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Abstract—OLAP uses multidimensional structures, to provide 

access to data for analysis. Traditionally, OLAP operations are more 
focused on retrieving data from a single data mart. An exception is 
the drill across operator. This, however, is restricted to retrieving 
facts on common dimensions of the multiple data marts. Our concern 
is to define further operations while retrieving data from multiple 
data marts. Towards this, we have defined six operations which 
coalesce data marts. While doing so we consider the common as well 
as the non-common dimensions of the data marts. 
 

Keywords—Data warehouse, Dimension, OLAP, Star Schema. 
 

I.  INTRODUCTION 

ATA Warehouse [1], [2] is a subject oriented, non-
volatile collection of data used to support strategic 

decision-making. The warehouse is the central point of data 
integration for business intelligence. It is the source of data for 
data marts within an enterprise and delivers a common view of 
enterprise data. The data in a data warehouse is structured in a 
uniform way, along dimensions and facts. 

OLAP [3, 4] is the most important approach for analyzing 
data in a data warehouse. Relevant work includes OLAP data 
modeling and querying [5], [6], [7]. Using OLAP one can 
query and analyze data stored as a star schema from many 
different perspectives. However, most operations are 
concerned with analyzing data only from one star schema with 
the exception of drill across. In drill across [8], [9], [10] facts 
from multiple star schema can be retrieved if they have 
common dimensions. The common dimensions are used to 
essentially perform a join between the two star schemata.   
This may not be adequate in all situations.          

Assume for instance there are three data marts, depicted as 
cubes in Fig. 1, Fig. 2 and Fig. 3. These cubes are representing 
information of the sales of items locally by clerks, purchase of 
items locally by customers and sales of items globally by 
clerks. Let us say that the company wants to know the overall 
performance of the sales of items. This will help the company 
get a total view of its operations. This information that has to 
obtained is the totality of information from the first and the 
third cubes.  The operation that is most popular in OLAP 
when retrieving data from more than one cube is drill across.  

Drill across is performed using common dimensions. The 
non-common dimensions do not appear in the result. In our 
example if one were to drill across SalesLocal and 
SalesGlobal then the resultant cube will have the items 
and the Clerk dimensions. It will not have the Local or the 
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Global address information. Thus, the company can no way 
get the overall picture. 

So we need an operation which can combine more than one 
cube without losing non common dimensions. Accordingly, 
we study the semantic relationships between the non-common 
dimensions. The relationship that is considered is ‘is-a’ 
relationship. Intuitively, if two dimensions exhibit a is-a 
relationship with a common dimension, then they can be 
viewed as members of the parent dimension and can be 
combined in a meaningful way.   

If two dimensions D1 and D2 are in a is-a relationship with 
a dimension D, then two cases arise regarding the instances of 
D1 and D2 viz. 

a) Instances of D1 and D2 are overlapping 
b) Instances of D1 and D2 are disjoint. 

For example, if Customer and Clerk are in a is-a 
relationship with Person, there can be clerks who are 
customers as well. On the other hand, if Address is of two 
kinds – Local and Global – then there is going to be no 
common instance between them. We define multiple forms of 
the coalesce operation to combine two cubes so that the 
different ways of combining the two cubes can be handled. 

There is a second aspect about the desired result.  We do not 
wish to lose any information while combining the cubes. For 
example, if an item, say, Pens is sold locally but not globally, 
then this fact is present in the SalesLocal cube of Fig. 1 
but not in that of Fig. 3. It is necessary that this data be present 
when the cubes are combined if we want to know the overall 
performance. However, we lose such information when we 
perform drill across. This is because when we drill across only 
the common instances of the common dimensions are 
considered. In fact, at the lower level a equi join which is an 
inner join on common dimension is performed. As a result, 
facts about the instances which belong to one of the cubes and 
not to the other are ignored. The operation OuterCoalesce is 
introduced to combine cubes without losing the facts which 
are present in only one of the cubes. 

