The Bipartite Ramsey Numbers $b\left(C_{2 m} ; C_{2 n}\right)$

Rui Zhang,Yongqi Sun,and Yali Wu,

Abstract

Given bipartite graphs H_{1} and H_{2}, the bipartite Ramsey number $b\left(H_{1} ; H_{2}\right)$ is the smallest integer b such that any subgraph G of the complete bipartite graph $K_{b, b}$, either G contains a copy of H_{1} or its complement relative to $K_{b, b}$ contains a copy of H_{2}. It is known that $b\left(K_{2,2} ; K_{2,2}\right)=5, b\left(K_{2,3} ; K_{2,3}\right)=9, b\left(K_{2,4} ; K_{2,4}\right)=14$ and $b\left(K_{3,3} ; K_{3,3}\right)=17$. In this paper we study the case that both H_{1} and H_{2} are even cycles, prove that $b\left(C_{2 m} ; C_{2 n}\right) \geq m+n-1$ for $m \neq n$, and $b\left(C_{2 m} ; C_{6}\right)=m+2$ for $m \geq 4$.

Keywords-bipartite graph; Ramsey number; even cycle

I. Introduction

WE consider only finite undirected graphs without loops or multiple edges. For a graph G with vertex-set $V(G)$ and edge-set $E(G)$, we denote the order and the size of G by $p(G)=|V(G)|$ and $q(G)=|E(G)| . \delta(G)$ and $\Delta(G)$ are the minimum degree and the maximum degree of G respectively.

Let $K_{m, n}$ be a complete m by n bipartite graph, that is, $K_{m, n}$ consists of $m+n$ vertices, partitioned into sets of size m and n, and the $m n$ edges between them. P_{k} is a path on k vertices, and C_{k} is a cycle of length k. Let H_{1} and H_{2} be bipartite graphs, the bipartite Ramsey number $b\left(H_{1} ; H_{2}\right)$ is the smallest integer b such that given any subgraph G of the complete bipartite graph $K_{b, b}$, either G contains a copy of H_{1} or there exists a copy of H_{2} in the complement of G relative to $K_{b, b}$. Obviously, we have $b\left(H_{1} ; H_{2}\right)=b\left(H_{2} ; H_{1}\right)$.

Beineke and Schwenk ${ }^{[1]}$ showed that $b\left(K_{2,2} ; K_{2,2}\right)=$ $5, b\left(K_{2,4} ; K_{2,4}\right)=13, b\left(K_{3,3} ; K_{3,3}\right)=17$. In particular, they proved that $b\left(K_{2, n} ; K_{2, n}\right)=4 n-3$ for n odd and less than 100 except $n=59$ or $n=95$. Carnielli and Carmelo ${ }^{[2]}$ proved that $b\left(K_{2, n} ; K_{2, n}\right)=4 n-3$ if $4 n-3$ is a prime power. They also showed that $b\left(K_{2,2} ; K_{1, n}\right)=n+q$ for $q^{2}-q+1 \leq n \leq q^{2}$, where q is a prime power. Irving ${ }^{[6]}$ showed that $b\left(K_{4,4} ; K_{4,4}\right) \leq 48$. Hattingh and Henning ${ }^{[4]}$ proved that $b\left(K_{2,2} ; K_{3,3}\right)=9, b\left(K_{2,2} ; K_{4,4}\right)=14$. They also determined the values of $b\left(P_{m} ; K_{1, n}\right)^{[5]}$. Faudree and Schelp proved the values of $b\left(H_{1} ; H_{2}\right)$ when both H_{1} and H_{2} are two paths ${ }^{[3]}$. It was shown that $b\left(C_{6} ; K_{2,2}\right)=5$ and $b\left(C_{2 m} ; K_{2,2}\right)=m+1$ for $m \geq 4$ in [7].

