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Particle Swarm Optimization for Design of
Water Distribution Systems

A.Vasan

Abstract—Particle Swarm Optimization (PSO) technique is
applied to design the water distribution pipeline network. A
simulation-optimization model is formulated with the objective of
minimizing cost and is applied to a benchmark water distribution
system optimization problem. The benchmark problem taken for the
application of PSO technique to optimize the pipe size of the water
distribution network is New York City water supply system
problem. The results from the analysis infer that PSO is a potential
alternative optimization technique when compared to other heuristic
techniques for optimal sizing of water distribution systems.
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I. INTRODUCTION

ATER distribution networks are considered as the most

important and expensive entity in the urban
infrastructure  systems. Design optimization of water
distribution networks has been thoroughly researched over the
past few decades due to its computational and engineering
complexity. The nonlinearity between flow and head loss
along with the presence of discrete variables (pipe diameter)
in design optimization makes this highly challenging. In the
last decade, researchers have attempted to explore several
new non-traditional optimization techniques to such NP-hard
combinatorial optimization problems [1], [2], [3].

A significant literature exists for optimizing water
distribution networks using linear programming, nonlinear
programming, enumeration techniques, heuristic methods
and evolutionary techniques focusing on the objective of cost
minimization. Reference [4] developed the linear
programming gradient method that has been improved by
many researchers [5], [6], [7], [8], [9]. Due to the limitations
of linear programming, researchers applied the nonlinear
programming (NLP) optimization approach to pipe network
problems [10], [11], [12], [13], [14]. NLP approaches also
had their limitations as they rely on the initial solution and so
the researchers applying the heuristic approaches to the
optimal design of water distribution networks. Applications to
water distribution networks design include genetic
algorithms,  simulated annealing, harmony search
optimization, shuffled frog leaping algorithm, ant colony
optimization, memetic algorithms and differential evolution.
Genetic algorithms have been used for solving network
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design problem by [15], [16], [17], [18], [19], [20], [21] and
[22]. Simulated annealing has been applied by [23] and [24].
Reference [25] developed the harmony search optimization
approach to solve network design problems while reference
[26] developed the shuffled frog leaping algorithm. Reference
[27] applied ant colony optimization approach and
outperformed genetic algorithms both in terms of
computational efficiency and their ability to find near global
optimal solutions. Reference [2] analyzed the performance of
memetic algorithms for optimal design of looped water
distribution systems and demonstrated that they work better
when the size of the problem increases while [3] successfully
applied differential evolution optimization technique.

The escalating complexity of the real world applications
similar to the one stated above has demanded researchers to
find the possible ways of easing the solution of such
problems. This has motivated the researchers to grasp ideas
from the nature and implant it in the engineering sciences.
This way of thinking led to emergence of many biologically
inspired algorithms that have proven to be efficient in
handling the computationally complex problems with
competence such as Evolutionary Algorithms and Swarm
Intelligence (SI) techniques [28]. Particle swarm optimization
(PSO) is a swarm intelligence technique developed by [29],
inspired by social behavior of bird flocking or fish schooling.
PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA). However,
unlike GA, PSO has no evolution operators such as crossover
and mutation. In PSO, the potential solutions, called
particles, fly through the problem space by following the
current optimum particles. PSO has been successfully applied
in many research and application areas. It is demonstrated
that PSO gets better results in a faster, cheaper way compared
with other methods. Another reason that PSO is attractive is
that there are few parameters to work with. In this paper,
Particle swarm optimization has been used to the pipe-sizing
problem, in comparison with widely used algorithms in the
literature for the case study of the New York water supply
system. The remainder of the paper is structured as follows:
First, the mathematical formulation of the design problem
(minimization of network cost) is presented, and then
working of PSO technique is discussed. The development of
the simulation-optimization model for the New York water
supply system is then presented followed by the results and
discussion. The paper closes with concluding remarks.
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II. WATER DISTRIBUTION OPTIMIZATION MODEL FORMULATION

The mathematical formulation of the optimal design of
water distribution networks is often viewed as a least-cost
optimization problem in which the decision variables are the
pipe diameters for each pipe in the network. The objective is
to find the combination of different sizes of pipe that give the
least-cost subject to constraints. The problem is constrained
by the physical laws of mass and energy conservation.
Minimum head constraints at pipe junctions (nodes) and pipe
size restrictions are imposed. The following is the objective to
minimize the network cost for the New York water supply
system to find the optimal pipe diameter for each pipe in the
network [30]:

np
Minimize C =Y (1.1D;*L,)) (1)
i=1

where C =cost [$]; D; = diameter [inches]; L; = length
[feet]; np = number of pipes in the system.

The constraints for the above formulated model are as
follows:

a.Continuity Constraint: For each junction node (other
than the source), a continuity constraint should be satisfied.

