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Abstract—The migration of a deformable drop in simple shear 

flow at finite Reynolds numbers is investigated numerically by 
solving the full Navier-Stokes equations using a finite 
difference/front tracking method. The objectives of this study are to 
examine the effectiveness of the present approach to predict the 
migration of a drop in a shear flow and to investigate the behavior of 
the drop migration with different drop sizes and non-unity viscosity 
ratios. It is shown that the drop deformation depends strongly on the 
capillary number, so that; the proper non-dimensional number for the 
interfacial tension is the capillary number. The rate of migration 
increased with increasing the drop radius. In other words, the 
required time for drop migration to the centreline decreases. As the 
viscosity ratio increases, the drop rotates more slowly and the 
lubrication force becomes stronger. The increased lubrication force 
makes it easier for the drop to migrate to the centre of the channel. 
The migration velocity of the drop vanishes as the drop reaches the 
centreline under viscosity ratio of one and non-unity viscosity ratios. 
To validate the present calculations, some typical results are 
compared with available experimental and theoretical data.   
 

Keywords—drop migration, shear flow, front-tracking method, 
finite difference method.  

I. INTRODUCTION 
HE motion of drops and particles in a fluid medium in 
channel and pipe flows is of fundamental importance in 
the processing of materials in the reduced gravity 

environment and in a wide variety of technologically 
important processes. Some works have been performed to 
investigate the motion of drops and particles in the fluid 
medium at the Reynolds number of either zero or O(1). 
Experimentally, the phenomena have been measured (initially 
by Taylor 1934) [1] even though the shear flows considered 
have been restricted in most investigations to simple shear in a 
Couette device. Karnis and Mason (1967) [2] reported that 
neutrally buoyant particles stabilized midway between the 
centreline and the wall in a channel, closer to the wall for 
larger flow rates and closer to the centre for larger particles. 
Halow & Wills (1970) [3] did experiments in a concentric 
cylindrical Couette device. They observed that when the inner 
cylinder rotates, a particle migrates from any initial position to 
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equilibrium at a small distance inside the centreline of the gap. 
Rallison (1980) [4] has studied the time-dependent 
deformation and burst of a viscous drop in an arbitrary shear 
flow at zero Reynolds number. He presented a numerical 
scheme to track the two-dimensional drop shape in time. 
Magna & Stone (1993) [5] reported the time-dependent 
interactions between two buoyancy-driven deformable drops 
in a low Reynolds number flow. They introduced three modes 
for film drainage between the drops: rapid drainage, uniform 
drainage and dimple formation. As the separation distance 
between the two drops decreases, the mode of film drainage 
may change from rapid drainage to uniform drainage and 
eventually a dimple may form. Zhou & Pozrikidis (1993) [6] 
studied the flow of periodic suspension of two-dimensional 
viscous drops in a closed channel that was bounded by two 
parallel plane walls. They found that there exists a critical 
capillary number below which the suspensions exhibit stable 
periodic motion, and above which the drops elongate and tend 
to coalesce, altering the topology of the initial configuration. 
They studied the effects of capillary number, viscosity ratio, 
volume fraction of dispersed phase, lattice geometry, and 
instantaneous drop shape, on the effective stress tensor of the 
suspension. Feng et al. (1994) [7] reported the results of a 
two-dimensional finite element simulation of the motion of a 
circular particle in a Couette & Poiseuille flow. They showed 
that a neutrally buoyant particle migrates to the centerline in a 
Couette flow and the stagnation pressure on the particle 
surface is particularly important in determining the direction 
of migration. Li et al. (1995) [8] studied the motion of two-
dimensional, doubly periodic, dilute and concentrated 
emulsions of liquid drops with constant surface tension in a 
simple shear flow. Their numerical method is based on a 
boundary integral formulation. They showed that the shearing 
flow is able to stabilize a concentrated emulsion against the 
tendency of the drops to become circular and coalesce, 
thereby allowing for periodic evolution even when the volume 
fraction of suspended phase might play a role similar to that of 
the foam. Loewenberg & Hinch (1996) [9] did a three-
dimensional simulation of a concentrated emulsion in shear 
flow, for zero-Reynolds-number and finite-capillary-numbers. 
Results were obtained for dispersed-phase volume fractions 
up to 30% and dispersed to continues-phase viscosity ratios in 
the range of 0 to 5. They reported the viscosity of an emulsion 
is only moderately increasing function of the dispersed-phase 
volume fraction, in contrast to suspensions of rigid particles or 
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undeformed drops. Esmaeeli & Tryggvason (1998) [10] 
simulated the motion of two-and three-dimensional buoyant 
bubbles. They compared a finite Reynolds number two-
dimensional simulation with sixteen bubbles and a Stokes 
flow simulation and reported that the finite Reynolds number 
array break up much faster. Their simulations showed a slight 
increase in the average rise velocity compared to a regular 
array. Mortazavi & Tryggvasson (1999) [11] studied the 
motion of a drop in Poiseuille flow. They simulated the 
motion of many drops at finite Reynolds numbers. Esmaeeli & 
Tryggvason (1999) [12] simulated the motion of two-and 
three-dimensional finite Reynolds number buoyant bubbles. 
They showed that the rise Reynolds number is nearly 
independent of the number of bubbles, the velocity 
fluctuations in the liquid (the Reynolds stresses) increase with 
the size of the system. Balabel et al. (2002) [13] introduced a 
numerical model based on the level set method for computing 
unsteady droplet internal flows. They presented this model for 
linear droplet oscillation processes. Crowdy (2003) [14] 
studied the problem of a two-dimensional inviscid 
compressible bubble evolving in Stokes flow. They reported 
that if the ambient pressure is small enough, bubbles can 
expand significantly. In addition, they showed that a bubble 
evolving adiabatically is less likely to expand than an 
isothermal bubble. Yoon et al. (2005) [15] investigated 
experimentally the effect of the dispersed to continues-phase 
viscosity ratio on the flow-induced coalescence of two equal-
sized drops with clean interfaces. Their study showed that 
when the viscosity ratio is greater than O(0.1), the critical 
capillary number decreases with increasing offset only for the 
smallest offsets, but increases with increasing offset until a 
critical offset is reached above which coalescence in not 
observed. Norman et al. (2005) [16] studied the neutrally 
buoyant particles in a low-Reynolds-number pressure-driven 
flow. They showed that when the particle density differs from 
that of the suspending fluid, buoyancy forces also affect 
particle migration. They reported that suspension flows 
become fully developed earlier than that observed for 
neutrally buoyant particles. Yang et al. (2005) [17] simulated 
the migration of a sphere in tube flow. They presented a 
formula for the lift force. Their formula predicted the change 
of sign of the lift force. They compared their correlation 
formula with analytical lift formula and showed that the 
equilibrium position moves toward the wall as the Reynolds 
number increases at a fixed drop radius and it moves towards 
the centreline as the radius of drop increases at a fixed 
Reynolds number.  

