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Fig. 6 Elastic stress distribution on the anchor loaded by the external 

force P 
 

aøP ⋅⋅⋅= 25,0 σ                                (1) 
 

Solving equilibrium equations for the elastic solutions we 
find: 

 
 

33
2 la =                                       (2) 

 
fulfills the capacity criteria: 
 

 
cfk ⋅≤2σ                                    (3) 

 
where k is the concentrated load factor accordingly to [8] and 
[9], see Table II:   
 

TABLE II 
CONCENTRATED LOAD FACTOR 

 Aircrete Concrete 
k 3,3 3,0 

 
and hereby we get the loadbearing capacity in (4): 
 

cfkløP ⋅⋅⋅⋅= 33
1                       (4) 

 
Similarly using a plastic distribution we get: 
 

2
3la =                            (5) 

 
and hereby:  
 

cfklølP ⋅⋅⋅⋅= 3
3

2
                            (6) 

 
Observing Fig. 6 we may replace P and PR with an 

equivalent force PE which from vertical projection gives: 
 

RE PPP −=                      (7) 
 
and assuming elastic distribution we have P = 2PR leading to: 
 

EPP 2=                                      (8) 
 

Further the stress distribution in the test specimen gives a 
torque, which results in the equivalent force PE located outside 
the specimen in a distance l4, see Fig. 5, of: 

 

34 9
4 ll =                                 (9) 

 
We hereby get the relation between the measured force PM 

and the equivalent force PE : 

 

         
))(( 142

1

lll
lPP ME +−

=                (10) 

 
and hence using (4) and (8) we may determine the load 
bearing capacity P. 

The plastic distribution is expected to be on the unsafe side 
giving high loadbearing capacities. The model for crushing 
failure will be replaced by the split theory asserting itself for 
low distances between the anchor and the edge. The split 
theory takes into consideration the low utilization of the 
aircrete area and the alternative fracture pattern occurs when 
the edge distance is low.  

The capacity of anchors in structural connections, with low 
edge distances may result in spalling failure as shown in Fig. 
2. Assuming that spalling failure may be estimated by a 
splitting failure determined by using (11), see [10]: 

 

dfp tπ
2
1

=                            (11) 

 
where p is the equivalent line load correlated by the actual 
stress distribution, see for example elastic distribution in Fig. 6 
spread over the length a = 2/3l by (12): 
 

32
3

l
P

a
Pp αα =⋅=                     (12) 

 
where the factor α = 1,0 corresponding to pure plastic 
distributed stress rising to α = 2,0 in the case of  elastic stress 
distribution.     

Combining (11) and (12) we then get the derived splitting 
capacity given in (13): 

 

      
33

1 dlfP t ⋅⋅= π
α

       (13) 

 
observing that for increasing α value we obtain lower 
loadbearing capacity. 

IV. ANALYSIS 
The test data were compared to the developed theory using 

regressions analysis and determining the variance on the data. 
Initially it was observed that the test data fitted approximately 
assuming an elastic stress distribution. Comparing all tests to 
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the theory for crushing failure it was observed that as expected 
there was a clear difference between data with low and high 
edge distance d, see Fig. 7. 

  

 
Fig. 7 Test results versus theory for crushing of the aircrete 

 
In the further analysis the test data where analyzed 

separately depending on an edge distance larger or smaller 
than 30mm. In the analysis of test data with edge distance 
larger than 30mm, an optimum comparing with crushing 
failure, see (4) was found introducing a factor of 
β = 0.75 reducing the coefficient of variance from 0.27 to 
0.15. Some of this reduction may be explained by the stress 
distribution not being perfectly elastic, but the main 
explanation is probably found in the fact that the test were 
performed with rods, which do have a lower stiffness and a 
relatively lower effective diameter, due to the threads. To 
clarify this three test samples was carried out with cast smooth 
steel bars, and these tests clearly showed a higher load-bearing 
capacity, see upper data in Fig. 8. 
 

 
Fig. 8 Test results for edge distance d < 30mm 

 
 

 
Fig. 9 Test results versus theory for edge distance d < 30 mm 

 
Analyzing the test data and comparing them to the splitting 

theory optimizing the stress distribution α from (13) on both 
the smooth steel bars and the threaded rods, the stress 
distribution factor α was optimized achieving a change in 
variance from 0.59 to 0.15 using α = 1.1 on threaded rods 
indicating the stress distribution approaches a plastic stress 
distribution before failure in the case of splitting, see results in 
Fig. 9. 

V. CONCLUSION 
It has been shown that the theories developed for the two 

types of failure mode, crushing and spalling correlates 
satisfactorily with the test performed obtaining a variance of 
about than 0.15 in both failures, which may be considered 
sufficiently statistically verified for these types of test. 

It is further assumed and verified that it is possible to 
approximate with an elastic/plastic stress distribution. 

Finally it was observed that there was a significant 
difference between using smooth steel bars and threaded rods, 
and even though the difference is minor further investigation 
is recommended in the future. 
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