>0,-2.0,.=0. 2)

where Q;, = flow into the junction; Qo = flow out of the
junction; and Q. = external inflow or demand at the junction
node.
b.Energy Conservation Constraint: The sum of head loss
around a pipe must be equal to zero.
D> AH,=0, VileNL 3)

i€ Loopl
where AH, = head loss in the pipe i and NL = total

number of loops in the system.
c.Minimum Head Constraint:

H, ZHJ‘.“”‘, j=1...,nn 4)

III. PARTICLE SWARM OPTIMIZATION

Swarm intelligence is a new area of research inspired by
the social behavior of bird flocking and shares many
similarities with evolutionary algorithms such as Genetic
Algorithms (GA), Differential Evolution (DE) etc. Particle
Swarm Optimization (PSO) is a population based stochastic
optimization algorithm in swarm intelligence [28]. This
algorithm is becoming popular due to its simplicity of
implementation and ability to quickly converge to a
reasonably good solution. The system is initialized with a
population of random solutions and searches for optima by
updating generations. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. In PSO,
the potential solutions, called particles, fly through the search
space by following the current optimum particles. Each
particle keeps track of its coordinates in the problem space
which are associated with the best solution (fitness) it has
achieved so far. The fitness value is also stored is

called pbest. Another "best" value that is tracked by the
particle swarm optimizer is the best value, obtained so far by
any particle in the neighbors of the particle. This location is
called /best. When a particle takes all the population as its
topological neighbors, the best value is a global best and is
called ghest. The particle swarm optimization concept
consists of, at each time step, changing the velocity of
(accelerating) each particle toward its
pbest and [best locations. Acceleration is weighted by a
random term, with separate random numbers being generated
for acceleration toward pbest and [best locations. The velocity
(v) and the position (Xx) of the iy, swarm are manipulated

according to the following two equations:
e+l _ k k k k k
S ,y[a)vl.j +C,R, (pij —X; )+ C,R, (pgj — xii) 5)
k+1
Xij
where i denotes the number of particles; j denotes number

of decision variables; k denotes the iteration counter; J} is

v

k k+1
=x; vy’ ©)

the constriction factor which controls and constricts the
magnitude of the velocity; g denotes the gbest of a particle; p
denotes the pbest of a particle; & denotes the intertia weight
which is often used as a parameter to control exploration and
exploitation in the search space; R, and R, are random
variables uniformly distributed within [0, 1]; and C,, C, are
acceleration coefficients, also called the cognitive and social
parameters respectively. C; and C, are popularly chosen to
vary within {0, 2} [31]. The search is terminated if the one of
the following criteria is satisfied: (i) the number of iterations
reaches the maximum allowable number or (ii) the accuracy
between the best solution of two successive generations
reached a pre-specified number.

In past several years, PSO has been successfully applied in
many research and application areas. It is demonstrated that
PSO gets better results in a faster, cheaper way compared
with other methods. Another reason that PSO is attractive is
that there are few parameters to adjust. One version, with
slight variations, works well in a wide variety of applications.
Particle swarm optimization has been used for approaches
that can be used across a wide range of applications, as well
as for specific applications focused on a specific requirement.

IV. SIMULATION-OPTIMIZATION MODEL

A simulation-optimization model is used in this study,
which involves the application of PSO linked to the hydraulic
simulation software EPANET version 2.0 [32]. In PSO, the
generated decimal pipe diameter values are encoded to the
nearest discrete pipe diameter before they are passed to the
hydraulic simulation software. Although the continuity
constraint and energy conservation constraint are satisfied
externally via EPANET, the other constraints must be
satisfied within PSO. A simple additive penalty function
approach is used in order to convert the constrained problem
into unconstrained problem. In the present study, the
simulation-optimization model has been applied to a case
study of the New York water supply system for which the
layout is shown in Fig. 1. Numerous researchers have
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examined the chosen case study [30], [5], [33], [34], [19],
[21], [27], [26], [3]. The same input data existing pipe data,
discrete set of available diameters, minimum head and
demand at each node are used in this study and presented in
Tables I and II. The Hazen-Williams coefficient value for new
pipes is taken as 100. The imperial system of units is used to
enable comparisons with previous studies.
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Fig. 1 Layout of New York Water Supply System

Because of pipe aging, the existing gravity flow tunnels are
inadequate to meet the pressure requirements (at nodes 16,
17, 18, 19 and 20) for the projected demands. Therefore, the
network is planned to be expanded by adding new pipes
parallel to the existing pipes to meet the minimum pressure
head requirements. The available market pipe diameters (in
inches) options are 6, 48, 60, 72, 84, 96, 108, 120, 132, 144,
156, 168, 180, 192 and 204. There are 16 possible decisions
for each pipe as there are 15 market pipe diameter sizes
available for each pipe in the network and the “do nothing”
option makes the sixteenth. Considering all the 21 pipes for
possible duplication, the search space for the optimal solution
equals to 16> possible network designs.

