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Abstract—In this paper, we have presented a new multivariate 
fuzzy time series forecasting method. This method assumes m-
factors with one main factor of interest. History of past three years is 
used for making new forecasts. This new method is applied in 
forecasting total number of car accidents in Belgium using four 
secondary factors. We also make comparison of our proposed 
method with existing methods of fuzzy time series forecasting. 
Experimentally, it is shown that our proposed method perform better 
than existing fuzzy time series forecasting methods. Practically, 
actuaries are interested in analysis of the patterns of causalities in 
road accidents. Thus using fuzzy time series, actuaries can define 
fuzzy premium and fuzzy underwriting of car insurance and life 
insurance for car insurance. National Institute of Statistics, Belgium 
provides region of risk classification for each road. Thus using this 
risk classification, we can predict premium rate and underwriting of 
insurance policy holders. 

 
Keywords—Average forecasting error rate (AFER), Fuzziness of 

fuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series. 

I. INTRODUCTION 
N  our daily life, people often use forecasting techniques to 
model and predict economy, population growth, stocks, 

insurance/ re-insurance, portfolio analysis and etc. However, 
in the real world, an event can be affected by many factors. 
Therefore, if we consider more factors for prediction, with 
higher complexity then we can get better forecasting results. 

During last few decades, various approaches have been 
developed for time series forecasting. Among them ARMA 
models and Box-Jenkins model building approaches are 
highly famous.  

In recent years, many researchers used fuzzy time series to 
handle prediction problems. Song and Chissom [8] presented 
the concept of fuzzy time series based on the concepts of 
fuzzy set theory to forecast the historical enrollments of the 
University of Alabama. Huarng [4] presented the definition of 
two kinds of intervals in the universe of discourse to forecast 
the TAIFEX. Chen [10] presented a method for forecasting 
based on high-order fuzzy time series. Lee [6] presented a  
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method for temperature prediction based on two-factor high-
order fuzzy time series. Melike [7] proposed forecasting 
method using first order fuzzy time series for forecasting 
enrollments in University of Alabama. Lee [6] Presented 
handling of forecasting problems using two-factor high order 
fuzzy time series for TAIFEX and daily temperature in 
Taipei, Taiwan. 

The rest of this paper is organized as follows. In section 2, 
brief review of fuzzy time series is given. In section 3, we 
present the new method for fuzzy time series modeling. 
Experimental results are performed in section 4. The 
conclusions are discussed in section 5. 

In this paper, we present a new modified method to predict 
total number of annual car road accidents based on the m-
factors high-order fuzzy time series. This method provides a 
general framework for forecasting that can be increased by 
increasing the stochastic fuzzy dependence [3]. For simplicity 
of computation, we have used triangular membership 
function. The proposed method constructs m-factor high-order 
fuzzy logical relationships based on the historical data to 
increase the forecasting accuracy rate. Our proposed 
forecasting method for fuzzy time series gives better results as 
compared to [4], [5] and [10]. 

II. FUZZY TIME SERIES  
Time series analysis plays vital role in most of the actuarial 

related problems. As most of the actuarial issues are born with 
uncertainty, therefore, each observation of a fuzzy time series 
is assumed to be a fuzzy variable along with associated 
membership function. Based on fuzzy relation, and fuzzy 
inference rules, efficient modeling and forecasting of fuzzy 
time series is possible, see [1] and [9].  This field of fuzzy 
time series analysis is not very mature due to the time and 
space complexities in most of the actuarial related issue, thus 
we can extend this concept for many antecedents and single 
consequent. For example, in designing two-factor kth-order 
fuzzy time series model with X be the primary and Y be 
second fact. We assume that there are k antecedent 

( ) ( ) ( )( ), , , , . . ., ,1 1 2 2X Y X Y X Yk k  and one consequent 1+kX . 
 

