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Abstract—In this paper we present a study of the impact of
connection schemes on the performance of iterative decoding of
Generalized Parallel Concatenated block (GPCB) constructed from
one step majority logic decodable (OSMLD) codes and we propose
a new connection scheme for decoding them. All iterative decoding
connection schemes use a soft-input soft-output threshold decoding
algorithm as a component decoder. Numerical result for GPCB codes
transmitted over Additive White Gaussian Noise (AWGN) channel
are provided. It will show that the proposed scheme is better than
Hagenauer’s scheme and Lucas’s scheme [1] and slightly better than
the Pyndiah’s scheme.
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I. INTRODUCTION

THE decoding process of turbo codes is a suboptimal
iterative processing in which each component decoder

takes advantage of the extrinsic information produced by the
other component decoder at the previous step. The way the
extrinsic information is conveyed and how it is exploited
by the component decoders to make their decision has not
been closed yet. The original works in this context are due
to Berrou [2] and Robertson [3] for convolutional codes,
Pyndiah [4] and Lucas [5] for block codes. Hagenauer [6]
gave an extrapolation of Robertson’s scheme for block codes
by using a trellis decoder. In this work the impact of the
connection scheme on the performance of iterative decoding
of Generalized Parallel Concatenated block codes (GPCB) [1]
constructed from OSMLD codes is considered. These codes
have proven to be a very good performance. On the other
hand we will use the same component decoder for all schemes
namely soft-in soft-out threshold algorithm [7] with a slight
modification.

The organization of the paper is as follows. In Section
II, we start with a description of the basic concept GPCB
codes, and then we describe the soft-in soft-out decoding
algorithm in section III. The connection schemes studied in
this work are given in Section IV. Section V is dedicated to
simulation results and analysis for different GPCB-OSMLD
codes. Section VI concludes this paper.
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II. GPCB CODES

A. One-step majority-logic decodable codes

One step majority logic decodable codes are based on
orthogonal parity check sums for each bit. We relied on the
work of [8] to develop algorithm for constructing various
codes shown in table I . In this table we present some
examples, using the abbreviation DSC for Difference Set
Cyclic codes, EG for Euclidean Geometry codes and BCH
for Bose Chaudhuri and Hocquenghem codes.

TABLE I
SET OF OSMLD CODES.

n k J Minimal distance Rate Code family
7 3 3 4 0.42 DSC
15 7 4 5 0.46 BCH
21 11 5 6 0.52 DSC
63 37 8 9 0.58 EG
73 45 9 10 0.61 DSC
255 175 16 17 0.68 EG
273 191 17 18 0.69 DSC
1023 781 32 33 0.76 EG
1057 813 33 34 0.76 DSC
4161 3431 65 66 0.82 DSC

B. Structure of GPCB codes

The structure of generalized parallel concatenated block
codes is shown in figure 1; it was introduced independently
by Nilson et al [9] and Benedetto et al [10]. A block of N
data bits at the input of the GPCB encoder is subdivided into
M sub-blocks. Each sub-block of length k is encoded using a
component encoder in order to produce parity check bits. The
input block is scrambled by the interleaver, denoted by Π ,
before entering the second encoder. The codeword of GPCB
code consists of the input block followed by the parity check
bits of both encoders.
A systematic GPCB code is based on two systematic block
component codes, C1 with parameters (n1, k), and C2 with
parameters (n2, k). The length of the information word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k. The first encoder produces
P1 = M × (n1 − k) = M × p1 parity check bits. The second
encoder produces P2 = M × (n2 −k) = M × p2 parity check
bits. Thus the total number of parity bits generated by the
GPCB encoder is P = P1 + P2 = M × (n1 + n2 − 2 × k).
The length of the GPCB codeword is given by
L = N + P = M × (n1 + n2 − k). Consequently, the
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code rate of the GPCB codes can be computed by :

N
L = M×k

M×(n1+n2−k) = k
n1+n2−k

This implies that the GPCB code rate is independent of the
number of sub-blocks M. Table II gives some examples of
codes based on this construction where the two components
codes are the same, and for different values for M.

TABLE II
SOME EXAMPLES OF GPCB CODES.