Let G_{i} be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_{i} \nsubseteq G_{i}$ for all $1 \leq$ $i \leq r$, then G is said to be r-colorable to $\left(H_{1}, H_{2}, \ldots, H_{r}\right)$. The neighborhood of a vertex $v \in V(G)$ are denoted by $N(v)=\{u \in V(G) \mid u v \in E(G)\}$, and let $d(v)=|N(v)| . G^{c}$

Yongqi Sun is with the School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China, e-mail: yqsun@bjtu.edu.cn.
Rui Zhang and Yali Wu are doctoral students of the School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China.
denotes the complement of G relative to $K_{b, b} . G\langle W\rangle$ denotes the subgraph of G induced by $W \subseteq V(G)$. Let $G \cup H$ denote a disjoint sum of G and H, and $n G$ is a disjoint sum of n copies of G.

Obviously, if H_{1} and H_{2} are cycles, then they are both even cycles. In this paper we study the case that both H_{1} and H_{2} are even cycles. Firstly, we prove that $b\left(C_{2 m} ; C_{2 n}\right) \geq m+n-1$ for $m \neq n$ and $b\left(C_{2 m} ; C_{2 m}\right) \geq 2 m$. Then setting $n=3$, we prove that $b\left(C_{6} ; C_{6}\right)=6$ and $b\left(C_{2 m} ; C_{6}\right)=m+2$ for $m \geq 4$. For the sake of convenience, let $V\left(K_{m, n}\right)=X \cup Y$, where $X=\left\{x_{i} \mid 1 \leq i \leq m\right\}, Y=\left\{y_{j} \mid 1 \leq j \leq n\right\}$, and $E\left(K_{m, n}\right)=\left\{x_{i} y_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

II. The lower bounds of $b\left(C_{2 m} ; C_{6}\right)$

Theorem 1: $b\left(C_{2 m} ; C_{2 n}\right) \geq \begin{cases}m+n-1, & m \neq n, \\ 2 m, & m=n .\end{cases}$
Proof: If $m \neq n$, let G_{1} and G_{2} be subgraphs of $K_{m+n-2, m+n-2}$, where G_{1} is a complete $m-1$ by $m+n-2$ bipartite graph, and G_{2} is a complete $n-1$ by $m+n-2$ bipartite graph. And let $V\left(G_{1}\right)=X_{1} \cup Y$, where $X_{1}=\left\{x_{i} \mid 1 \leq\right.$ $i \leq m-1\}$ and $Y=\left\{y_{i} \mid 1 \leq i \leq m+n-2\right\} ; V\left(G_{2}\right)=$ $X_{2} \cup Y$, where $X_{2}=\left\{x_{i} \mid m \leq i \leq m+n-2\right\}, Y=\left\{y_{i} \mid 1 \leq\right.$ $i \leq m+n-2\}$. Then we have $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$ and $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E\left(K_{m+n-2, m+n-2}\right)$. Note that $C_{2 m} \nsubseteq$ G_{1} and $C_{2 n} \nsubseteq G_{2}$. So $K_{m+n-2, m+n-2}$ is 2-colorable to $\left(C_{2 m}, C_{2 n}\right)$, that is, $b\left(C_{2 m} ; C_{2 n}\right) \geq m+n-1$.

If $m=n$, let G_{1} and G_{2} be the spanning subgraphs of $K_{2 m-1,2 m-1}$. And let $E\left(G_{1}\right)=\left\{x_{i} y_{j} \mid 1 \leq i, j \leq m-1\right\} \cup$ $\left\{x_{i} y_{j} \mid m \leq i, j \leq 2 m-2\right\} \cup\left\{x_{2 m-1} y_{j} \mid 1 \leq j \leq 2 m-\right.$ $1\} ; E\left(G_{2}\right)=\left\{x_{i} y_{j} \mid 1 \leq i \leq m-1, m \leq j \leq 2 m-2\right\} \cup$ $\left\{x_{i} y_{j} \mid m \leq i \leq 2 m-2,1 \leq j \leq m-1\right\} \cup\left\{x_{i} y_{2 m-1} \mid 1 \leq i \leq\right.$ $2 m-2\}$. Then we have $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$ and $E\left(G_{1}\right) \cup$ $E\left(G_{2}\right)=E\left(K_{2 m-1,2 m-1}\right)$. Note that $C_{2 m} \nsubseteq G_{1}$ and $C_{2 m} \nsubseteq$ G_{2}. So $K_{2 m-1,2 m-1}$ is 2 -colorable to $\left(C_{2 m}, C_{2 m}\right)$, that is, $b\left(C_{2 m} ; C_{2 m}\right) \geq 2 m$.