Sibillo et al. (2007) [18] investigated the deformation and 
breakup of a drop in an immiscible equiviscous liquid 
undergoing unbounded shear flow. They showed that wall 
effects can be exploited to obtain nearly monodisperse 
emulsions in microconfined shear flow. Zhao (2007) [19] 
investigated the drop break up in dilute Newtonian emulsions 
in simple shear flow by using high-speed microscopy over a 
wide range of viscosity ratio, focusing on high capillary 
number. He showed that the final drop size distribution 
intimately links to the drop break up mechanism, which 
depends on viscosity ratio and capillary number.  

Numerical and experimental results have been obtained for the 
evolution of the following quantities during migration: the 
particle trajectory, the slip velocity of the particles, the initial 
size of the particles, the migration velocity, distribution of 
pressure and viscous stresses on the surface of the particles, 
and the deformation parameter.  

Theoretical analysis of the lateral migration of deformable 
drops in a channel flow was restricted to the two-dimensional 
Stokes and potential flows. The objectives of this study are to 
examine the effectiveness of the present approach to predict 
the migration of a drop in a shear flow and to investigate the 
behavior of the drop migration with different drop sizes and 
non-unity viscosity ratios at finite Reynolds numbers by 
adding the advection terms to the governing equations. 

Section 2 contains the formulation, and a short description 
of the numerical method. 

II. FORMULATION AND NUMERICAL METHOD 

A. Governing equations 
The governing equations for the motion of unsteady, 

viscous, incompressible, immiscible two- fluid systems are the 
Navier-Stokes equations in conservative form: 
 

Here u is the fluid velocity, p is the pressure, ρ is the fluid 
density, μ is the fluid viscosity, and σ is the surface tension 
coefficient. βδ is a two- or three-dimensional delta function. 
The dimension is denoted by β = 2 or 3. κ is the curvature for 
two-dimensional flows and twice the mean curvature for 
three-dimensional flows. n is a unit vector normal to the drop 
surface pointing outside of the drop. x is the position in 
Eulerian coordinate and X is the position of front in 
Lagrangian coordinate.  