Component code M GPCB-OSMLD code Code rate
DSC(7,3) 1 (11,3) 0.27
DSC(7,3) 100 (1100,300) 0.27

BCH(15,7) 1 (23,7) 0.30
BCH(15,7) 10 (230,70) 0.30
DSC(21,11) 10 (310,110) 0.35
DSC(21,11) 200 (6200,2200) 0.35
DSC(73,45) 1 (101,45) 0.44
DSC(73,45) 10 (1010,450) 0.44
DSC(73,45) 100 (10100,4500) 0.44
DSC(73,45) 200 (20200,9000) 0.44

DSC(273,191) 1 (355,191) 0.53
DSC(273,191) 10 (3550,1910) 0.53
DSC(273,191) 100 (35500,19100) 0.53
DSC(273,191) 300 (106500,57300) 0.53

C. The interleaver

The function of the interleaver is to take each incoming
block of bits and rearrange them in a pseudo-random fashion
prior to encoding by second encoder. In our previous works [1]
several interleaving techniques were invoked such as random,
block, diagonal, helical, and cyclic interleaver, and simulation
results have shown that the effect of the interleaver type is the
same; that is why we used in this work the random interleaver
type for all simulation results.

III. THE SISO THRESHOLD DECODING

Threshold decoding is simply the logical extension of soft
decisions of majority decoding described above [11]. Let us
consider a transmission of block coded binary symbols {0, 1}
using a BPSK modulation over AWGN channel, the soft output
for the jth bit position of a given soft input R(r1, . . . , rn) is
defined as :

LLRj = ln
P (cj = 1/R)
P (cj = 0/R)

j ∈ {1, ..., n}
(1)

where C(c1, . . . , cn) is the transmitted codeword. Expression
(1) is a log likelyhood ratio for the symbol cj . The hard
decision vector corresponding to the received vector R is
denoted by H(h1, . . . , hn). For a code with J orthogonal
parity check equations, (1) can be expressed as :

LLRj � ln
P (cj = 1/{Bi})
P (cj = 0/{Bi}) (2)

where Bi, i ∈ {0, . . . , J} are obtained from the orthogonal
parity check equations on the jth bit as follows :
The term B0 is defined to be B0 = hj . For each index

i in {1, . . . , J} the term Bi is computed by using the ith

orthogonal parity equation. By applying BAYES rule, (2)
becomes

LLRj � ln
P ({Bi}/cj = 1) × P (cj = 1)
P ({Bi}/cj = 0) × P (cj = 0)

(3)

Since the parity check equations are orthogonal on the jth

symbol the individual probabilities are all independent and
(3) can be rewritten as :

LLRj �
J

∑

i=0

ln
P ({Bi}/cj = 1)
P ({Bi}/cj = 0)

+ ln
P (cj = 1)
P (cj = 0)

(4)

(4) can be written as:

LLRj �
(

J
∑

i=1

ln
P ({Bi}/cj = 1)
P ({Bi}/cj = 0)

)

︸ ︷︷ ︸

extrinsic

(5)

+
(

ln
P ({B0}/cj = 1)
P ({B0}/cj = 0)

)

︸ ︷︷ ︸

channel

+
(

ln
P (cj = 1)
P (cj = 0)

)

︸ ︷︷ ︸

apriori

According to [12], (5) can be expressed as

LLRj �
(

J
∑

i=1

(1 − 2Bi) · wi

)

︸ ︷︷ ︸

extrinsic

(6)

+ ((1 − 2B0) · w0)
︸ ︷︷ ︸

channel

+
(

ln
P (cj = 1)
P (cj = 0)

)

︸ ︷︷ ︸

apriori

where the value of (1− 2B0) is equal to +1 or -1 and wi is a
weighting term proportional to the reliability of the ith parity
check. It is easy to show that:

(1 − 2B0) · w0 =
4 · Es

N0
· rj (7)

Where Es is the energy per symbol and N0 is the noise
spectral density.

wi = ln[
1 +

∏ni

k=1 tanh(Lik

2 )
1 − ∏ni

ik=1 tanh(Lik

2 )
] (8)

where ni is the total number of terms in the ith orthogonal
parity equation without cj ,ik represents the ikth element of
the ith parity equation and

Lik =
4Es

N0
· | rik | (9)

Thus the soft output can be split into three terms, namely into
a normalized version of the soft input rj , an extrinsic infor-
mation Wj representing an estimates made by the orthogonal
bits on the current bit cj and the a priori value. Hence (6) is
rewritten as in

LLRj =
4Es

N0
· rj +Wj + ln

P (cj = 1)
P (cj = 0)

(10)

In each of connection scheme, the calcul LLR will involve
each summand with different weighting.
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(a) (b)

Fig. 1. Encoder structure of generalized parallel concatenated block codes:(a) Structure of encoder; (b) Transmitted codeword.

