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     Abstract—In this paper, a single period inventory model with 
resalable returns has been analyzed in an imprecise and uncertain 
mixed environment. Demand has been introduced as a fuzzy random 
variable. In this model, a single order is placed before the start of the 
selling season. The customer, for a full refund, may return purchased 
products within a certain time interval. Returned products are 
resalable, provided they arrive back before the end of the selling 
season and are found to be undamaged. Products remaining at the end 
of the season are salvaged. All demands not met directly are lost. The 
probabilities that a sold product is returned and that a returned 
product is resalable, both imprecise in a real situation, have been 
assumed to be fuzzy in nature. 
 
     Keywords—Fuzzy random variable, Modified graded mean 
integration, Internet mail order, Inventory.  

I. INTRODUCTION 
URRENT business scenario has given rise to a unique 
phenomenon where the customer is empowered with the 
freedom to return a purchased product within a specified 

time frame. The money subsequently is partially or totally 
refunded. The product so returned can persist in the business 
flow in the form of reselling provided its quality is undamaged 
and it is still in demand. This phenomenon is in vogue 
especially among the catalogue/internet mail order companies 
owing to multiple reasons.  

    Such companies carry on their business through the 
process of ‘distance shopping’ where customer makes the 
purchase via a catalogue or the internet. Now as the customer 
forms his idea of the product based on merely an image of it 
displayed in the catalogues, it often, after delivery, turns out to 
be different from his initial assessment or expectation. 
Naturally the customer then returns the product via a similarly 
anonymous process, contributing to high return rates. Since 
the company has the option of reselling the same product, it 
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has to take into consideration this phenomenon while 
accepting orders. The present paper analyses the ‘single 
period’ problem, with the order arriving before the start of the 
selling season, and it attempts to determine the optimum 
quantity for a single order, since large ordering lead times and 
short selling seasons compel retailers to place the entire order 
before the season commences. 

The model of Vlachos and Dekker [16] first considered such 
a concept but suffers from two restrictive assumptions. The 
first, assuming the return of a fixed percentage of the sold 
products, thus excludes the prospect of variability in the net 
demand. The second assuming a single reselling episode for 
each returned product, does not recognize the fact that high 
return rates will lead to multiple reselling of products. The 
analysis of the ‘newsboy problem’ with resalable returns, sans 
the above mentioned restrictions, by Mostard, Koster and 
Teunter [13,14], assumes a certain probability of return for 
each sold product and a certain probability for the resale of a 
returned product. The removal of these restrictions implies 
that an undamaged returned product can be resold multiple 
times within the duration of the selling season, provided the 
demand for it exists. 

 To incorporate two different types of uncertainty in the 
demand, which is often the case in reality; the demand has 
been assumed to be a fuzzy random variable in this paper. 
Implementing this modified approach in the ‘newsboy’ 
problem transforms the product demand from being normally 
distributed [13, 14] into a fuzzy random variable with 
imprecise probabilities, since the probability of a fuzzy event 
is a fuzzy number [1]. Recently, fuzzy random variable 
demand has also been considered in [5] by Dutta et. al. The 
probabilities of return of a sold product and resale of a 
returned product have been assumed to be fuzzy numbers, 
instead of crisp quantities. The associated cost viz. the salvage 
costs, shortage costs and collection costs have also been taken 
to be fuzzy in nature. 

In Section 2 of this paper, a result involving an infinite 
series of fuzzy numbers has been proposed and deduced. Next, 
a fuzzy random variable and its fuzzy expectation have been 
defined. Later a brief outline of a “modified” graded mean 
integration representation of a triangular fuzzy number, 
developed in this paper, has been discussed. Next, in section 3, 
the mathematical model has been presented, the assumptions 
discussed and the problem formulated. Section 4 deals with a 
numerical example. The conclusion has been made in section 
5.  
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II. SOME USEFUL RESULTS  

A. Infinite series of fuzzy numbers: a proposition  

Proposition: If ( ), ,A a a a=  is a triangular normal fuzzy 

number, where , ,a a a are positive real numbers, then the 
following relation holds: 

 ( ) 12 31 ..... 1A A A A
−

+ + + + = −  for 1A <  

Proof: Let ( ), ,A a a a= be fuzzy number [3,4,21]. Then, 

( ) ( ) ( )2 2 2 2, , , , , ,A a a a a a a a a a= =  

( ) ( ) ( )3 2 2 2 3 3 3, , , , , ,A a a a a a a a a a= = and so on. 

