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Abstract—We used mathematical model to study the 

transmission of dengue disease.  The model is developed in which 
the human population is separated into two populations, pregnant and 
non-pregnant humans. The dynamical analysis method is used for 
analyzing this modified model. Two equilibrium states are found and 
the conditions for stability of theses two equilibrium states are 
established. Numerical results are shown for each equilibrium state. 
The basic reproduction numbers are found and they are compared by 
using numerical simulations. 
 

Keywords—Basic reproductive number, dengue disease, 
equilibrium states, pregnancy.  

I. INTRODUCTION 
ENGUE disease especially known in Southeast Asia, is 
sweeping around the world, hitting countries with 

tropical and warm climates. This disease is transmitted from 
person to person by biting of the infected Aedes Aegypti 
mosquito[1] .  

The principal mosquito vector, female Aedes Aegypti, is 
found in or near human habitations and prefers to feed on 
humans during the daytime. It has two peak periods of biting 
activity, in the morning for several hours after daybreak and in 
the late afternoon for several hours before dark [2]. The 
mosquito may feed at any time during the day. The vector 
breeding sites include artificial water containers such as 
discarded tires, uncovered water storage barrels, buckets, 
flower vases or pots, cans and cisterns. This disease has three 
forms: dengue fever(DF) or classic dengue, dengue 
hemorrhagic fever(DHF) and dengue shock syndrome(DSS); 
these depend on the characteristic of symptoms for each 
person. DHF and DSS are severe forms of this disease. The 
person who be infected with any single type of dengue virus 
apparently produces permanent immunity to it, but only 
temporary cross immunity to the others. The major problem 
with dengue is the fact that the disease is caused by four 
distinct serotypes known as DEN-1, DEN-2, DEN-3 and   
DEN-4. DF is characterized by sudden onset after an 
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incubation period of 3 - 14 days (most commonly 4 - 7 days) 
of high fevers, severe frontal headache, and joint and muscle 
pain. Many patients have nausea, vomiting, and a 
maculopapular rash. Most patients report a nonspecific viral 
syndrome or a flu-like illness. Asymptomatic infections are 
also common. DHF is a potentially deadly complication that is 
characterized by high fever, hemorrhagic phenomena, often 
with enlargement of the liver and in severe cases, circulatory 
failure. The fever usually continues for 2-7 days and can be as 
high as 40 - 41 0C, possibly with febrile convulsions and 
hemorrhagic phenomena. In severe cases, the patient’s 
condition may develop hypovolaemic shock resulting from the 
plasma leakage, go into a critical state of shock and die within 
12-24 hours, or quickly recover following appropriate volume 
replacement therapy, this is called DSS . 

The first reported epidemics of DF occurred in 1779-1780 
in Asia, Africa and North America. After World War II, a 
pandemic of dengue began in Southeast Asia and has spread 
around the globe since then. In Southeast Asia, epidemic DHF 
first appeared in the 1950s, but by 1975 it had become a 
frequent cause of hospitalization and death among children in 
many countries in that region. In the 1980s, DHF began a 
second expansion into Asia when Sri Lanka, India and the 
Maldive Islands had their first major DHF epidemics, Pakistan 
first reported an epidemic of dengue fever in 1994. In 1998, 
there were more than 616,000 cases of dengue in America, of 
which 11,000 cases of dengue hemorrhagic fever, that’s twice 
the number of cases recorded in the same region during the 
year 1995. In 2001 there were 400,000 cases of hemorrhagic 
in Southeast Asia, whereas, in Rio de Janeiro alone, 500,000 
people were struck by a dengue outbreak in 2002 [3].       

According to the present evaluations of the World Health 
Organization (WHO), about 50 million cases of dengue occur 
in the world every year, with an increasing tendency, with 
approximately 10,000 infant deaths due to this disease [4]. 
The most dengue infections occur during childhood but some 
adults may remain susceptible to infection. About 30 percent 
of dengue infection is reported in patients more than 15 years 
old [5]. In 1989, the first 5 reported neonates of vertical 
dengue infection were born in Tahiti [6]. Since then, there 
have been 12 additional cases reported from Thailand, 
Malaysia and France [6]-[13]. Some pregnant women may 
also be susceptible to dengue and if they experience dengue 
infection, they can transmit the dengue virus to their babies. 

