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Abstract—This paper presents a multi-objective formulation for 
optimal siting and sizing of distributed generation (DG) resources in 
distribution systems in order to minimize the cost of power losses 
and energy not supplied. The implemented technique is based on 
particle swarm optimization (PSO) and weight method that employed 
to obtain the best compromise between these costs. Simulation 
results on 33-bus distribution test system are presented to 
demonstrate the effectiveness of the proposed procedure. 
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I. INTRODUCTION

OR many years, the distribution system has been planned, 
built and operated always in the same way. But in the last 
decade, the first signs of changes have appeared due to the 

liberalization of the electricity market, the governmental drive 
to reduce number and duration of long interruption and the 
growing presence of DG. In particular, if DG penetration 
reaches a high level, as predicted by many authors, 
distribution utilities will probably have to dismiss the 
traditional radial network operation, adopting a more flexible 
meshed structure. If DG is properly planned and operated, it 
may provide benefits to distribution networks (e.g., reduction 
of power losses, capacity saving, reliability and power quality 
improvement). The effect of adding DG on network indices 
will vary depending on its type and position and (forecast) 
load at the connection point. Consequently, one or more sites 
on a given network may be optimal. 

There are many methods available for DG planning. Most 
of them has been considered only one objective function. [1] 
Presents an algorithm to determine the near optimal, with 
respect to system losses, placement of these units on the 
power grid. Further, the impacts of dispersed generation at the 
distribution level are performed with an emphasis on resistive 
losses, and capacity savings.   

[2] proposed a strategic DG placement method to enhance 
the reliability and obtain the benefits for DG placement. [3] 
formulates and discusses a methodology for the optimal siting 
of distributed generators and reclosers, a security and 
reliability constrained distribution network can accept. 
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Optimal siting is determined by sensitivity analysis of the 
power flow equations. The sizing method for a set of loading 
conditions, generation penetration level and power factor is 
formulated as a security constrained optimization problem. 
[4] minimizes the cost of active and reactive power generation 
based on GA and optimal power flow calculations. [5] 
presents a technique for assisting network planers determine 
the optimum rating and position of dispersed generators in an 
established distribution network, considering practical 
objectives and constraints over a number of planning years. 
The objectives considered were: the minimization of system 
losses, the minimization of disruption to the existing network, 
the minimization of costs and the maximization of the rating 
of the dispersed generators. The tool exploits conventional 
techniques in assessing the constraints imposed by the 
network, subsequently using Particle Swarm Optimization to 
provide an optimization of the decision making process. 

In this paper, a PSO based multi-objective (MO) 
formulation is proposed to optimize cost of power losses and 
energy not supplied simultaneously. Then, a global non-
inferior solution for MO problem is achieved by means of 
Genetic Algorithm. In a next stage, by using weight method, a 
set of non-inferior solutions can be produced with an iterative 
procedure in order to find the most compromised solution.

II. MULTI-OBJECTIVE PROGRAMMING

Recently, the liberalization of electric energy markets has 
brought important changes in the economic and technical 
aspects of power system planning and operation; the grids 
have to be managed according to new principles but taking 
into account the technical constraints. Therefore, it is 
necessary to change the methodologies and the algorithms 
used for the power system optimization. In particular, new 
tools that allow managing the system, complying with the 
rules of the electric market, must be available. The new 
scenario forces a change in the duties and objectives of the 
traditional planning and it compels to take into account 
several objectives that are likely to be in mutual conflict. The 
MO methodologies give a different solution that obtained by 
standard optimization methods. First of all, their intermediate 
results are not unique, but provide an infinite set of optimal 
solutions called Pareto set. Each point belonging to the Pareto 
set has an important characteristic: The improvement in one of 
the objectives results in the worsening of at least another 
objective. The general formulation of a MO problem is 
expressed by: 

PSO-Based Planning of Distribution Systems 
with Distributed Generations
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Where x represents a decision vector, fi is the ith objective 
function,  is the domain of solutions, gj and hk are the 
equality end inequality constraints, respectively. 