Therefore,  
LH.S. = 2 31 ...A A A+ + + +  

 ( ) ( ) ( )2 2 2 .1,1,1 , , , , ..a a a a a a+ + +=           

= ( )2 2 21 ,1 ,1a a a a a a+ + + + + + + + +  

=
1 1 1

, ,
1 1 1 TFNa a a− − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

for 1, 1, 1a a a< < <  

i.e., for 1A <  

R.H.S. ( ) 1
1 A

−
= −  

           ( ) ( )( ) 11,1,1 , ,a a a −
= −  

           ( ) 11 ,1 ,1a a a −
= − − −  

           
1 1 1

, ,
1 1 1 TFNa a a

=
− − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Thus L.H.S. = R.H.S. 
Hence, 

( ) 12 31 ..... 1A A A A −
+ + + + = −  for 1A < . 

 

B. Fuzzy Random Variable and its Fuzzy Expectation  
 
Kwakernaak [10] first introduced fuzzy random variables. Puri 
and Ralescu [15] and Gil, Lopez-Diaz [7] also discussed this 
concept in later years. Here the definition given in [6] has 
been considered. 

 Let us consider the p-dimensional Euclidean space p . 
( )pF denotes the class of upper semi continuous function 

in [0,1]
p

with compact closure of the support. Then, for the 

one-dimensional case, ( )CF  is the sub-class of convex sets 

of ( )F . Given a probability space ( ), ,Ω Α Ρ , a mapping 

( ): CFχ Ω →  is said to be a fuzzy random variable if for 

all [ ]0,1α ∈ , the two real-valued mappings inf :αχ Ω →  

and sup :αχ Ω →  (defined so that for all ω ∈Ω we have 

( )αχ ω = [inf( ( )) ,sup( ( )) ]α αχ ω χ ω  are real-valued random 
variables. 

The fuzzy expectation of a fuzzy random variable is a 
unique fuzzy number. It is defined as  

{( , ) for 0 1}E dP dP dPα α α− +Χ = Χ = Χ Χ < <∫ ∫ ∫ ,  

where the fuzzy random variable is [ ]X α =  [ , ]α α
− +Χ Χ  for 

[ ]0,1α ∈ . Theα -cut of the fuzzy expectation is given by  

[ ] [ ] [ ( ), ( )]u E E X E Eα α α α α

− += Χ = = Χ Χ for [ ]0,1α ∈ .  

It is also proved [7] that E FΧ ∈  and 0[ ]EΧ =  

0dP
Ω

Χ∫ 0 0[ , ]E E− += Χ Χ for 0α = . 

 

C. Development of a “modified” Graded Mean Integration 
Representation of a Generalized Fuzzy Number 
      
For achieving computational efficiency, we use the method of 
defuzzification of a generalized triangular fuzzy number by its 
graded mean integration representation. Let 1L− and 1R− be 
the inverse functions of the functions L and R , respectively. 
Then the graded mean h -level value of the fuzzy number 

( ), , TFNa a aΑ =  is given by ( ) ( )1 1 2h L h R h− −⎡ ⎤+⎣ ⎦ . 

Therefore, the graded mean integration representation of a 
generalized triangular fuzzy number Α with grade w , as 
proposed by Chen and Hseih [2], is given by 

  ( )
( ) ( )( )

0

0

1 1 2
w

w

h dh

G

hdh

L h R h− −

Α =

⎡ ⎤+⎣ ⎦∫

∫
             (1)                    

  
4
6

a a a+ +
=                                                         (2)                   

 where, h lies between 0 and w , 0 1w< ≤ . 
It is to be noted here that in (1), equal weightage has been 

given to the left and right parts of the membership function. 
But the weightage actually depends on the attitude or 
optimism of the decision maker. So, the formula used, in this 
paper, as the graded mean h -level value of the fuzzy number 

( ), , TFNa a aΑ = is assumed to be of the form 

( ) ( ) ( )1 11h L h R hβ β− −+ −⎡ ⎤⎣ ⎦ , where β  is called the decision 

maker’s attitude or optimism parameter. β  can take values 
between 0 and 1 i.e., 0 1β≤ ≤ . The value of β  closer to 0 
implies that the decision maker is more pessimistic while the 
value of β  closer to 1 means that the decision maker is more 
optimistic. 
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Therefore, the formula (1) is modified as below: 