We are interested in the transmission process of pregnant 
and non-pregnant humans. The dynamical model is 
formulated to describe the transmission of this disease. 

Analysis of Model in Pregnant and Non-
Pregnant Dengue Patients 
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II. MATHEMATICAL MODEL 
To present the transmission process, we divide the human 

population into two classes, pregnant and non-pregnant 
human. Each class has constant size and it is divided into three 
subclasses, susceptible, infected and recovered human. The 
vector populations are separated into two classes because it 
never recovers from infection, susceptible and infected vector 
populations. 

Let  
'
pS (t)  denotes the number of susceptible pregnant human 

population at time t, 
'
pI (t)  denotes the number of infected pregnant human 

population at time t, 
'
pR (t) denotes the number of recovered pregnant human 

population at time t, 
'
nS (t)  denotes the number of susceptible non-pregnant 

human population at time t, 
'
nI (t)  denotes the number of infected non-pregnant human 

population at time t, 
'
nR (t) denotes the number of recovered non-pregnant 

human population at time t, 
'
vS (t)  denotes the number of susceptible vector population 

at time t, 
'
vI (t)  denotes the number of infected vector population at 

time t. 
The transmission model of dengue disease in pregnant and 

non-pregnant human are described by the following equations: 
' ' ' ' v
p tp p vn p v

t

ad S (t) (N S ) S I
dt N h

= ϖ − − ϕλ
+

, 

' ' ' 'v
p vn p v p

t

ad I (t) S I ( r)I
dt N h

= ϕλ − ϖ +
+

, 

' ' '
p p p

d R (t) rI R
dt

= − ϖ , 

' ' ' ' v
n tn n vn n v

t

ad S (t) (N S ) S I
dt N h

= ϖ − − λ
+

 ,      (1) 

' ' ' 'v
n vn n v n

t

ad I (t) S I ( r)I
dt N h

= λ − ϖ +
+

, 

' ' '
n n n

d R (t) rI R
dt

= − ϖ , 

' ' ' ' 'v
v v v nv v p n

t

ad S (t) D S S ( I I )
dt N h

= − θ − λ τ +
+

, 

' ' ' ' 'v
v nv v p n v v

t

ad I (t) S ( I I ) I
dt N h

= λ τ + − θ
+

 

with  the conditions ' ' '
tp p p pN S I R= + + ,  ' '

v v vN S I= +  

and ' ' '
tn n n nN S I R= + +  .                  (2) 

where the parameters in the above equations are defined as 
 tN   is the total number of the human population, 

 vN   is the total number of the vector population, 

 tpN   is the total number of the pregnant  human  
     population, 
 tnN   is the total number of the non-pregnant  human  

population, 
 D   is the constant recruitment rate of the vector  

population, 
 ρ   is the birth rate of the human population, 
 ϖ   is the death rate of the human population, 
 vθ   is the death rate of the vector population, 
 r    is the recovery  rate of the human population, 
 h   is the number of alternative hosts available as blood  

sources, 

vpλ   is the transmission probability of dengue virus from  

vector population to pregnant human population  
and become infectious pregnant human population, 

vnλ   is the transmission probability of dengue virus from  
vector population to non-pregnant human 
population and become infectious non-pregnant 
human population, 

pvλ   is the transmission probability of dengue virus from  

infectious pregnant  human population  to vector 
population and become infectious vector population, 

nvλ   is the transmission probability of dengue virus from  
infectious non-pregnant  human population  to 
vector population and become infectious vector 
population, 

ψ  is the ratio between the transmission probability 
from vector to pregnant and the transmission 
probability from vector to non- pregnant human 
population, 

τ  is the ratio between the transmission probability 
from pregnant human to vector and the transmission 
probability from non- pregnant to vector population, 

 va   is the biting rate of the vector population, 
 c    is the percentage of the human to be pregnant. 