Drill across has been studied extensively in the literature 
[8], [9], [10]. Apart from the common form where drill across 
is performed using common instances of common dimensions, 
drill across has been defined when there is a relationship 
among dimensions of different schemata. Reference [10], [11] 
has introduced the notion of conforming dimensions where 
two dimensions in different schema are conforming if there 
instances exactly coincide. Reference [9] defines four kinds of 
relationships between dimensions (derivation, generalizations, 
association and flow). Using these relationships it is possible 
to drill across by using the operation change base which helps 
to substitute one dimension with the other and view the 
information in a new space. Reference [10] introduces 
compatible dimensions as those dimensions which share some 
information and this information is consistent. In all the above 
definitions, dimensions which can be used for drilling across 
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are those dimensions that share some common instances. Our 
work differs from all drill across navigation since we take into 
consideration non-common dimensions. Some authors have 
defined algebraic operations of union and intersection has 
been defined to combine two star schemata. In [13] the union 
operation combines two cubes if they are compatible. Similar 
is the treatment for intersection of two cubes. These operations 
are inapplicable in our case as the two cubes may not 
necessarily be compatible. The join operation as defined in [9] 
combines all the common and the non common dimensions of 
the participating cubes. There is no semantic definition for 
such a combination. The proposals here vary from algebraic 
operations on cubes since here the operations which combine 
cubes are permitted only when certain relationships hold.  

The rest of the paper is organized as follows. Section 2 
introduces the data model used in this paper. Section 3 defines 
the ‘is-a’ relationship between dimensions. The operations 
themselves are defined in section 4. Section 5 is the 
concluding section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 SalesGlobal 
 

We use the above examples throughout the paper.  
 

II.  THE DATA MODEL DM 

In this section we describe the data model DM that will be 
used throughout the paper. The definition includes the 
concepts required to define a data mart. The data model 
defined here is defined in terms of a Cube which is composed 
of dimensions and a fact scheme. 

A dimension consists of dimensional attributes. Each 
dimension consists of a graph which represents the hierarchy 
of levels of the dimensional attributes. The attributes can be 
rolled up along the edges and in the direction of the edge. For 
example, product dimension consists of two dimensional 
attributes – item and category as shown in Fig. 4. Item can be 
grouped into category and this is performed using the roll-up 
function.  
 
 
 
 

Fig. 4 A dimension with dimensional attributes 

A fact scheme associates measure to the attributes of 
dimensions and are used to represent the actual data given by 
the facts. For example, the daily sales can be represented by a 
fact scheme that associates item with a Clerk and a Local 
address. Below we define these terms more rigorously. 

 
A.  Dimension 
A Dimension is composed of 
• a set of dimensional attributes V. Each attribute has a 

set of instances associated with it. 
• a connected, directed graph D(V,E).  Every vertex in 

the graph corresponds to an aggregation Level, and 
an edge (ai, aj) reflects that ai can be rolled up to aj. 
An instance of aj decomposes into a collection of 
instances of ai. Each Level corresponds to a 
granularity in the Dimension. 

 
B.  Fact Scheme 
A Fact  scheme is an expression of the form f [ D1 : A11, D2 

: A21 … Dn : An1] → [M1, M2 ..Mn] where Ai1 is an attribute of 
dimension Di. M1, M2, ….Mn are distinct measures.  

 
C.  Cube 
A Cube has the following components 
• N dimensions  
• The fact scheme 
• Set of n tuples of the form (a11, a21 …an1, m1, m2 … 

mn) where aij is a value of attribute Aij of dimension 
Di and m1 is a value of measure Mi. 

 
D.  Common Dimensions 
Two dimensions D1 and D2 are common if they do not 

differ in the set of dimensional attributes and the graph is 
identical.  

 
E.  Non Common Dimensions  
Two dimensions D1 and D2 are non-common if they differ 

in at least one attribute. 
 

III.  ‘is-a’ RELATIONSHIP 

In this section we define ‘is-a’ relationship between 
dimensions in order to be able to combine two cubes. Let C1 
and C2 be two cubes with D1 and D2 as dimensions 
respectively. Let D1 and D2 be non–common dimensions. As 
defined above, a dimension consists of attributes at different 
levels. If an attribute Ai of dimension D1 and an attribute Aj of 
dimension D2 are specializations of an entity C then we create 
a new dimension D with C as one of the attributes. The 
dimension D contains the intersection of the subgraphs of D1 
and D2. For example, consider Fig. 5. Local is an attribute of 
the dimension Local_address and Global is an attribute 
of Global_address dimension. Let these be 
specializations of an entity Addresss. A new dimension, 
say, Location is created with Address  as an attribute. The 
graph that is common between Local_address and 
Global_address is part of the Location dimension as 
shown in the Fig. 5. Notice that in the Location dimension, 
it is possible to roll-up from Address to Country. 