Both of fluids are taken to be incompressible, so the 
divergence of velocity field is zero: 
 

(2) 0.u =∇  
 
Equations of state for the density and the viscosity are:  
 

(3) 0Dt/D =ρ , 0Dt/D =μ  
 
where, D/Dt is the material derivative and these equations 

state that the density and the viscosity of each fluid remain 
constant.  

By integrating the normal component of Eq. (1) over a 
small volume containing the interface, most of the terms gets 
to zero, and in the limit of infinitesimal volume: 
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where the brackets denote the jump across the interface. 
This is the usual statement of continuity of stresses at a fluid 
boundary, showing that the normal stresses are balanced by 
surface tension. In the similar way, integrating the tangential 
components shows that the tangential stresses are continuous. 

B. Numerical method 
Various methods have been used to simulate the two-phase 

flows. These methods include: (1) capture the front directly on 
a regular, stationary grid. The best known examples are the 
marker-and-cell (MAC) method, where marker particles are 
used to identify each fluid, the volume-of-fluid (VOF) 
method, where a marker function is used, and level sets 
method, where the fluid interface marker is used. (2) use 
separate, boundary fitted grids for each phases. (3) Lagrangian 
methods where the grid follows the fluid. (4) front tracking, 
where a separate front marks the interface but a fixed grid, 
only modified near the front to make a grid line follow the 
interface, is used for the fluid within each phase. In addition to 
front tracking methods that are applicable to the full Navier 
Stokes equations, specialized boundary integral methods have 
been used for both potential and Stokes flows. In general, the 
interface representation can be explicit (moving mesh) or 
implicit (fixed mesh) or a combination of both. The front-
tracking method is a combination of fixed and moving mesh 
method. Although an interface grid tracks the interface, the 
flow is solved on a fixed grid. The interface conditions are 
satisfied by smoothing the interface discontinuities and 
interpolating interface forces from the interface grid to the 
fixed grid. In this method, the governing equations are solved 
for whole flow field. The first is a sharp boundary between the 
fluids and the second is accurate computation of surface 
tension. Different methods have been made in overcoming 
these problems. 

The front is resolved by discrete computational points that 
are moved by interpolating their velocities from the grid. 
These points are connected by triangular elements to form a 
front that is used to keep the density and viscosity 
stratification sharp and to calculate surface tension. At each 
time step information must be passed between the front and 
the stationary grid. This is done by a method that discussed by 
Unverdi & Tryggvason (1992) [20], where the density jump is 
distributed to the grid points next to the front and a smooth 
density field that changes from one density to the other over 
two to three grid spaces generated by the solution of a Poisson 
equation. While this replaces the sharp interface by a slightly 
smoother grid interface, numerical diffusion of the density and 
the viscosity fields is eliminated, since the grid field is 
reconstructed at each step.  

The spatial differentiation is calculated by second order 
finite difference on a staggered Eulerian grid. An explicit 
second-order time integration method is used. Combining the 
incompressibility condition and momentum equations results 
in a non-separable elliptic equation for the pressure. Due to 
the equality in density between the drop and the ambient fluid, 
a quick Poisson solver (FICHPACK) solves the pressure 
equation.  
The force due to surface tension on each element of front is 
 

 

In three-dimensional flow, the average surface curvature is 

 
Then, the force on each element surface is 
 

 
The integration is over the boundary of each element 

representing the front. τ and n are the tangent and the normal 
vector to each element, respectively. 

III. RESULTS 
The effects of the drop size and viscosity ratio on the cross-

stream migration of a drop in simple shear flow are presented. 
The drop diameter is D, and the height of the channel is H. 
The top wall is moving at velocity U in x-direction, and 
bottom wall is stationary. The boundary conditions are 
periodic in the x- and y-direction and rigid, top and bottom 
walls in the z-direction (Figure 1). 
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Fig. 1 Migration of a drop in simple shear flow between no-slip 
walls. 