The total number of populations are assumed that constant 
for pregnant, non-pregnant human and vector populations. So 
the rates of  change for the total pregnant, non-pregnant 
human and vector populations are equal to zero. We obtain 
ρ = ϖ  for the human population. The total number of vector 

population is v vN (D / )= θ . We normalize (1) by letting 
'
pp

tp

S
S

N
= , 

'
pp

tp

I
I

N
= , 

'
pp

tp

R
R

N
= , 

'
n n

tn

SS
N

= , 
'

n n

tn

II
N

= , 

'
n n

tn

RR
N

= , 
'

v v

v

SS
(D / )

=
θ

 and  
'

v v

v

II
(D / )

=
θ

 then  

our equations become 
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p p p v v
vn v

t

ad S (1 S ) S I (D / )
dt N h

= ϖ − − ϕλ θ
+

, 

p p v pv
vn v

t

ad I S I (D / ) ( r)I
dt N h

= ϕλ θ − ϖ +
+

, 

n n n v v
vn v

t

ad S (1 S ) S I (D / )
dt N h

= ϖ − − λ θ
+

 ,     (3) 

n n v nv
vn v

t

ad I S I (D / ) ( r)I
dt N h

= λ θ − ϖ +
+

, 

v v p n vv
nv tp tn v

t

ad I (1 I ) ( I N I N ) I
dt N h

= λ − τ + − θ
+

, 

with the new three conditions p p pS I R 1+ + = , 
n n nS I R 1+ + =  and v vS I 1+ = .            (4)  

III. ANALYSIS OF THE MATHEMATICAL MODEL 

A. Analytical Results 
We find equilibrium points by setting right hand side of all 

equations in (3) equal to zero. Then two equilibrium points are   
i) disease free equilibrium state:  

0U (1,0,1,0,0)=               (5) 
ii) endemic equilibrium state   

1 p p n n vU (S , I ,S , I , I )=         (6) 
where  

 0
p

0 1 v

DS
D D I

=
+

, 

 0 1 v
p

0 1 v 1 2

D D II
(D D I )(D D )

=
+ +

, 

 0
n

0 1 v

DS
D D I

ψ
=

ψ +
, 

 0 1 v
n

0 1 v 0 2

D D II
( D D I )(D D )

=
ψ + +

, 

 
2

1 1 2 0
v

2

h h 4h h
I

2h
− + −

=  

and     

2

0 0 0
0 3 1 2

1 1 1

D D Dh G G G
D D D

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ψ − ψ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, 

  0 0 0 0
1 1 2 3 3 1 2

1 1 1 1

D D D Dh G G G G G G
D D D D

ψ ψ
= + + + − − , 

   2 1 2 3h G G G= + +  
such that 

0 tD (N h)= ϖ + , 1 vn v vD (D / )a= ψλ θ ,

2 tD r(N h)= +  

and  2
1 nv v 0 1 tpG a D D N= λ τ , 2

2 nv v 0 1 tnG a D D N= λ , 

 2
3 v t 0 2 1G (N h)(D D )D= θ + + . 

The local stability for each equilibrium point is determined   
by the signs of all eigenvalues. If all eigenvalues have 

negative 
real parts, then that equilibrium point is local stability. We 

find 
eigenvalues for each equilibrium point by setting    

         det(J kI) 0− =                                    (7) 
where J is the Jacobian matrix of the right hand side of (3) 
 k is the eigenvalue  
and I is the identity matrix. 

Diagonalizing the jacobian for the free equilibrium point, 
we obtain the characteristic equation   

2
1 2(k )(k r)(k )(k g k g ) 0+ ϖ + ϖ + + ϖ + + =         (8) 

where  

( )
2

v
2 v v nv tn vn v

t

ag r N D /
N h

⎛ ⎞
= ϖθ + θ − λ λ θ⎜ ⎟+⎝ ⎠

          ( )
2

v
nv tp vn v

t

aN D /
N h

⎛ ⎞
−ψτλ λ θ⎜ ⎟+⎝ ⎠

 

1 vg r= ϖ + θ + . 
There are five eigenvalues corresponding to (8). We denote 

these five eigenvalues by 1 2 3 4k , k ,k ,k  and 5k . 

1 2 3k , k r, k= −ϖ = −ϖ − = −ϖ  and 
2

1 1 2
4

g g 4g
k

2
− − −

=  have negative real parts. The one 

eigenvalue 
2

1 1 2
5

g g 4g
k

2
− + −

= , 5k  has negative real 

part when 2
1 1 2g g 4g 0− + − < .  

