermal radiation has been investigated by similarity
solution of solving the ordinary different equations. This two-
point boundary value problem is solved by the Runge-Kutta
method and results are presented as both tables and figures.
Analyses of the results find that the effect of thermal radiation
is to increase the temperature boundary layer thickness and
to decrease the wall temperature gradient. But this effect
become negligible when radiation parameter NR is large. On
the other hand, increasing the Prandtl number tends to reduce
the temperature boundary layer thickness and enlarge the wall
temperature gradient for both of the cases with and without
thermal radiation.
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