( ) ( )
( ) ( )

, , , ,1 1 1 1 2 2 2 2

..., , 1 1

If X x Y y X x Y y

X x Y y X xk k k k k k

= = = =

= = → =+ +
                   (1) 

 
In the similar way, we can define m-factor i=1,2,...,m and kth 

order fuzzy time series as 
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TABLE I 
YEARLY CAR ACCIDENTS MORTALITIES AND VICTIMS FROM 1974 TO 2004 

Year Killed 
(X) 

Mortally 
wounded 

(Y1) 

Died 30 
days 
(Y2) 

Severely 
wounded 

(Y3) 

Light 
casualties  

(Y4) 

2004 953 141 1,094 5,949 41,627 
2003 1,035 101 1,136 6,898 42,445 
2002 1,145 118 1,263 6,834 39,522 
2001 1,288 90 1,378 7,319 38,747 
2000 1,253 103 1,356 7,990 39,719 
1999 1,173 126 1,299 8,461 41,841 
1998 1,224 121 1,345 8,784 41,038 
1997 1,150 105 1,255 9,229 39,594 
1996 1,122 115 1,237 9,123 38,390 
1995 1,228 109 1,337 10,267 39,140 
1994 1,415 149 1,564 11,160 40,294 
1993 1,346 171 1,517 11,680 41,736 
1992 1,380 173 1,553 12,113 41,772 
1991 1,471 209 1,680 12,965 43,578 
1990 1,574 190 1,764 13,864 46,818 
1989 1,488 312 1,800 14,515 46,667 
1988 1,432 339 1,771 14,029 45,956 
1987 1,390 380 1,770 13,809 44,090 
1986 1,456 330 1,786 13,764 42,965 
1985 1,308 352 1,660 13,287 39,879 
1984 1,369 363 1,732 14,471 42,456 
1983 1,479 412 1,891 14,864 42,023 
1982 1,464 406 1,870 14,601 40,936 
1981 1,564 454 2,018 15,091 41,915 
1980 1,616 557 2,173 15,915 42,670 
1979 1,572 544 2,116 15,750 42,346 
1978 1,644 728 2,372 16,645 44,797 
1977 1,597 701 2,298 15,830 44,995 
1976 1,536 728 2,264 16,057 44,227 
1975 1,460 701 2,161 15,792 42,423 
1974 1,574 819 2,393 16,506 44,640 

 
 

( )
( )

( )

( )

, ,..., ,11 11 12 12 1 1

, ,..., ,...,21 21 22 22 2 2

, ,...,1 1 2 2

,1 1 1 1

1, 2, ..., , 1, 2, ...,

X x X x X xk k

X x X x X xk k

X x X x X xm m m m mk mk

X xm k m k

for i m j k

= = =

= = =

= = =

=+ + + +

= =

If

then

           (2) 

 
Now, we formally give details of proposed method in 

section 3. 

III. NEW METHOD OF FORECASTING USING FUZZY TIME 
SERIES 

Let ( ) ( )Y t , ...,0,1,2,...t=  be the universe of discourse and 

( )Y t R⊆ . Assume that ( ) , 1,2,...f t ii =  is defined in the 
universe of discourse ( )Y t  and ( )F t  is a collection of 

( ) ( )f t , ...,0,1,2,...i i= , then ( )F t  is called a fuzzy time series of 
( )Y t , 1,2,...i= ... Using fuzzy relation, we define 
( ) ( ) ( )1 , 1F t F t R t t= − −o , where ( ), 1R t t−  is a fuzzy relation and 

“ o ” is the max–min composition operator, then ( )F t  is 
caused by ( )1F t−  where ( )F t  and ( )1F t−  are fuzzy sets. For 
forecasting purpose, we can define relationship among present 
and future state of a time series with the help of fuzzy sets. 
Assume the fuzzified data of the i th  and ( )1i th+  day are Aj  
and Ak , respectively, where ,A A Uj k ∈ , then A Aj k→  

represented the fuzzy logical relationship between Aj  and Ak . 