Fig. 2. Pyndiah’s iterative decoding scheme.

IV. THE CONNECTION SCHEMES OF ITERATIVE DECODING
OF GPCB CODES

Surprisingly the parallel concatenation of bloc codes can
be decoded by offers a variety of iterative decoding schemes.
In fact, the existence of an explicit collaboration between two
component decoders, by exchange of extrinsic information,
gives a great opportunity to improve decoding performance
during iterations.
In this section, we present the different connection schemes
for decoding GPCB codes,ie, Pyndiah’s connection scheme,
Hagenauer’s scheme, and the proposed scheme.
We use the following notations for all connection schemes :
R : Received word, it consist of three parts [Y, Z1, Z2] :
Y : The systematic information.
Z1 : The parity check information generated by first
encoder.
Z2 : The parity check information generated by second

encoder.
Y1 = Y : The systematic information present at the entry of
first decoder.
Y2 = Π(Y ) : The systematic information present at the entry
of second decoder.
W1 : The extrinsic information generated by the first decoder
for Y1.
W2 : The extrinsic information generated by the second
decoder for Y2.
WZ1 : The extrinsic information generated by the first decoder
for Z1.
LY1 : The a priori information for Y1.
Lc = 4Es

N0
: The reliability value of the channel.

LY2 : The a priori information for Y2.
WZ2 : The extrinsic information generated by the second
decoder for Z2.
D : The hard decision(decoded word).
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Fig. 3. Hagenauer’s iterative decoding scheme.

Fig. 4. The proposed iterative decoding scheme.

A. Pyndiah’s connection scheme

The iterative decoding process presented here is introduced
in [4] to decode product codes. In this work, we use the
same principle of Pyndiah’s connection scheme to decode
GPCB-OSMLD codes using soft-input soft-output threshold
algorithm(see figure 2). Recall that the LLR is computed by
Pyndiah et al. [7] as fallow :

LLR =
{

LcY2 + αW2 For systematic bits
LcZ2 + αWZ2 For parity bits.

Where α is a scaling factor, it is constant for all iterations,
depending to GPCB-OSMLD code,whereas Pyndiah uses a
non constant value. The table III resumes the values of α for
each code. These values were obtained by an optimization
procedure by using simulations.

B. Hagenauer’s connection scheme

In the Hagenauer’s connection scheme [6], the iterative
decoding process can be described as follows : in the first
iteration, each decoder computes the extrinsic information
using the observation of the associated systematic and parity

TABLE III
THE VALUES OF α FOR SOME GPCB-OSMLD CODES.

GPCB-OSMLD code value of α
(101,45) 0.08

(1010,450) 0.07
(10100,4500) 0.08
(30300,13500) 0.08
(3550,1910) 0.07

symbols coming from the transmission channel and the a priori
information LY 1 and Ly2, since no a priori are available from
the decoding process at the beginning of the iterations. For the
subsequent iterations, the extrinsic information coming from
the other decoder are used as a priori information for the
current decoder (see figure 3). The decision can be computed
by the second decoder as follows :

LLR =
{

LcY2 +W2 + Ly2 For systematic bits
LcZ2 For parity bits.

C. Proposed connection scheme

In the proposed scheme, we have introduced two important
modifications in the Hagenauer’s scheme as shown in figure
4 :
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1) In contrary to Hagenauer’s scheme which calculates and
updates extrinsic information only for systematic bits, the
proposed scheme calculates and updates extrinsic information
for systematic and redundancy bits.
2) In each entry of elementary decoder, the extrinsic infor-
mation is multiplied by a constant value equal to 0.5 in
iterations based on these two modifications, the decision can
be computed by the second decoder as follows :

LLR =
{

LcY2 +W2 + 0.5Ly2 For systematic bits
LcZ2 + 0.5WZ2 For parity bits.