( )
( ) ( ) ( )( )1 1

0

0

1
w

w

h L h R h dh

G A

hdh

β β− −+ −

=

⎡ ⎤⎣ ⎦∫

∫
          (3)                                                                        

 Now, 

     ( ) u a
L u w

a a
−

=
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

, a u a≤ ≤  

  ( ) u a
R u w

a a
−

=
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

, a u a≤ ≤  

Thus, 
  ( ) ( )1 /L h a a a h w− = + −  

  ( ) ( )1 /R h a a a h w− = − −  
 

Now, using the formula (3), the graded mean integration 
representation of Α  is given by 

 ( ) ( ) ( ){ }[ ]
0 0

1 1 / /
w w

G h a a a a a h w dh hdhβ β β βΑ = + − + − − −∫ ∫  

            
( )2 1

3

a a aβ β+ + −
=              (4) 

                                                                                       
It is to be noted that when 0.5β =  i.e., when equal 

weightage is given to the left and right parts of the 
membership function, then, the formula (4) reduces to the 
formula (2). 

III. METHODOLOGY  
A.    Model and assumptions  
 
A single-period inventory model with resalable returns has 
been considered here. Mostard and Teunter [13] assumed that 
there are no interdependencies between ordered items and 
hence analyzed a single item inventory model. The same 
reasoning has been followed here. It has been assumed that 
there is a single replenishment opportunity at which some 
quantity of products is ordered and those products arrive 
before the start of the selling season. The total number of 
products ordered during the season i.e., the gross demand, is 
denoted by GD . The following assumptions have been made. 

( )i Customers are allowed to return purchased products 
within a fixed time limit (usually 7-30 days [13]). If a 
sold product is returned, the customer gets a full refund 
for it. In [16], it is assumed that a fixed percentage of 
the sold products are always returned. This percentage 
is assumed to be a crisp number. In [13] and [14], it is 
assumed that each sold product is returned with a 
certain probability. This probability is assumed to be a 
crisp number. Let the probability that a sold product is 
returned be denoted by R . 

( )ii An undamaged returned product is collected, tested and 
then put back on the shelf. But the entire process has to 
be completed before the end of the selling season for a 
possible resale. Moreover there should be sufficient 
demand to sell the returned products (assuming priority 
of resale over first sales [13]). In [16], it is assumed that 
a product is resold only once. This restrictive 
assumption is not considered in [13] and [14]. In [13] 
and [14], it is assumed that a product can be resold 
more than once and that there is a certain probability 
with which a returned product can be resold. This 
probability has been assumed to be a known fixed crisp 
number.  

           Now, the information regarding these probabilities is 
collected from various experts. Their opinions may well 
be expressed in linguistic terms. But, to use such 
information, quantification is required. Fuzzy set theory 
provides a powerful tool for dealing with such non-
stochastic imprecision or vagueness of the data 
available, called “intrinsic fuzziness”. Besides, 
abundance of information also leads to fuzziness, called 
“informational fuzziness” [22]. Prof. Zadeh, while 
referring to this informational fuzziness says that as the 
systems become more complex, it becomes increasingly 
difficult to discover underlying mathematical structures 
that are both meaningful and precise [20]. Thus, in 
order to develop a more realistic model, the above 
mentioned probabilities of return of a sold product and 
resale of a returned product have been assumed to be 
fuzzy numbers instead of crisp quantities. 

           It is to be noted here that, as remarked by Mostard 
and Teunter in [13], “for a practical case of the mail 
order retailer, the average time between a sale and a 
return plus the collection and test times is about 2-3 
weeks and hence small relative to the length of the 
selling season (26 weeks). The (expected) number of 
demands is larger than the number of returns during 
almost all of the season (except for the last 4 weeks) for 
all products. So, almost all the returns that are back on 
the shelf before the season ends are indeed resalable.” 
Thus, in the numerical example considered, a high 
probability for a resalable return has been justifiably 
assumed.  Let the probability that a returned product is 
resold be denoted by K .  