So   2
1 2 1g 4g g− <  or  2 2

1 2 1g 4g g− < . Then we have 

2g 0> ,  

( )
2

v
v v nv tn vn v

t

ar N D /
N h

⎛ ⎞
ϖθ + θ − λ λ θ⎜ ⎟+⎝ ⎠

( )
2

v
nv tp vn v

t

aN D / 0
N h

⎛ ⎞
−ψτλ λ θ >⎜ ⎟+⎝ ⎠

 or   

1 2 1
A

0 3

D (G G )R 1
D G

+ ψ
= <

ψ
. 

Therefore the disease free equilibrium point is local stability 
for AR 1< . 

The correspondent eigenvalues for the endemic equilibrium 
point are found by solving the characteristic equation; which 
is in the form  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

617

 

 

    4 3 2
3 2 1 0(k r)(k k k k ) 0+ ϖ + + η + η + η + η =  .     (9)   

     The first eigenvalue is 1k r,= −ϖ −  the other 

eigenvalue 2 3 4k , k ,k  and 5k are found by solving 
4 3 2

3 2 1 0k k k k 0+ η + η + η + η = . By using Routh-
Hurwitz criteria, the endemic equilibrium point is locally 
stable if the following conditions are satisfied;  
       i)  3 0η >  , 

       ii) 1 0η > , 

      iii)  0 0η ≥  , 

  iv) 2 2
3 2 1 1 3 0η η η > η + η η . 

We check the above conditions by using MATHEMATICA,  
we found that 1U is locally stable for AR >1.  The basic 

reproductive number of the disease is given by '
A AR R= , 

which gives the average number of secondary cases that one 
case can produce if introduced into a susceptible human. Thus 
the outbreak of dengue disease in the endemic region can be 
reduced when the basic reproductive number '

A(R )  is greater 
than one. 

B. Numerical Results  
Numerical solutions are presented for comparing the 

transmission of dengue disease for the free and endemic 
stables. The values of most of the parameters are determined 
by the real life observations. They are 0.0000457ϖ = per 
day, corresponding to a life expectancy of 60 years; 

v 0.0714286θ =  per day , corresponding to a mosquito mean 
life of 14 days; va 0.33= , one bite providing enough blood 
meal for three days; vp 0.4λ = , vn pv0.8, 0.4λ = λ =  and 

nv 0.8λ =  which were chosen arbitrarily. We assume that 

vn vp nv pv,λ > λ λ > λ  and there is no alternative host (h 0)= . 
The numerical solutions of (3) are shown in following 

figures. 

 
                          (1a)                                                (1b) 
 

Fig. 1 Numerical solutions of (3), demonstrate the solution 
trajectories, projected onto p p(S , I )  

(1a)  for AR 1<  with the parameters are 
10.0000457day−ϖ = , 1

v 0.0714286 day−θ = , 
1

va 0.33 day−= , vp vn pv0.4, 0.8, 0.4λ = λ = λ = , 

1
nv 0.8, 0.5, 0.5, r 0.33 day−λ = ψ = τ = = , 

t tnN 100,000, D 2,000, N 99,000,= = =  
'

tp A AN 1,000, R 0.181769 ,R 0.426344= = = . 

(1b) for AR 1> , D 30,000=  but the other parameters are 

same as in  Fig. (1a). '
A AR 2.72653,R 1.65122= = . The 

solutions oscillate to the endemic equilibrium point 

pS 0.148488= , pI 0.000116629= . 
 

 
                            (2a)                                              (2b) 

Fig. 2 Numerical solutions of (3), demonstrate the solution 
trajectories, projected onto p n(S ,S )  

(2a)  for AR 1<  with the parameters are same as Fig. 1a) 

(2b)   for AR 1>  with the parameters are same as Fig. (1b) . The 
solutions oscillate to the endemic equilibrium point 

pS 0.148488= , nS 0.0801984= . 