Setting $n=3$ in Theorem 1, we have
Corollary 1: $b\left(C_{2 m} ; C_{6}\right) \geq \begin{cases}m+2, & m \neq 3, \\ 6, & m=3 .\end{cases}$
III. The upper bounds of $b\left(C_{2 m} ; C_{6}\right)(m \geq 3)$

Lemma 1: Let G be a spanning subgraph of $K_{3,3}$, if $C_{6} \nsubseteq$ G^{c}, then $P_{3} \subseteq G$.

Proof: If $P_{3} \nsubseteq G$, then G is isomorphic to one graph of $\left\{6 P_{1}, 4 P_{1} \cup P_{2}, 2 P_{1} \cup 2 P_{2}, 3 P_{2}\right\}$. In any case, we have $C_{6} \subseteq G^{c}$.
Lemma 2: $b\left(C_{6} ; C_{6}\right) \leq 6$.
Proof: By contradiction, we assume that $b\left(C_{6} ; C_{6}\right)>6$, that is, $K_{6,6}$ is 2-colorable to C_{6}. Let $V\left(K_{5,5}\right)=V\left(K_{6,6}\right)$ $\left\{x_{6}, y_{6}\right\}$. By Theorem 1, $K_{5,5}$ is 2-colorable to C_{6}, and $E\left(G_{1}\left\langle V\left(K_{5,5}\right)\right\rangle\right)=\left\{x_{i} y_{j} \mid 1 \leq i, j \leq 2\right\} \cup\left\{x_{i} y_{j} \mid 3 \leq i, j \leq\right.$

Fig. 1. The graphs $G_{1}^{\prime}\left\langle V\left(K_{5,5}\right)\right\rangle$ and $G_{2}^{\prime}\left\langle V\left(K_{5,5}\right)\right\rangle$
$4\} \cup\left\{x_{5} y_{j} \mid 1 \leq j \leq 5\right\} ; E\left(G_{2}\left\langle V\left(K_{5,5}\right)\right\rangle\right)=\left\{x_{i} y_{j} \mid 1 \leq\right.$ $i \leq 2,3 \leq j \leq 4\} \cup\left\{x_{i} y_{j} \mid 3 \leq i \leq 4,1 \leq j \leq\right.$ $2\} \cup\left\{x_{i} y_{5} \mid 1 \leq i \leq 4\right\}$. Besides this, there is one coloring way without resulting monosubgraph C_{6} in the 2-coloring edges of $K_{5,5}$, namely $G_{1}^{\prime}\left\langle V\left(K_{5,5}\right)\right\rangle \cong G_{1}\left\langle V\left(K_{5,5}\right)\right\rangle-x_{5} y_{4}$ and $G_{2}^{\prime}\left\langle V\left(K_{5,5}\right)\right\rangle \cong G_{2}\left\langle V\left(K_{5,5}\right)\right\rangle+x_{5} y_{4}($ see Figure 1$)$. Now we consider the vertices x_{6} and y_{6}. Since $C_{6} \nsubseteq G_{2}$ (or $\left.G_{2}^{\prime}\right), x_{6}$ is adjacent to at most one vertex of $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Hence x_{6} has to be adjacent to at least three vertices of $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ in G_{1} (or G_{1}^{\prime}), we have $C_{6} \subseteq G_{1}$ (or G_{1}^{\prime}), a contradiction. So, $K_{6,6}$ is not 2-colorable to C_{6}, that is, $b\left(C_{6} ; C_{6}\right) \leq 6$.
In order to prove Lemma 3, we need the following claims. Let $H_{2 k+3}$ and $H_{2 k+4}$ denote the two graphs as shown in Figure 2, and G be a spanning subgraph of $K_{k+3, k+3}$ for $k \geq 3$ such that $C_{2(k+1)} \nsubseteq G$ and $C_{6} \nsubseteq G^{c}$, then we have

(a) $H_{2 k+3}$

(b) $H_{2 k+4}$

Fig. 2. The graphs $H_{2 k+3}$ and $H_{2 k+4}$
Claim 1: $H_{2 k+3} \nsubseteq G$.
Proof: By contradiction, we assume that $H_{2 k+3} \subseteq G$, and label the vertices of $\mathrm{H}_{2 k+3}$ as shown in Fig. 2(a).