Fig. 1 SalesLocal Fig. 2 PurchaseFact
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We first define the operation reduction in order to find the 
intersection of dimensions. Subsequently, we explain the 
manner in which a new dimension can be created. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 ‘is-a’ relationship between dimensions 
 

A.  Intersection of Dimensions 
We define a function reduction on a tree as follows. 

Consider a tree t1(V1,E1) where V1 is the set of vertices and 
E1 is the set of directed edges. The tree t2(V2, E2) is the 
reduction of t1(V1,E1) if V2 ⊆ V1 and an edge (vi,vj) belongs 
to E2 when 

a) vi and vj belong to V2 
b) there exists a path from vi to vj in t1  
c) all nodes except vi and vj are not in V2 

A dimension which contains a graph can be viewed as 
multiple trees with the lowest level as the root and the 
aggregation levels along a path as the nodes and the edges 
maintained as in the dimension definition. Given two 
dimensions, if the trees in the respective dimension can be 
reduced to a tree containing the common attributes, then this 
tree will be part of the intersection of the two dimensions. This 
can be applied repeatedly to each tree of the dimension. More 
formally, consider two dimensions D1(V1,E1) with Ai ε V1 
for 1≤ i  ≤ n and edges  Ai → Ai+1and D2(V2, E2)  with Bi ε 
V2 for 1≤ i  ≤ m and edges  Bi → Bi+1. Let V be the set of 
common attributes of D1 and D2. In other words V = V1 ∩ 
V2. Then, reduction of D1(V1,E1) to D(V,E) which is the 
same as reduction of D2(V2,E2) to D(V,E) is the intersection 
of D1 and D2.  

 
B. Creation of a Dimension 
Consider two dimensions D1(V1,E1) with Ai ε V1 for 1≤ i  

≤ n and edges  Ai → Ai+1and D2(V2, E2)  with Bi ε V2 for 
1≤ i  ≤ m and edges  Bi → Bi+1. Without loss of generality, 
we can assume that A1 and B1 are in a ‘is-a’ relationship with 
C1. If the ‘is-a’ relationship is not with respect to the lowest 
level attributes, then appropriate roll-up operations can be 
performed so that the lowest level attributes in both the cubes 
exhibit ‘is-a’ relationship.  Replace A1 with C1. Similarly 
replace B1 with C1. The intersection of D1 and D2 is the new 
dimension. The new dimension D is the parent dimension of 
both D1 and D2. 
 

IV.  OPERATIONS 

The operations here have been defined in terms of the kind 
of decision support information that is sought. We define 
operations for coalescing two cubes along common 

dimensions as well as along the common and the non-common 
dimensions.  

In the case of common dimension, two cases arise  
a) include only the common instances 
b) include all the instances. 

Case (a): In the first case, information of only the common 
instances may be required. For example, for the cubes of Fig.1 
and Fig. 2, let us say that it is required to know the 
comparative figures of sales and purchase of clerks. Then only 
the instances who are clerks as well as customers participate. 

Case (b): In this case, all the instances participate in 
decision making. For example, it may be required to know the 
total sales and purchase figures immaterial of who sold or 
purchased the items.  

Case (a) is the typical drill across query. For this we define 
the operation InnerCoalesce. OuterCoalesce handles the case 
when all the instances of the common dimension are included 
in the resultant cube. 

In the case of non-common dimension, it is possible to 
coalesce only if there is a ‘is-a’ relationship. Recall that if two 
dimensions D1 and D2 are in a ‘is-a’ relationship with a 
dimension D, then two cases arise regarding the instances of 
the attributes of D1 and D2 viz. 

a) the instances are overlapping 
b) the instances are disjoint. 

Case (a): In this case the instances of the attributes of D1 
and D2 are overlapping. In our example, for the cubes of Fig.1 
and Fig.2, if clerk and customer are in ‘is-a’ relationship with 
people, then their instances can overlap as there can be clerks 
who are customers as well. 