Therefore, to solve a MO problem it is necessary to follow 
these steps: a) define the useful objectives; b) find the Pareto 
set and c) choose a solution from Pareto set. Step c) is the 
most important, because the final solution depends on the 
point of view of the decision maker who has to take into 
account the relative importance of the conflicting objectives. 
There are various techniques for generating non-inferior 
solutions (Non-inferiority means that improvements in one 
objective are attained only at the cost of some sacrifice in the 
other objective functions). The method presented and used in 
this paper is the Weight Method. It transforms the MO 
optimization problem into a traditional problem: the different 
objective functions are weighted and added to form a single 
objective function to be optimized. The optimization problem 
can be defined as follows: 

k
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Where 0iw  are the weighting coefficients representing the 
relative importance of the objectives. It is usually assumed 
that 

1
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The main strength of this method is its efficiency 
(computationally speaking) and its suitability to generate a 
strongly non-dominated solution that can be used as an initial 
solution for other techniques [6]. 

III. PROBLEM FORMULATION

The main goal of this paper is to determine optimal 
locations and sizes for new generators by minimizing the cost 
of energy losses and cost of energy not supplied subject to bus 
voltages limits, DG power limit, short circuit currents and 
network power flow equations. 
In the following, each cost function is described in detail 
under the assumption of a linear load growth during the whole 
planning period. 

A.  Cost of Energy Losses (CL) 

The losses of distribution system depend on the line 
resistance and currents and are usually referred to as thermal 
losses. While the line resistances are fixed, the currents are a 

complex function of the system topology and the location of 
generation and load. 

In this work, only the real power injections as they relate 
to distribution losses are of concern. The system losses at the 
beginning of the planning period can be expressed as 

n
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Where P0L is the real power loss, PGi is the real power 
generated at the ith bus, PDi is the real power required at the ith
bus. All of the above parameters are calculated by power flow 
program. The net present value of the power losses cost in the 
whole planning period can be calculated as follows:  
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Where B is a economic factor for converting costs to present 
value, f and  are inflation and interest rate respectively,  is a 
load growth rate per year, UE is cost of energy($/kWh) and Ny
is planning period. In eq. (5) it has been assumed that DG 
units operate 24 h/day at their rated power. That’s why 
coefficient of 24*365=8760 h/year has been used. 

B.  Cost of Energy Not Supplied (CENS) 

In order to calculate the cost of energy not supplied the 
duration of a branch fault is usually divided into two phases: 
fault location and fault repair. Automatic sectionalizers and 
reclosers can restrict the area of influence of a fault, reducing 
the number of customers affected by long-term interruptions 
during the fault location phase. In this stage, intentional 
islanding may be used to supply unfaulted portions of the 
network automatically separated from the faulted section. The 
repair stage consists of the time required to isolate the faulted 
branch, connect any emergency ties and repair the fault. DG, 
enabling power to be restored to the nodes downstream the 
sectionalized branch, can lead to significant reliability 
improvements. Load flow studies should be performed to 
check that voltages and currents are within their operative 
ranges and that DG units have a sufficient probability to pick 
up the loads in the islanded network. Equation (6) gives the 
cost of energy not supplied of the jth network branch. 
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Where j is the branch fault rate (number of faults per year 
and km of feeder), Lj is the branch length (km), Nloc and Nrep
are the number of nodes isolated during the fault location and 
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repair stages, respectively, P0i is the node power (kW) at the 
beginning of the planning period, and tloc and trep are the 
durations of the fault location and repair stages (h), 
respectively.

The net present value of the cost of energy not supplied 
due to a fault in the jth branch during the planning period is 
calculated with the following expression: 

Ny

h

hh
jajENS BCC

1
0 )1( (7)

The cost of energy not supplied (CENS) is then obtained as the 
sum of the CENS j for each branch in the whole planning 
period. 

C.  Problem Constraints 

Two above objectives were subject to the following 
constraints: 
1. The network voltage levels should be held within 

specified limits. 
2. The short circuit limitations of network plant needed to be 

respected.
3. DG real and reactive power capabilities needed to be 

respected.
These are represented by the following equations: 
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Where N is the number of nodes in the network, K is the 
number of DG units and B is the number of branches 
(transformers and lines), Vi is the node voltage in year i, Pk

gi
and QK

gi are real and reactive power generated by generator k
in year i respectively and Sb

i is the apparent power flowing in 
branch b in year i.