Let x_{k+2}, x_{k+3} and y_{k+3} be the remaining vertices of $V(G)$. Since $C_{6} \nsubseteq G^{c}$, by Lemma 1 , we have $P_{3} \subseteq$ $G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_{k}, y_{k+3}\right\}\right\rangle$. Since $C_{2(k+1)} \nsubseteq G$, x_{k+1} is nonadjacent to y_{k-1} or y_{k}. By symmetry, it is sufficient to consider the five cases. We may assume $x_{k+2} y_{k-1}, x_{k+2} y_{k+3} \in E(G), y_{k-1} x_{k+2}, y_{k-1} x_{k+3} \in E(G)$, $x_{k+2} y_{k-1}, x_{k+2} y_{k} \in E(G), y_{k+3} x_{k+1}, y_{k+3} x_{k+2} \in E(G)$ or $y_{k+3} x_{k+2}, y_{k+3} x_{k+3} \in E(G)$.
Case 1. Suppose $x_{k+2} y_{k-1}, x_{k+2} y_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{y_{k+1}, y_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}, x_{k+2}\right\}$, and y_{k+3} is nonadjacent to x_{k-1}. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1 , we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. Hence y_{k+3} has to be adjacent to x_{1}. Since $C_{2(k+1)} \nsubseteq G, y_{k}$ is nonadjacent to any vertex of $\left\{x_{k-1}, x_{k+2}\right\}$. Hence we have we have $P_{3} \nsubseteq G\left\langle\left\{x_{1}, x_{k-1}, x_{k+2}, y_{k}, y_{k+1}, y_{k+2}\right\}\right\rangle$. By Lemma 1, we have $C_{6} \subseteq G^{c}$, a contradiction.
Case 2. Suppose $y_{k-1} x_{k+2}, y_{k-1} x_{k+3} \in E(G)$. Since $C_{6} \nsubseteq$ G^{c}, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k-1}, x_{k+2}, x_{k+3}, y_{k+1}\right.\right.$, $\left.\left.y_{k+2}, y_{k+3}\right\}\right\rangle$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{y_{k+1}\right.$,
$\left.y_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{x_{k-1}, x_{k+2}, x_{k+3}\right\}$. Hence y_{k+3} has to be adjacent to at least one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$. The proof is same as Case 1 .
Case 3. Suppose $x_{k+2} y_{k-1}, x_{k+2} y_{k} \in E(G)$. Since $C_{2(k+1)} \nsubseteq$ G, each vertex of $\left\{y_{k+1}, y_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}, x_{k+2}\right\}$. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. Hence y_{k+3} is adjacent to at least two vertices of $\left\{x_{1}, x_{k-1}, x_{k+2}\right\}$. Therefore since $C_{2(k+1)} \nsubseteq G$, we have y_{k+3} has to be adjacent to x_{1} and x_{k-1}. Similarly, since $C_{6} \nsubseteq G^{c}$, by Lemma 1 , we have $P_{3} \subseteq G\left\langle\left\{x_{k}, x_{k+1}, x_{k+3}, y_{1}, y_{k}, y_{k+3}\right\}\right\rangle$. Since $C_{2(k+1)} \nsubseteq G$, x_{k} is nonadjacent to y_{1} or y_{k+3}, and x_{k+1} is nonadjacent to any vertex of $\left\{y_{1}, y_{k}, y_{k+3}\right\}$. If x_{k+3} is adjacent to y_{k}, the proof is same as Case 2. If x_{k+3} is adjacent to both y_{1} and y_{k+3}, we have $C_{2(k+1)} \subseteq G$, a contradiction.
Case 4. Suppose $y_{k+3} x_{k+1}, y_{k+3} x_{k+2} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{x_{1}, x_{k-1}\right\}$ is nonadjacent to any vertex of $\left\{y_{k+1}, y_{k+2}, y_{k+3}\right\}$. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}\right.\right.$, $\left.\left.y_{k+3}\right\}\right\rangle$. Hence x_{k+2} is adjacent to at least one vertex of $\left\{y_{k+1}, y_{k+2}\right\}$, say $x_{k+2} y_{k+1} \in E(G)$ as shown in Fig. 3. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1 , we have $P_{3} \subseteq$ $G\left\langle\left\{x_{1}, x_{k-1}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. Hence we have x_{k+3} is adjacent to at least two vertices of $\left\{y_{k+1}, y_{k+2}, y_{k+3}\right\}$. In any case, since $C_{2(k+1)} \nsubseteq G, x_{k+3}$ is nonadjacent to any vertex of $\left\{y_{k-2}, y_{k-1}, y_{k}\right\}$. And each vertex of $\left\{x_{k+1}, x_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{y_{k-2}, y_{k-1}, y_{k}\right\}$. Hence we have $P_{3} \nsubseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-2}, y_{k-1}, y_{k}\right\}\right\rangle$. By Lemma 1, we have $C_{6} \subseteq G^{c}$, a contradiction.
Case 5. Suppose $y_{k+3} x_{k+2}, y_{k+3} x_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G, x_{k+1}$ is nonadjacent to y_{k-1} or y_{k}. Since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}\right.\right.$, $\left.\left.y_{k-1}, y_{k}, y_{k+1}\right\}\right\rangle$. If there is one edge between $\left\{x_{k+2}, x_{k+3}\right\}$ and $\left\{y_{k-1}, y_{k}\right\}$, the proof is same as Case 2. Hence y_{k+1} has to be adjacent to at least one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$, say $y_{k+1} x_{k+2} \in E(G)$. And since $C_{2(k+1)} \nsubseteq G, y_{1}$ is nonadjacent to x_{k+2} or x_{k+3}. Therefore we have $P_{3} \nsubseteq$ $G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{1}, y_{k-1}, y_{k}\right\}\right\rangle$. By Lemma 1, we have