V. THE SIMULATION RESULTS

In this section, we present simulation results and analysis
for some GPCB-OSMLD codes. Transmission over the
additive white Gaussian noise (AWGN) channel and BPSK
modulation are used. We would like to notify that for
all simulations we have used a minimal residual error
number of 200 and the maximum number of iterations was
set at 20 (where there is no significantly more gain for
more than 20 iteration). We present a comparison between
the three decoding schemes and results of [1] in terms of BER.

A. Performance of the proposed scheme

1) The turbo effect: Figures 5 and 6 show that the
performances increase with number of iterations. According
to these figures we can see that the improvement is great after
the first iterations. So, we note that the turbo effect of the
proposed scheme is established for this family of codes.
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Fig. 5. Turbo effect of the proposed scheme for GPCB-OSMLD(10100,4500)
code.

2) The effect of M: In figure 7, we present the simulation
results for the GPCB OSMLD (101,45) code for different
values of M (1, 10 and 100). By increasing M we obtain about
a gain of 3.0dB at 10−5, the amelioration becomes negligeable
when M is greater than 100.
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Fig. 6. Turbo effect of the proposed scheme for GPCB-OSMLD(3550,1910)
code.
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Fig. 7. Effect of M in proposed for GPCB-OSMLD(101,45) code.

B. Performance of the Pyndiah’s scheme

In this subsection we present the simulation results of the
decoding iterative of the GPCB-OSMLD codes using the
Pyndiah’s scheme that presented in section IV-A. In figure 8
we show the improvement of performances during iterations,
so the turbo effect is confirmed by Pyndiah’s scheme. Figure 9
shows that the effect of M provides about 3.0dB gain passing
from M=1 to M=100.

C. Performance Comparisons

In this subsection we present the comparison between
GPCB-OSMLD decoded by the proposed scheme and the tree
connection schemes: Hagenauer’s scheme, Lucas’s scheme[1]
and Pyndiah’s scheme. The figure 10 shows that the proposed
scheme outperforms the Hagenauer’s scheme for the code
GPCB-OSMLD(10100,4500) at iteration 20 by about 1.5dB
at 10-4. In Figure 11, we present a comparaison between
the four schemes for GPCB-OSMLD (3550, 1910) code at
20 iterations. Figure 12 confirms that the proposed scheme
provides performances better that performances of Lucas’s
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Fig. 8. Turbo effect of the Pyndiah’s scheme for GPCB(10100,4500) code.
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Fig. 9. Effect of M in the Pyndiah’s scheme for GPCB-OSMLD(101,45)
code.

scheme published in [6] and slightly better than the Pyndiah’s
scheme for GPCB-OSMLD codes, from this figure, we also
observe that the GPCB-OSMLD(10100,4500) code is 2dB
away from its Shannon limit.

VI. CONCLUSION

In this paper, we have presented the impact of the con-
nection schemes on iterative decoding of generalized parallel
concatenated codes base on one-step majority logic decodable
codes. For all connection schemes we have studied the effect
of various parameters like component code, the number of
iterations, interleaver size(parameter M) and interleaver pattern
using simulations. The simulation result shows that the pro-
posed scheme is better than Hagenauer’s scheme and Lucas’s
scheme [1] and slightly better than the Pyndiah’s scheme.
We conclude that the impact of connection scheme iterative
decoding of GPCB-OMLD codes is an important feature.
These results open new perspectives namely, the application
of such connection schemes on the product code and serial
concatenated block codes.
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Fig. 10. Comparison of the proposed scheme and Hagenauer’s scheme for
GPCB(10100,4500) code.
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Fig. 11. Comparison of the four schemes for GPCB (3550, 1910) code at
20 iterations.

−0.5 0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

Pyndiah’s scheme
Lucas’s scheme[1]
The proposed scheme
Shannon limit R=0.53

Fig. 12. Performance of connection schemes for GPCB-OSMLD(10100,
4500) code and their positions from Shannon limit.
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