Let ( )F t  be a fuzzy time series. If ( )F t  is caused by 

( )1F t− , ( )2F t− ,…, ( )F t n− , then the fuzzy logical relationship 
is represented by 
 

( ) ( ) ( ) ( ),..., 2 , 1F t n F t F t F t− − − →                    (3) 
 

is called the one-factor nth order fuzzy time series forecasting 
model. Let ( )F t  be a fuzzy time series. If ( )F t  is caused 

by ( ) ( )( )1 , 11 2F t F t− − , ( ) ( )( )2 , 21 2F t F t− − ,..., ( ) ( )( ),1 2F t n F t n− − , 
then this fuzzy logical relationship is represented by 
 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

, , ..., 2 , 2 ,1 2 1 2

1 , 11 2

F t n F t n F t F t

F t F t F t

− − − −

− − →
              (4) 

 
is called the two-factors nth order fuzzy time series 
forecasting model, where ( )1F t  and ( )2F t  are called the main 

factor and the secondary factor fuzzy time series' respectively. 
In the similar way, we can define m-factor nth order fuzzy 
logical relationship as  
 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

, ,..., , ...,1 2

2 , 2 ,..., 2 ,1 2

1 , 1 ,..., 11 2

F t n F t n F t nm

F t F t F tm

F t F t F t F tm

− − −

− − −

− − − →

             (5) 

 
Here ( )1F t  is called the main factor and ( ) ( ) ( ), ,...,2 3F t F t F tm  
are called secondary factor fuzzy time series'. Here we can 
implement any of the fuzzy membership function to define the 
fuzzy time series in above equations. Comparative study by 
using different membership functions is also possible. We 
have used triangular membership function due to low 
computational cost. Using fuzzy composition rules, we 
establish a fuzzy inference system for fuzzy time series 
forecasting with higher accuracy. The accuracy of forecast can 
be improved by considering higher number of factors and 
higher dependence on history.  

Now we present an extended method for handling 
forecasting problems based on m-factors high-order fuzzy 
time series. The proposed method is now presented as follows. 
Step 1) Define the universe of discourse U  of the main 
factor [ ],min 1 max 2U D D D D= − − , where minD and maxD  are 
the minimum and the maximum values of the main factor of 
the known historical data, respectively, and 1D , 2D  are two 
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proper positive real numbers to divide the universe of 
discourse into n equal length intervals , ...,1 2,u u ul . Define the 
universes of discourse , 1,2,..., 1i mi = −V  of the secondary-

factors ( ) ( ),1 2min maxi i i⎡ ⎤= − −⎣ ⎦V E E E Ei i , where 

( ) ( ) ( ) ( ), ,...,1 2min min min minE E Em⎡ ⎤=⎣ ⎦Ei  and 

( ) ( ) ( ) ( ), ,...,1 2max max max maxE E Em⎡ ⎤=⎣ ⎦Ei  are the minimum 

and maximum values of the secondary-factors of the known 
historical data, respectively, and Ei1 , Ei2  are vectors of 
proper positive numbers to divide each  of the universe of 
discourse , 1,2,..., 1i mi = −V  into equal length intervals termed 

as , ,..., , 1,2,...,1, 2, 1, l pl l m l =−v v v , where , ,...1, 1,1 1,2 1,l p⎡ ⎤= ⎣ ⎦v v v v  
represents n intervals of equal length of universe of discourse 
V1  for first secondary-factor fuzzy time series. Thus we have 
( )1m l− ×  matrix of intervals for secondary-factors. 

Step 2) Define the linguistic term iA  represented by fuzzy 
sets of the main factor shown as follows: 
 

0.5 0 0 0 0 01 ...1 1 2 3 4 2 1
0.5 0.5 0 0 0 01 ...2 1 2 3 4 2 1
0 0.5 0.5 0 0 01 ...3 1 2 3 4 2 1

.

.

.

0 0 0 0 0 0.5 1...
1 2 3 4 2 1

A u u u u u u ul l l

A u u u u u u ul l l

A u u u u u u ul l l

A u u u u u u un l l l

= + + + + + + +
− −

= + + + + + + +
− −

= + + + + + + +
− −

= + + + + + + +
− −

     (6) 

 
Similarly, for ith secondary fuzzy time series, we define the 

linguistic term , 1,2,..., 1, 1,2,...,,B i m j ni j = − =  represented by 

fuzzy sets of the secondary-factors, 
 

0.5 0 0 0 0 01 ...,1 ,1 ,2 ,3 ,4 , 2 , 1 ,
0.5 0.5 0 0 0 01 ...,2 ,1 ,2 ,3 ,4 , 2 , 1 ,
0 0.5 0.5 0 0 01 ...,3 ,1 ,2 ,3 ,4 , 2 , 1 ,

.

.