Fig. 3. x_{k+2} being adjacent to y_{k+1}
$C_{6} \subseteq G^{c}$, a contradiction.
By Cases $1-5$, we have $H_{2 k+3} \nsubseteq G$.
Claim 2: $H_{2 k+4} \nsubseteq G$.
Proof: By contradiction, we assume that $H_{2 k+4} \subseteq G$, and label the vertices of $H_{2 k+4}$ as shown in Fig. 2(b). Let x_{k+2} and x_{k+3} be the remaining vertices of $V(G)$. Since $C_{2(k+1)} \nsubseteq G$, x_{k+1} is nonadjacent to any vertex of $\left\{y_{k-1}, y_{k}\right\}$. If x_{k+1} is adjacent to y_{k+3}, then we have $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_{k}, y_{k+3}\right\}\right\rangle$. If $x_{k+2}\left(\right.$ or $\left.x_{k+3}\right)$ is adjacent to both y_{k-1} and y_{k+3}, we have $C_{2(k+1)} \subseteq G$, a contradiction. By symmetry, we may assume $x_{k+2} y_{k-1}, x_{k+2} y_{k} \in E(G), y_{k-1} x_{k+2}, y_{k-1} x_{k+3} \in E(G)$ or $y_{k+3} x_{k+2}, y_{k+3} x_{k+3} \in E(G)$.
Case 1. Suppose $x_{k+2} y_{k-1}, x_{k+2} y_{k} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{y_{k+1}, y_{k+3}\right\}$ is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}, x_{k+2}\right\}$, and y_{k+2} is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}\right\}$. Then $P_{3} \nsubseteq$ $G\left\langle\left\{x_{1}, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. By Lemma 1, we have $C_{6} \subseteq G^{c}$, a contradiction.
Case 2. Suppose $y_{k-1} x_{k+2}, y_{k-1} x_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{y_{k+1}, y_{k+3}\right\}$ is nonadjacent to any vertex of $\left\{x_{k+2}, x_{k+3}\right\}$, and y_{k} is nonadjacent to x_{k+1}. If y_{k} is adjacent to one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$, the proof is same as Case 1. If $x_{k+1} y_{k+3} \in E(G)$, then $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. Hence $P_{3} \nsubseteq$ $G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k}, y_{k+1}, y_{k+3}\right\}\right\rangle$. By Lemma 1, we have $C_{6} \subseteq G^{c}$, a contradiction.
Case 3. Suppose $y_{k+3} x_{k+2}, y_{k+3} x_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{y_{k-1}, y_{k}\right\}$ is nonadjacent to any vertex of $\left\{x_{k+1}, x_{k+2}, x_{k+3}\right\}$. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_{k}, y_{k+1}\right\}\right\rangle$. Hence y_{k+1} is adjacent to at least one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$. In any case, we have $H_{2 k+3} \subseteq G$, a contradiction to Claim 1.