 
Numerical simulations of the migration of a drop in simple 

shear flow were performed over a range of values of the 
governing non-dimensional parameters of the flow. These 
parameters are: (i) the viscosity ratio μμλ /d= , where μ      
and  dμ  are the viscosities of ambient fluid and of the drop, 
respectively, (ii) The density ratio ρρη /d= , where ρ        
and dρ  are the densities of ambient fluid and of the drop, 
respectively, (iii) The Reynolds number (particle and bulk 
Reynolds numbers): μγρ /aRe 2

P =  and μγρ /HRe 2
b = , 

where H/)uu( bt −=γ is the shear rate. tu  and bu  are top 
and bottom wall velocities, respectively. (iv) The capillary 
number σγμ /aCa = , where σ is the interfacial tension. The 
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capillary number is the ratio of viscous force to surface-
tension force, (v) The Weber number σγρ /aWe 3= .  The 

Weber number is the ratio of inertial force to surface-tension 
force. It should be pointed out that the Weber number and the 
capillary number are related by We = ( bRe ) (Ca) 

( γ/1 ) 2)H/a( , so only one of them should be considered in 
the present study.  

To choose a proper dimensionless parameter for the 
interfacial tension (i.e. either the Weber number or the 
capillary number), two sets of simulations were performed at 
constant capillary number and constant Weber number, 
keeping the Reynolds number constant. In other words, a set 
of simulation were performed with different drop sizes at a 
certain Reynolds number while the capillary number was 
constant. As a result the Weber number changed in these 
simulations. Another set of simulations were performed with 
different drop sizes at the same Reynolds number while the 
Weber number was constant. As a result the capillary number 
changed in these simulations. 

The Taylor deformation, De, defined as (L-B)/(L+B), where 
L and B are, respectively, the major and minor axis of 
deformed drop (defined by the largest and smallest distance of 
the surface from the centre). Figure 2 shows the deformation 
of the drops as a function of dimensionless time in the two 
sets of simulations. Time has been normalized by the shear 
rate    (t* = t × γ  ). It can be seen (figure 2a) that the 
deformations of drops are nearly the same when the capillary 
number is constant. When simulations were performed at a 
constant Weber number (figure 2b) the drop deformation also 
changed as a result. Therefore, the drop deformation is a 
strong function of the capillary number, and in order to fix the 
drop deformation the capillary number should be fixed. As a 
result, the proper non-dimensional number for the interfacial 
tension is the capillary number.        

So, for studying the drop size and viscosity ratio effects, the 
simulations were performed at fixed capillary numbers. 

A. Size effects 
Perturbation theories of viscous or inertial type are valid for 

small particle Reynolds numbers, i.e. pRe << 2ξ  (Ho & Leal 
1974 [21]), where ξ = a/H is the geometric ratio. This 
condition is not satisfied in this study. In this work, results 
have been obtained for bRe = 10 and ξ = 0.18, 0.2, and 0.22, 
so that, pRe = 0.324, 0.4, and 0.484, respectively and these 

values are greater than 2ξ = 0.0324, 0.04, and 0.0484. 
It is known that a neutrally buoyant rigid particle always 

migrates to the centre of the channel, regardless of initial 
position and velocity (Feng et al., 1994). They simulated the 
motion of solid bodies in a Newtonian fluid. Karnis and 
Mason (1967) considered the creeping Couette flow in a 
coaxial cylinder. They showed the direction of drop migration 
is independent of speed and direction of rotation of the 
cylinder walls. The results of present simulations can be 
compared qualitatively with the numerical results of (Feng et 
al., 1994) and the experimental results of Karnis and Mason 
(1967). Figure 3 shows the lateral migration of a drop with 

different sizes. The lateral migration of the drop is illustrated 
by the dimensionless distance from the bottom of the channel. 
In this figure for present work: bRe = 10 and Ca = 0.2, for 
results of Feng et al.: bRe = 40, and for results of Karnis & 
Mason; dimensionless time = t*/7, open triangles: bRe = 
0.001, Ca = 0.65; open circles: bRe = 0.0003, Ca = 0.185. It 
can be seen that the rate of migration increases with increasing 
the drop radius. In other words, the required time for drop 
migration to the centreline decreases. 
 

 
(a) 

 
(b) 

 
Fig. 2 drop deformation at λ = η = 1 and bRe = 10. (a) Ca = 0.2, (b) 

We = 0.0648. 

γ
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Fig. 3 Lateral migration of a drop in a simple shear flow 
 (λ = η = 1). 