.

0 0 0 0
, ,1 ,2 ,3

Bi i i i i i l i l i l

Bi i i i i i l i l i l

Bi i i i i i l i l i l

Bi n i i i

= + + + + + + +
− −

= + + + + + + +
− −

= + + + + + + +
− −

= + + +

v v v v v v v

v v v v v v v

v v v v v v v

v v v v
0 0.5 1...

,4 , 2 , 1 ,i i l i l i l
+ + + +

− −v v v

  (7) 

 
Step 3) Fuzzify the historical data described as follows. Find 
out the interval , 1,2,...,u l pl =  to which the value of the main 
factor belongs  
Case 1) If the value of the main factor belongs to 1u , then the  

value of the main factor is fuzzified into 0.5 0.01
1 2 3A A A+ + , 

denoted by 1X . 
 

TABLE II 
FUZZIFIED YEARLY DATA FOR MORTALITY ACCIDENTS FROM 1974 TO 2004 

Year Mortality 
Accidents Fuzzified Mortality Accidents 

2004 953 0.5/A1 + 1.0/A2 + 0.5/A3 (X2) 
2003 1,035 0.5/A1 + 1.0/A2 + 0.5/A3 (X2) 
2002 1,145 0.5/A2 + 1.0/A3 + 0.5/A4 (X3) 
2001 1,288 0.5/A4 + 1.0/A5 + 0.5/A6 (X5) 
2000 1,253 0.5/A4 + 1.0/A5 + 0.5/A6 (X5) 
1999 1,173 0.5/A3 + 1.0/A4 + 0.5/A5 (X4) 
1998 1,224 0.5/A3 + 1.0/A4 + 0.5/A5 (X4) 
1997 1,150 0.5/A3 + 1.0/A4 + 0.5/A5 (X4) 
1996 1,122 0.5/A2 + 1.0/A3 + 0.5/A4 (X3) 
1995 1,228 0.5/A3 + 1.0/A4 + 0.5/A5 (X4) 
1994 1,415 0.5/A5 + 1.0/A6 + 0.5/A7 (X6) 
1993 1,346 0.5/A4 + 1.0/A5 + 0.5/A6 (X5) 
1992 1,380 0.5/A5 + 1.0/A6 + 0.5/A7 (X6) 
1991 1,471 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1990 1,574 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1989 1,488 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1988 1,432 0.5/A5 + 1.0/A6 + 0.5/A7 (X6) 
1987 1,390 0.5/A5 + 1.0/A6 + 0.5/A7 (X6) 
1986 1,456 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1985 1,308 0.5/A4 + 1.0/A5 + 0.5/A6 (X5) 
1984 1,369 0.5/A5 + 1.0/A6 + 0.5/A7 (X6) 
1983 1,479 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1982 1,464 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1981 1,564 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1980 1,616 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1979 1,572 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1978 1,644 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1977 1,597 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 
1976 1,536 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1975 1,460 0.5/A6 + 1.0/A7 + 0.5/A8 (X7) 
1974 1,574 0.0/A6 + 0.5/A7 + 1.0/A8 (X8) 

 
 
Case 2) If the value of the main factor belongs to 

, 2,3,..., 1u l pl = −  then the value of the main factor is fuzzified 

into 0.5 0.51
1 1A A Ai i i

+ +
− +

, denoted by Xi . 

Case 3) If the value of the main factor belongs to pu , then the 

value of the main factor is fuzzified into  
0 0.5 1

2 1A A An n n
+ +

− −
, denoted by Xn .  

Now, for ith secondary-factor, find out the interval ,i lV  to 
which the value of the secondary-factor belongs. 
Case 1) If the value of the ith secondary-factor belongs to 1,iv , 

then the value of the secondary-factor is fuzzified 
into 0.5 01

,1 ,2 ,3B B Bi i i
+ + , denoted by 

, ,...,,1 1,1 2,1 1,1Y Y Yi m⎡ ⎤= −⎣ ⎦Y . 
Case 2) If the value of the ith secondary-factor belongs to 

, 2,3,.., 1, l pi l = −v , then the value of the ith secondary-factor is 

fuzzified into 0.5 0.51 , 2,3,..., 1
, 1 , , 1

j i nB B Bi j i j i j
+ + = = −

− +
 

denoted by ,Yi j , where 2,3,...., 1j n= − . 
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Case 3) If the value of the ith secondary-factor belongs 
to ,i pv , then the value of the secondary-factor is fuzzified into 

0 0.5 1
, 2 , 1 ,B B Bi n i n i n

+ +
− −

, denoted by ,Yi n . 