By Cases $1-3$, we have $H_{2 k+4} \nsubseteq G$.
By an argument similar to the above proofs, we can prove Claim 3 and 4. However, their proofs are more complicated than Claim 2.

Claim 3: $\left(C_{2 k} \cup C_{4}\right) \nsubseteq G$.
Claim 4: $\left(C_{2 k} \cup P_{5}\right) \nsubseteq G$.
Lemma 3: Let G be a spanning subgraph of $K_{k+3, k+3}$ for $k \geq 3$. If $C_{2 k} \subseteq G$ and $C_{6} \nsubseteq G^{c}$, then $C_{2(k+1)} \subseteq G$.

Proof: We may assume that $C_{2(k+1)} \nsubseteq G$. Without loss of generality, let $E\left(C_{2 k}\right)=\left\{x_{1} y_{1}, y_{1} x_{2}, x_{2} y_{2}, \ldots, x_{k} y_{k}, y_{k} x_{1}\right\}$. Since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}\right.\right.$, $\left.\left.x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$, say $x_{k+1} y_{k+1}, x_{k+1} y_{k+2} \in E(G)$.

Similarly, since $C_{6} \nsubseteq G^{c}$, we have $P_{3} \subseteq G\left\langle\left\{x_{k}, x_{k+2}, x_{k+3}\right.\right.$, $\left.\left.y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. If x_{k} is adjacent to both y_{k+1} and y_{k+2}, then $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. If x_{k} is adjacent to both y_{k+1} and y_{k+3} (or both y_{k+2} and y_{k+3}), then $H_{2 k+4} \subseteq G$, a contradiction to Claim 2. If there exists one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$ being adjacent to both y_{k+1} and y_{k+2}, then $\left(C_{2 k} \cup C_{4}\right) \subseteq G$, a contradiction to Claim 3. If there exists one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$ being adjacent to both y_{k+1} and $y_{k+3}\left(\right.$ or both y_{k+2} and $\left.y_{k+3}\right)$, then $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. So, by symmetry, it is sufficient to consider the four cases as follows.
Case 1. Suppose $y_{k+1} x_{k}, y_{k+1} x_{k+2} \in E(G)$. Since $C_{6} \nsubseteq G^{c}$, by Lemma 1 , we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_{k}\right.\right.$, $\left.\left.y_{k+2}\right\}\right\rangle$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{x_{k+1}, x_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{y_{k-1}, y_{k}\right\}$. If x_{k+2} is adjacent to y_{k+2}, then we have $\left(C_{2 k} \cup C_{4}\right) \subseteq G$, a contradiction to Claim 3. If x_{k+3} is adjacent to y_{k+2}, then we have $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. Hence x_{k+3} has to be adjacent to both y_{k-1} and y_{k}. Similarly since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k-1}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. Since $C_{2(k+1)} \nsubseteq G, y_{k+1}$ is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}, x_{k+3}\right\}, y_{k+2}$ is nonadjacent to any vertex of $\left\{x_{1}, x_{k-1}\right\}$. If $y_{k+2} x_{k+3} \in E(G)$, we have $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. If y_{k+3} is adjacent to both x_{1} and x_{k+3} (or both x_{k-1} and x_{k+3}), we have $C_{2(k+1)} \subseteq G$, a contradiction too. Hence we have $y_{k+3} x_{1}, y_{k+3} x_{k-1} \in E(G)$ as shown in Fig. 4. However, since $C_{2(k+1)} \nsubseteq G$, each vertex of $\left\{x_{k+1}, x_{k+2}\right\}$ is nonadjacent to any vertex of $\left\{y_{1}, y_{k-1}, y_{k+3}\right\}$ and x_{k+3} is nonadjacent to any vertex of $\left\{y_{1}, y_{k+3}\right\}$. So, we have $P_{3} \nsubseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{1}, y_{k-1}, y_{k+3}\right\}\right\rangle$. By Lemma 1, we have $C_{6} \subseteq G^{c}$, a contradiction.