Case (b): In this case the instances of the attributes of D1 
and D2 are disjoint. In our example, for the cubes of Fig.1 and 
Fig.3, if Local-address and Global_address are in a 
‘is-a’ relationship with Location, then there are no common 
instances between the attributes Local and Global. 
However, it may be required to know the overall sales 
performance. 

Summarizing, then, there are six different ways of 
combining the instances of the two cubes which is shown in 
the Table I and Table II. 

 
TABLE I 

COMBINING INSTANCES OF TWO CUBES 
Common instances of C InnerCoalesce 

All instances of C OuterCoalesce 

 
TABLE II 

COMBINING INSTANCES OF TWO CUBES 
Common  
Dimension C

New  
Dimension D 

Operation 

Common  
instances 

Common  
instances 

CommonInnerCoalesce 
 

Common  
instances 

All  
instances 

AllInnerCoalesce 
 

All instances Common  
instances 

CommonOuterCoalesce  
 

All instances All instances AllOuterCoalesce 
 
 

Address 
Location 

Country 

Global 

Global_address 

Country City 

Local_address 

CountryLocal 
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We now define each operation individually  
 

(i) InnerCoalesce 
The above operation joins the two cubes on the common 

dimensions. For the common dimensions the  join is an equi-
join.  

Let the dimensions of the two cubes C1 and C2 be D1--Db, 
Db+1----Dn and D1--Db, D′b+1----D′s. where  D1--Db are the 
common dimension. Let E and E′, the fact schemes of the two 
cubes, be of the form  
E:[D1--Db:A11---Ab1,Db+1: Ab1+1---Dn: An1] →[M,M1 --- Mm] 
and  
E′:[D1--Db:A11--Ab1,D′b+1 :B′b1+1-- D′s:B′s1]→[M′,M′1 -- M′p]  
where A11--Ab1 are the dimensional attributes which are 
common. Note that, if the levels of the attributes are not the 
same in the two fact schemes, then one of them can be rolled 
up to bring the two fact schemes at the same level on the 
common dimensions.  

C1 InnerCoalesce C2 is a cube C which consists of the 
dimensions D1-- Db. The measures are M, M′, M1---- Mm ,M′1---- 
M′p. The fact scheme is  
E: [D1--Db : A11--Ab1] →  [M, M′, M1---- Mm ,M′1---- M′p].     

The instances of D1, D2 …Db are those which are common 
in both the cubes. That is, an instance of each attribute of the 
common dimension exists in C if it exists in both C1 and also 
in C2. It also consists of a set of n tuples of the form 
(a11,a21…ab1,m,m′,m1..mm, m′1.. m′p) where a11 is the value of 
the attribute A11 of dimension D1 and m is the value of 
measure M1. 

Example 1 Suppose information about items which have 
been purchased and sold for cubes C1 and C2 is to be found. 
Then C1 InnerCoalesce C2 gives the desired result as follows: 
 
      
 
 
  
                           
 
 
 
 
 
 
 
 
 
 
                        

(ii) OuterCoalesce 
This operation also joins the two cubes on the common 

dimensions. But the common dimensions are joined with the 
semantics of outer join.  

Let the dimensions of the two cubes C1 and C2 be D1--Db, 
Db+1----Dn and D1--Db, D′b+1----D′s. where  D1--Db are the 
common dimension. Let E and E′, the fact schemes of the two 
cubes, be of the form  

E:[D1--Db:A11---Ab1,Db+1: Ab1+1--- Dn: An1]→[M,M1 --- Mm] 
and  
E′:[D1--Db:A11--Ab1,D′b+1 :B′b1+1-- D′s :B′s]→[M′,M′1 -- M′p]  
where A11--Ab1 are the dimensional attributes which are 
common. Note that, if the levels of the attributes are not the 
same in the two fact schemes, then one of them can be rolled 
up to bring the two fact schemes at the same level on the 
common dimensions.  

C1 OuterCoalesce C2 is a cube C which consists of the 
dimensions D1-- Db. The measures are M, M′, M1---- Mm ,M′1---- 

M′p. The fact scheme is E: [D1--Db:A11--Ab1] →  [M, M′, M1---- 
Mm ,M′1---- M′p].   It also consists of a set of n tuples of the 
form (a11,a21…ab1,m,m′,m1..mm, m′1.. m′p) where a11 is the 
value of the attribute A11 of dimension D1 and m is the value 
of measure M1. 