Step 4) Get the m-factors kth-order fuzzy logical relationships 
based on the fuzzified main and secondary factors from the 
fuzzified historical data obtained in Step 3). If the fuzzified 
historical data of the main-factor of ith day is iX , then 
construct the m-factors kth-order fuzzy logical relationships, 
 

( ) ( )
( )

; ,..., ,..., ; ,..., ,2, 1, 2 2, 2 1, 2
; , ,..., ,1 1, 1 2, 1 1, 1

X Y Y X Y Yj k j k m j k j j m j
X Y Y Y Xj j j m j j

− − − − − − − −
→− − − − −

        (8) 

 
where j k> . X j k−  shows the k-step dependence of jth value 
of main factor X j , , 1,..., 1, 1,...,,Y i m j ki j k = − =− .Then, divide 

the derived fuzzy logical relationships into fuzzy logical 
relationship groups based on the current states of the fuzzy 
logical relationships. The secondary factors acts like a 
secondary component to the m-dimensional state vector and is 
used in Step 5). 
Step 5) For m-factor kth order fuzzy logical relationship, the 
forecasted value of day j based on history of third order is 
calculated as follows, 
 

1

1
1 1
1 1

j
w

jt j w w wj j j
a a aj j j

+
∑
−=

− ++ +
− +

                            (9) 

 
Where 1,a al l−  and 1al+  are the midpoints of the intervals 

1,l lu u−  and 1lu +  respectively. Above forecasting formula 
fulfills the axioms of fuzzy sets like monotonicity, boundary 
conditions, continuity and idempotency. For measurement of 
accuracy of forecasting for fuzzy time series forecasting, we 
use average forecasting error rate (AFER) as the performance 
criteria, defined as 
 

( )
1 100%

n
Forecasted valueof Day j ActualValueof Day j

iAFER
n

−∑
== ×  (10) 

 

IV. EXPERIMENT 
In this experiment, our goal is to extend the work of [6]. 

We have applied this new technique on car road accident data 
taken from National Institute of Statistics, Belgium for the 
period of 1974-2005. In this data, the main factor of interest is 
the yearly road accident causalities and secondary factors are 
mortally wounded, died within one month, severely wounded 
and light casualties.   

 

TABLE III 
FORECASTED YEARLY CAR ACCIDENT CAUALITIES FROM 1974-2004 

Year Actual 
Killed Ai 

Forecasted 
Kills Fi 

ii AF −
 

i i

i

F A
A
−

 
2004 953 995 -42 0.04404 
2003 1,035 995 40 0.038676 
2002 1,145 1095 50 0.043319 
2001 1,288 1296 -8 0.006289 
2000 1,253 1296 -43 0.034397 
1999 1,173 1196 -23 0.019437 
1998 1,224 1196 28 0.023039 
1997 1,150 1196 -46 0.039826 
1996 1,122 1095 27 0.023708 
1995 1,228 1396 -168 0.137134 
1994 1,415 1296 119 0.084028 
1993 1,346 1396 -50 0.037444 
1992 1,380 1497 -117 0.084565 
1991 1,471 1497 -26 0.017471 
1990 1,574 1497 77 0.049111 
1989 1,488 1396 92 0.061559 
1988 1,432 1396 36 0.02486 
1987 1,390 1497 -107 0.076763 
1986 1,456 1296 160 0.109821 
1985 1,308 1396 -88 0.067584 
1984 1,369 1497 -128 0.09328 
1983 1,479 1497 -18 0.011968 
1982 1,464 1497 -33 0.022336 
1981 1,564 1497 67 0.043031 
1980 1,616 1497 119 0.073824 
1979 1,572 1497 75 0.047901 
1978 1,644 1497 147 0.089599 
1977 1,597 1497 100 0.062805 
1976 1,536 1497 39 0.025586 
1975 1,460 1497 -37 0.025137 
1974 1,574 1497 77 0.0489199 