Fig. 4. $\quad y_{k+3}$ being adjacent to both x_{1} and x_{k-1}
Case 2. Suppose $y_{k+1} x_{k+2}, y_{k+1} x_{k+3} \in E(G)$. Since $C_{6} \nsubseteq$ G^{c}, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k}\right.\right.$, $\left.\left.y_{k+2}, y_{k+3}\right\}\right\rangle$. If x_{k+1} is adjacent to y_{k}, the proof is same as Case 1. If there exists one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$ being adjacent to y_{k+2}, then we have $\left(C_{2 k} \cup C_{4}\right) \subseteq G$, a contradiction to Claim 3. If there exists one vertex of $\left\{x_{k+2}, x_{k+3}\right\}$ being adjacent to y_{k+3}, then we have $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. If y_{k} is adjacent to both x_{k+2} and x_{k+3}, we have $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. Hence y_{k+3} has to be adjacent to x_{k+1}. Similarly, since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. If there exists one vertex of $\left\{x_{1}, x_{k}\right\}$ being adjacent to y_{k+1}, the proof is same as Case 1. If there exists one vertex of $\left\{x_{1}, x_{k}\right\}$ being adjacent to both y_{k+2} and y_{k+3}, then we have $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. If x_{k+2} is adjacent to y_{k+2} or y_{k+3}, then we have $\left(C_{2 k} \cup C_{4}\right) \subseteq G$, a contradiction to Claim 3. If

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:7, No:1, 2013
there exists one vertex of $\left\{y_{k+2}, y_{k+3}\right\}$ being adjacent to both x_{1} and x_{k}, the proof is same as Case 1.
Case 3. Suppose $y_{k+3} x_{k}, y_{k+3} x_{k+2} \in E(G)$. And since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k}, x_{k+2}, x_{k+3}\right.\right.$, $\left.\left.y_{k-1}, y_{k+1}, y_{k+2}\right\}\right\rangle$. If x_{k} is adjacent to y_{k+1} or y_{k+2}, then we have $H_{2 k+4} \subseteq G$, a contradiction to Claim 2. If x_{k+2} is adjacent to y_{k+1} or y_{k+2}, then we have $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. If x_{k+3} is adjacent to both y_{k+1} and y_{k+2}, then we have $\left(C_{2 k} \cup C_{4}\right) \subseteq G$, a contradiction to Claim 3. Since $C_{2(k+1)} \nsubseteq G, y_{k-1}$ is nonadjacent to x_{k+2}. Hence x_{k+3} has to be adjacent to y_{k-1}. Similarly, we have $y_{k} x_{k+3} \in E(G)$, since otherwise $P_{3} \nsubseteq$ $G\left\langle\left\{x_{k}, x_{k+2}, x_{k+3}, y_{k}, y_{k+1}, y_{k+2}\right\}\right\rangle$.

Since $C_{6} \nsubseteq G^{c}$, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{1}, x_{k+2}\right.\right.$, $\left.\left.x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\right\}\right\rangle$. If there exists one vertex of $\left\{x_{1}, x_{k+3}\right\}$ being adjacent to both y_{k+1} and y_{k+2}, then we have $H_{2 k+3} \subseteq G$, a contradiction to Claim 1. If x_{k+2} is adjacent to y_{k+1} or y_{k+2}, then we have $\left(C_{2 k} \cup P_{5}\right) \subseteq G$, a contradiction to Claim 4. Since $C_{2(k+1)} \nsubseteq G, y_{k+3}$ is nonadjacent to x_{1} or x_{k+3}. If there exists one vertex of $\left\{y_{k+1}, y_{k+2}\right\}$ being adjacent to both x_{1} and x_{k+3}, we have $C_{2(k+1)} \subseteq G$, a contradiction.
Case 4. Suppose $y_{k+3} x_{k+2}, y_{k+3} x_{k+3} \in E(G)$. Since $C_{6} \nsubseteq$ G^{c}, by Lemma 1, we have $P_{3} \subseteq G\left\langle\left\{x_{k}, x_{k+2}, x_{k+3}, y_{k}, y_{k+1}\right.\right.$, $\left.\left.y_{k+2}\right\}\right\rangle$. If there exists one edge between $\left\{x_{k+2}, x_{k+3}\right\}$ and $\left\{y_{k+1}, y_{k+2}\right\}$, we have $\left(C_{2 k} \cup P_{5}\right) \subset G$, a contradiction to Claim 4. If x_{k} is adjacent to y_{k+1} or y_{k+2}, the proof is same as Case 3. If y_{k} is adjacent to x_{k+2} or x_{k+3}, the proof is also same as Case 3.