The instances of D1, D2 …Db are those which are in either 
of the cubes. That is, an instance of each attribute of the 
common dimension exists in C if it exists either in C1 or in 
C2. 

Example 2 Suppose it is desired to find all the sale and 
purchase information for the items, shown in cubes C1 and 
C2,. Then C2 OuterCoalesce C1 gives the desired result as 
follows: 

 
 
 
 
 
 
 
 
 
 
 
 

 
(iii) CommonInnerCoalesce 
The operations defined above took into account only the 

common dimensions. This operation combines the cubes on 
the common as well as a non common dimension provided ‘is-
a’ relationship exists for some attribute of the non common 
dimension of each cube as explained above. 

Let the dimensions of the two cubes C1 and C2 be D, D1--
Db, Db+1----Dn and D′, D1--Db, D′b+1----D′s. where  D1--Db are 
the common dimension and D and D′ are the non common 
dimensions. Let E and E′, the fact schemes of the two cubes, 
be of the form  
E:[D:A,D1--Db:A11---Ab1,Db+1:Ab1+1--Dn:An1]→[M,M1--Mm] 
and  
E′:[D′:B,D1--Db:A11--Ab1,D′b+1:B′b1+1--D′s:B′s1]→[M′,M′1-- 

M′p]  
where A11--Ab1 are the dimensional attributes which are 
common. Let the attribute A of D and the attribute B of D′ 
exhibit a ‘is-a’ relationship with an attribute C. Construct the 
dimension D′′ as explained above.  

C1 CommonInnerCoalesce C2 is a cube C which consists of 
the dimensions D′′D1-- Db. The measures are M,M′,M1--
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Mm,M′1----M′p. The fact scheme is E: [D”, D1… 
Db:A11…Ab1]→ [M, M′, M1----Mm ,M′1----M′p].  Again it also 
contains a set of n tuples of the form as described in Inner 
coalesce. The tuple is a set of instances as described below:   

The instances of D1, D2 …Db are those which are common 
in both the cubes. That is, an instance of each attribute of the 
common dimension exists in C if it exists in both C1and also 
in C2. The instances of D′′ are those which are in both D and 
D′. In particular, the instances of C are those which are in both 
A and B. In other words, the overlapping instances of A and B 
form the instances of D”. 

Example3: Suppose it is desired to find the common items 
which are purchased by customer who are clerks as well then 
C3 CommonInnerCoalesce C4 gives the answer as shown 
below: 

 
 
 
 
 
 
 
 
 

C3 CommonInnerCoalesce C4 as shown below gives the 
result of the above query. 

 

 

 

 
 

(iv) CommonOuterCoalesce 
This operation also combines the cubes on the common as 

well as a non common dimension provided ‘is-a’ relationship 
exists for some attribute of the non common dimension of 
each cube as explained above. The operations defined above 
took into account only the common instances of the common 
dimensions. Here, the union of instances of the common 
dimension is taken. 

Let the dimensions of the two cubes C1 and C2 be D, D1--
Db, Db+1----Dn and D′, D1--Db, D′b+1----D′s. where  D1--Db are 
the common dimension and D and D′ are the non common 
dimensions. Let E and E′, the fact schemes of the two cubes, 
be of the form  
E:[D:A,D1--Db:A11---Ab1,Db+1:Ab1+1--Dn:An1]→[M,M1--Mm] 
and  
E′:[D′:B,D1--Db:A11--Ab1,D′b+1:B′b1+1---D′s:B′s1]→[M′,M′1--- 

M′p]  
Where A11...Ab1 are the dimensional attributes which are 
common. Let the attribute A of D and the attribute B of D′ 
exhibit a ‘is-a’ relationship with an attribute C. Construct the 
dimension D′′ as explained above.  

C1 CommonOuterCoalesce C2 is a cube C which consists 
of the dimensions D′′D1-- Db. The measures are M, M′, M1---- 
Mm ,M′1---- M′p. The fact scheme is E: [D”, D1--Db:A11…Ab1] 
→  [M, M′, M1---- Mm ,M′1---- M′p].  Again it also contains a set 
of n tuples of the form as described in Inner coalesce. The 
tuple is a set of instances as described below:  

The instances of D1, D2 …Db are those which in either of 
the cubes. The instances of C are those which are in both A 
and B. In other words, the overlapping instances of A and B 
form the instances of C. 