( )iii In [13] and [14], the demand has been assumed to 
have been normally distributed. Here, as mentioned 
earlier, we argue that the existing theory of probability, 
as employed in the stochastic approach, does not 
provide adequate representation of the real world 
inventory problem. This is because, while it does 
consider the stochastic uncertainty of the information, it 
does not take into account the vagueness or imprecision 
of the data. For example, if the demand information 
collected from experts contains an expression like “the 
demand is about 100”, then such information can only 
be used in the stochastic approach, if some sort of 
approximation is done. But this leads to the loss of 
information. Also, as explained earlier, abundance of 
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information could lead to “informational fuzziness”.  
Thus, here, we incorporate both non-stochastic 
imprecision and stochastic uncertainty into the demand 
and assume it to be a fuzzy random variable involving 
imprecise probabilities.  

 

B. Problem formulation 
 
The objective of this paper is to determine the order quantity 
that maximizes the expected profit. The relevant cost and 
revenue parameters (all per unit) are the selling price P , the 
cost price C and the salvage value S , the loss of goodwill / 
shortage cost G and the collection cost D . In a real case 
scenario, it is difficult to determine these costs precisely and 
hence these costs have been assumed to be fuzzy in nature. It 
has further been assumed that all returns are undamaged and 
hence a single salvage value has been used. Let the net 
demand denote the total number of (gross) demanded products 
that are either not returned or returned but not resalable, 
assuming that all demands are met. Let GP  be the unit 
expected revenue of satisfying a gross demand, including 
salvage revenue if the sold product is returned but not 
resalable. 
 i.e., GP  = total selling price – total collection cost + total 
salvage cost 
  = ( ) ( )1 1R P RD R K S− − + −   

Let NP be the unit expected revenue of satisfying a net 
demand i.e., of repeatedly selling a product until it is either not 
returned or returned but not resalable, including salvage 
revenue if the sold product is returned but not resalable. If a 
product is sold, returned and resold again and again, then  

 ( ) ( )2 3
1 .......

1
G

N G
P

P RK RK RK P
RK

⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠ −

, using 

the proposition in section 2.1. 
Let NG  be the expected net shortage cost of not satisfying a 
net demand even on repeated resale. Then, 

 ( ) ( )2 3
1 .....

1N
GG RK RK RK G
RK

⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠ −

, using 

the proposition in section 2.1. 
It has been assumed that the net demand N  is a fuzzy random 
variable with the given set of 
data ( ) ( ) ( ){ }1 1 2 2, , , ,.... ,n ny p y p y p . The data being imprecise 
with fuzzy probability, for the sake of simplicity, the data set 
and its corresponding probabilities have been considered to be 
triangular fuzzy numbers i.e., iy  and ip  have been 

represented as ( ), ,i i iy y y and ( ), ,i i ip p p for  

i = 1 to n, respectively. 
If ky items are procured at the beginning of the selling season, 

then the profit function P  is given by         

( ) ( ),k N i k k iP y N P y Cy S y y= − + − , i ky y≤  

                   ( )N k k N i kP y Cy G y y= − − − , i ky y≥  

for some i = 1 to n. 
As the demand N is a fuzzy random variable, its profit 
function is also a fuzzy random variable. Hence its total 
expected value EP is a unique fuzzy number 
EP ( ), ,EP EP EP=  Therefore the fuzzy total expected profit 
function is determined by 
 ( ),kEP EP y N=  

 = ( )[ ]
1

k

N i k k i i
i

P y Cy S y y p
=

− + −∑

 ( ) ( )[ ]
1

N k N i k

n

i
i k

P C y G y y p
= +

− − −+∑  

= ( ) ( )[ ]
1

k

N i k i
i

P S y C S y p
=

− − −∑

 ( )[ ]
1

n

N N k N i i
i k

P C G y G y p
= +

+ − + −∑  

 
where  [ ]1EP E Pα =

=  

( ) ( )[ ]
1

k

N i i k i
i

P S y p C S y p
=

= − − −∑  

( )[ ]
1

n

N N k i N i i
i k

P C G y p G y p
= +

+ − + −∑  

[ ]0
EP E P

α

−

=
=  

  ( ) ( )
1

k

N i i k i
i

P S y p C S y p
=

= − − −⎡ ⎤⎣ ⎦∑  

( )
1

n

N N k i N k i
i k

P C G y p G y p
= +

+ − + −⎡ ⎤⎣ ⎦∑  

              0EP E Pα

+

=
= ⎡ ⎤⎣ ⎦  

       ( ) ( )
1

k

N i i k i
i

P S y p C S y p
=

= − − −⎡ ⎤⎣ ⎦∑  

              ( )
1

n

N N k i N i i
i k

P C G y p G y p
= +

+ − + −⎡ ⎤⎣ ⎦∑  

Now, using the method of representation of generalized 
fuzzy number based on the integral value of graded mean h-
level, as discussed in section 2.4 in this paper, we find a 
defuzzified representative of the unique fuzzy number EP  as  