  
We assumed eight intervals of equal length for the main and 

secondary fuzzy time series'. For main factor, we assume 
minD =953 and maxD =1644, thus for main factor time series 

we get [ ]850,1650U = . Similarly for secondary factors 
, ,1 2 3 4Y Y Y and Y , we assumed that [ ]90,1094,5949,38390min =E  

and [ ]819,2393,16645,46818max =E  to determine , , ,1 2 3 4v v v v . 
Selection of minD , maxD , minE  and maxE   have significant 
effects on the accuracy of this new method. We can introduce 
learning to stabilize the heuristic selection of these constants. 

Using (6) and (7), we formed fuzzy times series from main 
and secondary factors. Therefore, each observation of a time 
series is now represented by a combination of fuzzy sets. 
Using (10), we calculated the forecasted values corresponding 
to each actual value of the main factor time series in III. Using 
equation (11) for AFER, we formed table IV, showing a 
comparison of actual and forecasted values. Finally, we have 
compared proposed method with [6]. 
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TABLE IV 
COMPARISON OF PROPOSED METHOD AND LEE L. W. (2006). METHOD FOR 

YEALRY CAR ACCIDENT CAUALITIES IN BELGIUM FROM 1974-2004 
 

Year 
Actual 

Killed (Ai) 

Forecaste
d 

causalities 
(Fi) 

i i

i

F A
A
−

 
Forecasted 
causalities 

(Fi) 

i i

i

F A
A
−

 

2004 953 995 0.044040 1000 0.049318 

2003 1035 995 0.038676 1000 0.033816 

2002 1145 1095 0.043319 1100 0.039301 

2001 1288 1296 0.006289 1300 0.009317 

2000 1253 1296 0.034397 1300 0.037510 

1999 1173 1196 0.019437 1200 0.023018 

1998 1224 1196 0.023039 1200 0.019608 

1997 1150 1196 0.039826 1200 0.043478 

1996 1122 1095 0.023708 1100 0.019608 

1995 1228 1396 0.137134 1400 0.140065 

1994 1415 1296 0.084028 1300 0.081272 

1993 1346 1396 0.037444 1400 0.040119 

1992 1380 1497 0.084565 1500 0.086957 

1991 1471 1497 0.017471 1500 0.019714 

1990 1574 1497 0.049111 1500 0.047014 

1989 1488 1396 0.061559 1400 0.059140 

1988 1432 1396 0.024860 1400 0.022346 

1987 1390 1497 0.076763 1500 0.079137 

1986 1456 1296 0.109821 1300 0.107143 

1985 1308 1396 0.067584 1400 0.070336 

1984 1369 1497 0.093280 1500 0.095690 

1983 1479 1497 0.011968 1500 0.014199 

1982 1464 1497 0.022336 1500 0.024590 

1981 1564 1497 0.043031 1500 0.040921 

1980 1616 1497 0.073824 1500 0.071782 

1979 1572 1497 0.047901 1500 0.045802 

1978 1644 1497 0.089599 1500 0.087591 

1977 1597 1497 0.062805 1500 0.060739 

1976 1536 1497 0.025586 1500 0.023438 

1975 1460 1497 0.025137 1500 0.027397 

1974 1574 1497 0.048920 1500 0.025413 
 

1 100%
31

n
i i

i i

F A
A

AFER =

−

= ×
∑   = 5.061793%                       = 5.067887% 

 
 

V. CONCLUSION 
From Table IV, we can see that our proposed method is 

better that [6]. As the work of Lee et. al. [6] outperformed the 
work of [4], [5] and [10], so, indirectly we can conclude that 
our general class of methods for fuzzy time series modeling 
and forecasting.  

Furthermore, we have shown fuzziness of fuzzy 
observations by presenting each datum of the main series as 
composed of many fuzzy sets. Thus, fuzzy time series 
modeling extends to type-II fuzzy time series modeling. The 

type-II defuzzified forecasted values ( jt ) may also be 

calculated using some other method, e.g. learning rules from 
fuzzy time series. 
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Fig. 1 A Comparison of proposed and Lee L. W. et. al. (2006) [6] 
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