Example 4: Suppose it is required to find all the items 
which are purchased by customers who are clerks as well. This 
can be answered using CommonOuterCoalesce for the cubes 
of Fig. 10 and Fig. 11 which  gives the following result: 

 
 
 
 
 
 
 
 
 

(v) AllInnerCoalesce 
This operation also combines the cubes on the common as 

well as a non common dimension provided ‘is-a’ relationship 
exists for some attribute of the non common dimension of 
each cube as explained above. The operations defined above 
took into account only the common instances of the non 
common dimensions. This operation handles those cases 
where the attributes which are specializations are disjoint.  

Let the definitions of the two cubes C1 and C2 be as 
defined in CommonInnerCoalsece.  
C1 AllInnerCoalesce C2 is a cube C which consists of the 
dimensions D′′D1-- Db. The fact scheme is  

E: [D”, D1--Db:A11…Ab1] →  [M, M′, M1---- Mm ,M′1---- M′p]. 
Again it also contains a set of n tuples of the form as described 
in Inner coalesce. The tuple is a set of instances as described 
below:      

The instances of D1, D2 …Db are those which are in both C1 
and C2. The instances of C are the union of instances which 
are in A and B.  

Example5: Consider the common items purchased by all the 
customers and clerks. 

C3 AllInnerCoalesce C4 gives the answer to the query. 
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(vi) AllOuterCoalesce 
The operation defined above took into account only the 

common instances of the common dimensions. This operation 
includes all the instances for both the common as well as the 
non common dimension. 

Let the definitions of the two cubes C1 and C2 be as 
defined in CommonInnerCoalsece.  

C1 AllOuterCoalesce C2 is a cube C which consists of the 
dimensions D′′D1-- Db. The fact scheme is 

 E: [D”, D1--Db:A11…Ab1] →  [M, M′, M1---- Mm ,M′1---- M′p].  
Again it also contains a set of n tuples of the form as described 
in Inner coalesce. The tuple is a set of instances as described 
below:  

The instances of D1, D2 …Db are those which are in either 
of C1 and C2. The instances of C are the union of instances 
which are in A and B.  

Example 6: Suppose an organization wants the complete 
purchase information about all the persons immaterial of 
whether they are clerks or customers. Then the desired result 
can be obtained from C3 AllOuterCoalesce C4. 
 
 
 
 
 
 
 
 
 
 

 
V.  CONCLUSION 

In this paper we have combined two cubes along common 
as well as along non common dimensions. The main concern 
while combining two cubes using common dimensions has 
been to consider the non-common instances at par with the 
common instances. We have also shown that the non-common 
dimensions can also be used to combine cubes if there is a ‘is-
a’ relationship. We show the manner in which a new 
dimension can be created. 

We define six operations to combine the instances of two 
cubes. The six operations are InnerCoalesce, Outer 
Coalesce,CommonInnerCoalesce, CommonOuterCoalesce, 
AllInnerCoalesce and AllOuterCoalesce. The first two 
consider only the common dimensions whereas the last four 
take into account the non-common dimensions as well.  

Just as common dimensions alone can be used to coalesce 
two cubes, it can be argued that non-common dimensions 
alone can also be used to coalesce two cubes. However, we 
find that the result may not help in decision making. For 
example, if we coalesce cubes of Fig. 2 and Fig. 3 along non-
common dimensions alone, then the resultant cube will have 
Address and Person as dimensions. The data in the resultant 
cube is essentially about the items which are sold and 
purchased. In the absence of item dimension, any meaningful 
decision cannot be taken. 

It can be argued that coalescing two dimensions into one 
cube introduces a lot of null values but we believe that 
unnecessary null values must be avoided when storing 

information but may not be avoidable when it is essential to 
get a global picture. 

Reference [9] has also considered ‘is-a’ relationship. 
However, here it is assumed that a dimension already exists 
exhibiting the relationship.  We believe that while combining 
data marts, extra dimension such as those in [9] do not exist. 
Therefore, we propose to create a new one. 
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