 
The difference between the drop velocity and the 

undistributed velocity at the centre of the drop is the slip 
velocity δV. In figure 4 the slip velocity δV normalized by the 
wall velocity U is plotted. In all cases, the angular velocity 
rapidly relaxes from zero and the drop rotates with the local 
angular velocity of the flow field to within a small correction. 
The maximum value of the slip velocity in initial transient 
period is increasing with the drop radius. After the transient 
period, the drop is forced to lead the local undistributed 
velocity. Feng et al. (1994) obtained a similar result for a rigid 
sphere in a Couette flow.     
The migration velocity ( ZU ) of the drop along the velocity 
gradient direction depends on initial size at the early stage of 
migration (figure 5). The analytical result of Vasseur & Cox 
(1976) [22] for a bounded domain has also been shown for 
comparison. The two-dimensional results of Vasseur & Cox 
(1976) are for small spheres in a slow flow, and their analysis 
does not address transient effects. The initial position of the 
drop is Z = 0.7H. The centerline of the channel is at Z/H = 0.5. 
The sign of ZU  for result of Vasseur & Cox has been 
changed for comparison. In present work: bRe = 10, Ca = 0.2; 
the particle Reynolds number is 0.324 for D/H = 0.3, is 0.40 
for D/H = 0.4, and is 0.484 for D/H = 0.44. 

Figure 5 shows that after the transient period, the trends are 
alike. Also, it can be seen that the difference between present 
simulations and the perturbation theory becomes larger when 

pRe gets larger or the inertial effect gets stronger. 

B. Effect of the viscosity ratio  
The effect of viscosity ratio is described in this section at a 

fixed capillary number Ca = 0.2. Figure 6 shows the results 
from numerical simulations with viscosity ratios in the range 
0.8 ≤ λ ≤ 2 and a fixed drop radius (a = 0.18 H). It can be seen 
that the rate of migration increases with increasing the 
viscosity ratio. The wall repulsion, which is a lubrication 
effect, is the major mechanism for drop migration (Feng ea al, 
1994). In the presence case, the relative motion of the drop to 

the nearby wall induces this repulsion that makes the centre an 
equilibrium.  

 
 

 
 

Fig. 4 Relaxation of the slip velocity δV of drops migrating in simple 
shear flow (λ = η = 1). Present work: bRe = 10 and Ca = 0.2; Feng et 

al.: Rigid particle, bRe = 40. 
 

 
 

Fig. 5 Comparison of the migration velocity predicted by present 
simulation (λ = η = 1) and the theoretical result of Vasseur & Cox 

(1976) for small spheres. 
 
In figure 7 the deformation parameter of the drop is plotted 

as a function of dimensionless time. As the viscosity ratio 
increases, the drop deformation slightly decreases and reaches 
a steady state value. As expected, the drop deformation is an 
decreasing function of  the viscosity ratio, although at fixed 
capillary number, this dependency is approximately weak.            

It is found that the migration velocity ( ZU ) of the drop 
decreases smoothly as   the drop reaches the equilibrium - 
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Fig. 6 Lateral migration of a drop in a simple shear flow for different 

λ. η = 1, ξ = 0.18, bRe = 10, and Ca = 0.2. 
 

 
Fig. 7 drop deformation at η = 1, ξ = 0.18, bRe = 10, and Ca = 0.2. 

 
position under viscosity ratio of one and non-unity viscosity 
ratios. Figure 8 shows this article and confirms that the rate of 
migration increases with increasing the viscosity ratio. The 
initial position of the drop is Z = 0.7H. The centerline of the 
channel is at Z/H = 0.5. The sign of ZU  for result of Vasseur 
& Cox has been changed for comparison. In present work: η = 
1, ξ = 0.18, bRe = 10, Ca = 0.2. 

IV. CONCLUSION 
Size and viscosity ratio effects on the migration of a 

deformable drop in simple shear flow at finite Reynolds 
numbers have been studied using a finite difference/front 
tracking method. The results show that the drop deformation 
depends strongly on the capillary number.  

The rate of migration increased with increasing the drop 
radius. So, the required time for drop migration is decreasing  

 

 
Fig. 8 Comparison of the migration velocity predicted by present 
simulation and the theoretical result of Vasseur & Cox (1976) for 

small spheres. 
 

function of the drop radius. As the size of drop gets larger, the 
maximum value of the slip velocity in the initial transient 
period increases. 

The calculations also indicate that as the viscosity ratio 
increases, the drop rotates more slowly and the lubrication 
force becomes stronger. The increased lubrication force makes 
it easier for the drop to migrate to the centre of the channel. 
As expected, the drop deformation is a decreasing function of 
the viscosity ratio. The migration velocity of the drop 
decreases smoothly as the drop reaches the equilibrium 
position under viscosity ratio of one and non-unity viscosity 
ratios. 
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