 

( ) ( )2 1

3

EP EP EP
G EP

β β+ + −
=  

 

Further for the optimal order quantity ky , we must have  

( )( )( ) ( )( )( )1, , 0k kG P y N G P y N−Ε − Ε >           (5)                    
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  ( )( )( ) ( )( )( )
1

, , 0
k k

G P y N G P y N
+

Ε − Ε >           (6)                                
 

The conditions, given by equations (5) and (6), give us the 
following inequalities: 

( )( )( )
1

1
1

1
k

N N k k i
i

P C G y y pβ
−

−
=

− − + − ∑

( )( )1

n

N N k k i
i k

P C G y y pβ
−

=

+ − + − ∑  

( )( )
1

1
1

k

N N k k i
i

P C G y y pβ
−

−
=

+ − + − ∑

( )( )( )11
n

N N k k i
i k

P C G y y pβ
−

=

+ − − + − ∑
( )( )1 2 N k kS C G y pβ+ − − +

( )( )1
1

2
n

N N k k i
i

P C G y y p
−

=

+ − + − ∑ >  

( )( )( )
1

1
1

1
k

N N k k i
i

P S G y y pβ
−

−
=

− − + − ∑  

( )( )
1

1
1

k

N N k k i
i

P S G y y pβ
−

−
=

+ − + − ∑  

( )1 2β+ − ( )N k kS C G y p− +

 ( )( )
1

1
1

2
k

N N k k i
i

P S G y y p
−

−
=

+ − + − ∑                         (7)                                                                              

and                                                                                                                                       

( )( )( )1
1

1
k

N N k k i
i

P C G y y pβ
−

=

− − + − ∑

( )( )1
1

n

N N k k i
i k

P C G y y pβ
−

= +

+ − + − ∑  

( )( )1
1

k

N N k k i
i

P C G y y pβ
−

=

+ − + − ∑

( )( )( )1
1

1
n

N N k k i
i k

P C G y y pβ
−

= +

+ − − + − ∑
( )( ) 1 11 2 N k kS C G y pβ

+ +
+ − − +

( )( )1
1

2
n

N N k k i
i

P C G y y p
−

=

+ − + − ∑ <  

( )( )( )1
1

1
k

N N k k i
i

P S G y y pβ
−

=

− − + − ∑

( )( )1
1

k

N N k k i
i

P S G y y pβ
−

=

+ − + − ∑  

( )1 2β+ − ( ) 1 1N k kS C G y p
+ +

− +

 ( )( )1
1

2
k

N N k k i
i

P S G y y p
−

=

+ − + − ∑            (8)                                           

We thus find the optimal order quantity for a single-period  
inventory model with resalable returns. The calculation part 

of the conditions (5) and (6) has been given as an appendix. 

Next, a numerical example illustrating the methodology 
discussed in this section has been given.  

IV. NUMERICAL EXAMPLE  
Let the purchase cost per item be C 18=  and the selling 
price 30P = . The collection cost is D ( )3.00, 4.25, 6.00= . 

The loss of goodwill or shortage cost is G ( )20, 25, 29= . 

The salvage cost is S ( )4.00, 5.00, 6.75= . 
Probability that a product is returned is 
R ( )0.43, 0.45, 0.50= . Probability that a returned product is 

resalable is K ( )0.92, 0.94, 0.98= . 
Unit expected revenue for satisfying gross demand is  

(1 ) (1 )
G

P R P RD R K S= − − + −   

     ( )12.0344,14.7225,16.08=  
Unit expected revenue for satisfying net demand is         

 ( )1
G

N

P
P

RK
=

−
 

      =
( )

( )
12.0344,14.7225,16.08

0.51, 0.577, 0.6044
 

      = ( )19.91, 25.51, 31.53  
Expected net shortage cost for not satisfying a net demand is 

NG = G / (1 −( R K ) ) 

           
( )

( )
20, 25, 29

0.51, 0.577, 0.6044
=  

           ( )33.09, 43.33, 56.86=  
The demand information is given in the following tabular 

forming in Table I:   