By Cases 1-4, we have $C_{2 k+1} \subseteq G$.
Let G be a spanning subgraph of $K_{6,6}$. If $C_{6} \nsubseteq G^{c}$, by Lemma 2, we have $C_{6} \subseteq G$. Hence we have the following corollary by Lemma 3.

Corollary 2: $b\left(C_{8} ; C_{6}\right) \leq 6$.
Lemma 4: If $m \geq 4$, we have $b\left(C_{2 m} ; C_{6}\right) \leq m+2$.
Proof: We will prove it by induction.
(1) For $m=4$, the lemma holds by Corollary 2 .
(2) Suppose that $b\left(C_{2 k} ; C_{6}\right) \leq k+2$ for $k \geq 5$. We assume that $b\left(C_{2(k+1)} ; C_{6}\right)>k+3$ for $k \geq 5$. Since $C_{6} \nsubseteq G^{c}$, we have $C_{2 k} \subseteq G$. By Lemma 3, we have $C_{2(k+1)} \subseteq G$, a contradiction. So the assumption does not hold, that is, $b\left(C_{2(k+1)} ; C_{6}\right) \leq k+3$. This completes the induction step, and the proof is finished.

IV. Conclusion

Setting $m=3$ in Corollary 1 , we have $b\left(C_{6} ; C_{6}\right) \geq 6$. By Theorem 1, Lemma 2 and Lemma 4, we obtain the values of $b\left(C_{2 m} ; C_{6}\right)$ as follows.

Theorem 2: $b\left(C_{2 m} ; C_{6}\right)= \begin{cases}6, & m=3, \\ m+2, & m \geq 4 .\end{cases}$
Furthermore, we have the following conjecture,
Conjecture 1: $b\left(C_{2 m} ; C_{2 n}\right)=m+n-1$ for $m>n$.
By the results in [7] and Theorem 2, it is true for $n=2$ and 3.

AcknowLedgment

This research was supported by NSFC(60973011), $\operatorname{SRFDF}(20090009120007)$ and the Fundamental Research Funds for the Central Universities.

References

[1] L. W. Beineke and A. J. Schwenk. On a bipartite form of the Ramsey problem. Proc. 5th British Combin. Conf. 1975, Congressus Number., XV: 17-22, 1975.
[2] W. A. Carnielli and E. L. Monte Carmelo. $K_{2,2}-K_{1, n}$ and $K_{2, n}-$ $K_{2, n}$ bipartite Ramsey numbers. Discrete Math., 223: 83-92, 2000.
[3] R. J. Faudree and R. H. Schelp. Path-path Ramsey-type numbers for the complete bipartite graphs. J. Combin. Theory Ser. B, 19: 161-173, 1975.
[4] J. H. Hattingh and M. A. Henning. Bipartite Ramsey numbers. Utilitas Math., 53: 217-230, 1998.
[5] J. H. Hattingh and M. A. Henning. Star-path bipartite Ramsey numbers. Discrete Math., 185: 255-258, 1998.
[6] R. W. Irving. A bipartite Ramsey problem and the Zarankiewicz numbers. Discrete Math., 19: 13-26, 1978.
[7] R. Zhang and Y. Q. Sun. The bipartite Ramsey numbers $b\left(C_{2 m} ; K_{2,2}\right)$. The Elec. J. of Combin., 18: P51, 2011.