V.RESULTS AND DISCUSSION

The developed simulation-optimization model is applied to
the expansion of New York water supply system. The
population size is varied from 50 to 300 to determine the
optimal solution. The model is run for 20 different trails to
determine the optimal network cost. It has been observed

from the results that the maximum number of function
evaluations was 6825 which yields an optimal network cost of
$38.64 million. The best discrete solutions found in the
previous studies as compared with that obtained using this
model is summarized in Table II where the values are the new
pipe diameters to be added in parallel to the respective
existing pipes in the network. Table III lists the nodal head
values determined for [19], [21], [26] and the optimal pipe
diameters simulated using PSO for critical nodes 16, 17 and
19.

TABLE I
NETWORK DATA FOR NEW YORK CITY TUNNEL SYSTEM
Node Data Pipe Data
Node Dé?;/z:)ld %g:(rin(lg;\ Pipe L(z];tg;th Dizz?:l;:ter

1 -2017.5 300.0 1 11600 180
2 924 255.0 2 19800 180
3 92.4 255.0 3 7300 180
4 88.2 255.0 4 8300 180
5 88.2 255.0 5 8600 180
6 88.2 255.0 6 19100 180
7 88.2 255.0 7 9600 132
8 88.2 255.0 8 12500 132
9 170.0 255.0 9 9600 180
10 1.0 255.0 10 11200 204
11 170.0 255.0 11 14500 204
12 117.1 255.0 12 12200 204
13 117.1 255.0 13 24100 204
14 92.4 255.0 14 21100 204
15 92.4 255.0 15 15500 204
16 170.0 260.0 16 26400 72
17 57.5 272.8 17 31200 72
18 117.1 255.0 18 24000 60
19 117.1 255.0 19 14400 60
20 170.0 255.0 20 38400 60
21 26400 72
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TABLE I

SOLUTIONS FOR NEW YORK CITY WATER SUPPLY SYSTEM OBTAINED BY USING DISCRETE DIAMETER METHODS FOR
MINIMIZATION OF NETWORK COST

Pipe Diameter D (in.)

Pipe
[34] (191" [191

217’ [27] [26]° 3] PSO

15 120 - 144

16 84 96 84

17 96 96 96

18 84 84 84

19 72 72 72

20 - - -

21 72 72 72

9% 96 9 9 9
9% 96 9% 9 9%
84 84 84 84 84
72 72 7 72 7

72 72 72 72 72

Total Cost

($ million) 38.80 37.13 40.42

38.13 38.64 38.13 38.64 38.64

'Solution obtained by using genetic algorithm and w=10.5088. This solution results in infeasible pressures at nodes 16, 17 and 19 when the

network is simulated using EPANET hydraulic solver.
%Solution obtained by using genetic algorithm and w=10.9031.

3This solution results in infeasible pressures at nodes 17 and 19 when the network is simulated using EPANET hydraulic solver.

Table II shows that the optimal network cost evolved using
PSO ($38.64 million) is slightly higher than three previous
studies with optimal costs of $37.13 million, $38.13 million
and $38.13 million found by [19], [21] and [26] respectively.
However, when the evolved optimal pipe diameters using
these studies is simulated using EPANET version 2.0
hydraulic solver to determine the nodal pressure heads, it is
observed that the pressure head at critical nodes 16, 17 and
19 violate the minimum nodal pressure requirement as
evident from Table II. The minimum nodal pressure
requirement for all nodes except 16 and 17 is 255 ft and for
nodes 16 and 17, it is 260 ft and 272.8 ft respectively.

TABLE III
PRESSURE HEADS FOR CRITICAL NODES USING EPANET

FOR MINIMIZATION OF NETWORK COST

Pressure (ft)
Node
[oy [21] [26] PSO

259.79°

16 (260.16) 260.00 260.00 260.08
272.58" . X

17 (272.86) 272.79 272.79 272.87
254.80" . .

19 (255.21) 254.98 254.98 255.05

'Solution obtained for w=10.5088 is shown in parentheses
“Infeasible nodal pressure
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In case of [19], the numeric conversion constant w in the
Hazen-Williams formula for head-loss is lowered to 10.5088
to achieve the network cost of $37.13 million. The studies by
[21] and [26] obtained a network cost of $38.13 million
allowing a violation of 0.05 ft from the minimum nodal
pressure requirements. Therefore, although these studies
evolve a lower network cost than the previous studies, their
optimal solutions violate the minimum head constraint, thus
making their solutions infeasible. The results of PSO
replicated the feasible lowest cost solution obtained by [27],
[3] and proved to be a potential alternative optimization
technique for solving water distribution network problems. In
addition, the number of function evaluations required to
converge to the optimal solution is encouraging. Minor
changes in the model could make it suitable for similar water
distribution network design optimization as well.

VI. CONCLUSIONS

Optimal water distribution network design is a
computationally complex problem. This paper describes the
development of simulation-optimization model (particle
swarm optimization algorithm linked with EPANET
simulation hydraulic solver). The efficiency of the model is
tested with the New York water supply system for
minimization of network cost. PSO matched the feasible
lowest cost solution of $38.64 million when compared with
the earlier studies in the literature. The robustness of the
technique is also examined carrying out sensitivity on its
governing optimization parameters. It is concluded that PSO
is clearly a potential alternative optimization technique for
solving water distribution network design problems.
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