TABLE  I 

                Demand             Probabilities 

            (13,15,17)  
(18,20,22) 
(23,25,27) 
(28,30,32) 
(33,35,37) 
(38,40,42) 

(0.045,0.05,0.055) 
(0.180,0.20,0.225) 
(0.275,0.30,0.325) 
(0.155,0.20,0.250) 
(0.120,0.15,0.175) 
(0.055,0.10,0.125) 

 
It is important to mention here that the rest of the 

calculations in the numerical example, as shown in a tabular 
form in Table 2, have been done assuming 0.5β =  i.e. 
assuming that equal weightage is being given to both the left 
and right reference functions. In Table 2, A and B have been 
taken to be the right hand side and left hand side of the 
inequality (8). Table 2 is given below: 
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TABLE II

ky  (13,15,17) (18,20,22) (23,25,27) (28,30,32) (33,35,37) 

N N
P S G− + ) × ( 1k ky y

+
− )

1

k

i
i

p
=

∑  11.025 55.125 122.5 160.475 189.875 

(
N N

P S G− + ) × ( 1k ky y
+

−
1

k

i
i

p
=

∑  22.451 114.296 246.961 349.011 420.446 

( )4
N N

P S G− + × ( )
1

1

k

k k i

i

y y p
+

=

− ∑  63.84 319.2 702.24 957.6 1149.12 

A 97.316 488.621 1071.701 1467.086 1759.441 

( )
N N

P C G− + × ( 1k ky y
+

−
1

n

i
i

p
=

∑  145.25 145.25 145.25 145.25 145.25 

(
N N

P C G− + ) × (
1k k

y y
+

−
1

n

i
i

p
=

∑  406.50225 406.50225 406.50225 406.50225 406.50225 

( )
N N

P C G− + × ( )
1

1

n

k k i

i

y y p
+

=

− ∑  1016.8 1016.8 1016.8 1016.8 1016.8 

B 1568.55225 1568.55225 1568.55225 1568.55225 1568.55225 

  
as seen from the table II above A>B for ( )33, 35, 37ky = i.e., 
the inequality (8) is satisfied. Also, this value of the order 
quantity satisfies the inequality (7) So, we conclude that, 

since ( )33, 35, 37ky =  satisfies both the optimality conditions, 
it is the required optimal order quantity. 

V.  CONCLUSION 
The incorporation of fuzzy random variable as demand and 
the assumption of the relevant costs as being fuzzy in 
nature, as done in this paper, provide a more realistic model 
of the single period inventory problem with resalable 
returns. This amalgamation of the concepts of randomness 
and imprecision may be extended for other inventory 
models for better representation of real life problems. 

APPENDIX 
The optimal order quantity may be defined as  

( )( )( ) ( )( )( )1, , 0k kG P y N G P y N
−

Ε − Ε >  

The left-hand side of the above inequality in the extended 
form reads like 

=1 3[
1

{( ) ( ) }
k

N i i k i
i

P S y p C S y pβ
=

− − −∑

 
1

{( ) }
n

N N k i N i i
i k

P C G y p G y pβ
= +

+ − + −∑  

2
1

{( ) ( ) }
k

N i i k i
i

P S y p C S y p
=

− − −∑

 
1

2 {( ) }
n

N N k i N i i
i k

P C G y p G y p
= +

+ − + −∑       

+ ( )
1

1 {( ) ( ) }
k

N i i k i
i

P S y p C S y pβ
=

− − − −∑

( )
1

1 {( ) }
n

N N k i N i i
i k

P C G y p G y pβ
= +

+ − − + −∑ ] 

−1 3 [
1

1
1

{( ) ( ) }
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N i i k i
i

P S y p C S y pβ
−

−
=

− − −∑

1{( ) }
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N N k i N i i
i k

P C G y p G y pβ
−

=

+ − + −∑   

+2
1

1

{( ) ( ) }
k

N i i k i
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=

− − −∑

2 {( ) }
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N N k i N i i
i k

P C G y p G y p
=

+ − + −∑  

+ ( )
1

1
1

1 {( ) ( ) }
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N i i k i
i

P S y p C S y pβ
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−
=

− − − −∑

( )
1

1 {( ) }
n

N N k i N i i

i k

P C G y p G y pβ
−

=

+ − − + −∑ ] 

which implies 
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N N k k i
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− + − ∑
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Now from equation (5) we have, 
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Similarly from equation (6) we have, 
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