 

 
                          (3a)                                               (3b) 
 

Fig.  3 Numerical solutions of (3), demonstrate the solution 
trajectories, projected onto p n(S , I )  

(3a)  for AR 1<  with the parameters are same as Fig. (1a) 

(3b)   for AR 1>  with the parameters are same as Fig. (1b) . The 
solutions oscillate to the endemic equilibrium point 

pS 0.148488= , nI 0.000125983=  
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                             (4a)                                            (4b) 
 

Fig. 4 Numerical solutions of (3), demonstrate the solution 
trajectories, projected onto p v(S , I )  

(4a)  for AR 1<  with the parameters are same as Fig. (1a) 

(4b)   for AR 1>  with the parameters are same as Fig. (1b) . The 
solutions oscillate to the endemic equilibrium point 

pS 0.148488= , vI 0.000467591=  

 
In general, small AR ’s result in long periods while large 

AR ’s result in short periods. Next section we will compare 
the numerical solution behaviors for the different basic 
reproductive number. 

IV. DISCUSSION AND CONCLUSION 
The number of secondary infections, which can result from 

one primary infection, is defined from the square root of the 
basic reproduction number A(R ) : 

1 2 1
A

0 3

D (G G )R
D G

+ ψ
=

ψ
 

2 2
vp pv v tp v vn nv v tn v

2 2
v t v t

a N (D / ) a N (D / )
(N h) ( r) (N h) ( r)

λ λ θ λ λ θ
= +

θ + ϖ + θ + ϖ +
. 

 
We can see that from Fig. 1a), 2a), 3a) and 4a), the 

proportion p p n n v(S , I ,S , I , I )  approaches to the free 
equilibrium value (1,0,1,0,0) .  From Fig. (1b), (2b), (3b), 

and (4b)  the proportion p p n n v(S , I ,S , I , I )  spirals to the 
endemic equilibrium value ( 0.148488, 0.000116629, 
0.0801984, 0.000125983, 0.000467591).  

This disease will be capable of invading and establishing 
itself when '

A AR R=  is more than one. If this number is 
less than one, then every successive generation will diminish 
in size until its number approaches zero. 

Moreover, we compare the solution trajectory when the 
basic reproductive numbers are difference. We show in Fig. 5. 

 

 

 
 

                        (5a)                                                 (5b) 

Fig. 5 Numerical solutions of the system (3) demonstrate 
the solution trajectories, projected onto 
p p p n p n p v(S , I ),(S ,S ),(S , I ),(S , I ) -plane. 

(5a)  '
A AR 2.72653,R 1.65122= = . The period of 

oscillation is about  3  years . The fractions of populations 
oscillate to the endemic disease equilibrium point 

pS 0.148488= , 
pI 0.000116629= , nS 0.0801984= , 

nI 0.000125983,=  vI 0.000467591= . 

(5b) '
A AR 5.45306, R 2.33518= = . The period 

of oscillation is about  2  years . The fractions of 
populations oscillate to the endemic disease 

equilibrium point  pS 0.0770947= , 
pI 0.000126408,= nS 0.0400928= , 

vI 0.000488057= . 
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The basic reproductive number of the disease for Fig. 5(a) 
and Fig. 5(b) equals to 1.65122 and 2.33518 , respectively. 
Periods of the oscillations as the simulations approach the 
endemic equilibrium point are estimated by means of the 
solutions of the linearized system, obtain 3 years for Fig. 5(a) 
and 2 years for Fig. 5(b). As we see, the periods of fluctuation 
in the proportion of each class are shorter in the small basic 
reproduction number. 

If the basic reproductive rate is higher, this means that one 
case can produce the greater number of secondary cases, and 
then the period of oscillation is shorter. The endemic 
equilibrium point for the fractions of susceptible pregnant and 
non-pregnant humans decrease. The endemic equilibrium 
points for the fractions of infectious pregnant, non-pregnant 
humans and infectious vector increase. These subsequent 
behaviors occur since there are enough susceptible pregnant 
and non-pregnant to be infected from infectious vector. 
Application of an ultra low volume (ULV) amount of 
insecticides (the standard method used to control the spread of 
dengue disease and other arthropod-borne disease) could 
reduce the basic reproductive rate to below one. The value of 
the basic reproductive rate would return to the above one 
value once the application is stopped and since the endemic 
state is locally stable, the disease would return. 
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