IV. PSO IMPLEMENTATION

In this paper, a PSO optimization technique has been used 
for finding the non-inferior solutions of the MO optimization 
algorithm.  

The particle swarm optimization (PSO) algorithm was first 
proposed by Kennedy and Eberhart [7], and had exhibited 
many successful applications, ranging from evolving weights 
and structure for artificial neural networks [8], manufacture 
end milling [9], reactive power and voltage control [10], to 
state estimation for electric power distribution systems [11]. 
The convergence and parameterization aspects of the PSO 
have also been discussed thoroughly [12]. The PSO is inspired 
by the observations for bird flocking and fish schooling. A 
number of birds/fishes flock synchronously, change direction 
suddenly, and scatter and regroup together. Each individual, 
called a particle, benefits from the historical experience of its 

own and that of the other members of the swarm during the 
search for food. The PSO models the social dynamics of 
birds/fishes and serves as an optimizer for nonlinear functions. 

The PSO proceeds as follows. Given an optimization 
function f(P) where P is a vector of n real-valued random 
variables, a swarm of particles is generated at random for 
targeting the optimum solution P*. Each particle is 
represented as Pi = (pi1,pi2, . . . ,pin), i = 1,2, . . . ,S, where S 
is the swarm size. The particle is a candidate solution in the n-
dimensional real number space and iteratively moves in the 
problem space. The PSO enriches the swarm intelligence by 
storing the best solutions seen by every particle. In particular, 
particle i remembers the best position it visited so far, referred 
to as pbesti, and the best position by its neighbors. There are 
two versions for defining the neighbors’ best position, namely 
lbest and gbest. In the local version, each particle keeps track 
of the best position lbest attained by the particles within its 
topological neighborhood. For the global version, the best 
position gbest is determined by any particles in the entire 
swarm. Hence, the gbest model is a special case of the lbest 
model. The PSO is an iterative evolutionary algorithm. At 
each iteration, particle i adjusts its velocity vij and position pij
through each dimension j by referring to the personal best 
position (pbestij) and the swarm’s best position (gbestj, if the 
global version is adopted) using Eqs. (4) and (5) as follows: 

))()(( 2211 ijijijijij pgbestrcppbestrcvkv
and

ijijij vpp
where c1 and c2 are the acceleration constants, r1 and r2 

are random real numbers drawn from U(0, 1), and K is the 
constriction factor. Clerc and Kennedy [12] has pointed out 
that the use of a constriction factor is needed to insure 
convergence of the PSO, and it is determined by 
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k

where 421 cc .Typically, is set to 4.1 and k  is 
thus 0.729. 

As such, the particle flies through candidate solutions 
toward pbesti and gbest in a navigated way while still could 
explore new potential solutions by the random multipliers to 
escape from local optima. The PSO algorithm is terminated 
with a maximal number of iterations or the best particle 
position of the entire swarm cannot be improved further after 
a sufficiently large number of iterations.  

If the network structure is fixed, all the branches between 
nodes are known, and the evaluation of the objective functions 
described above depend only on the size and location of DG 
units. For this reason two control variables were identified for 
each solution vector. These were the position and size of DG 
units. A node chosen for installation of a generator was treated 
as a PV bus, thus the node active power and voltage values 
had to be specified within their specified limits.  

The fitness function was derived from the objective 
function by transforming it so that the minimization problem 
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became a maximization problem. The following 
transformation was used: 

CMin
ENSL CwCwC 21

(9)

Where C is weighted sum of CL and CENS.

Fig. 1 Optimization process block diagram in sizing and placement of 
DG units

The block diagram of the described MO optimization 
algorithm is depicted in Figure 1. 

V. RESULTS AND DISCUSSION

In order to show the capability of the proposed algorithm 
to solve the problem of the optimal DG allocation, a 33 bus 
distribution test system has been considered. A fast decoupled 
power flow program for radial distribution systems has been 
developed and used for simulation of proposed method [13].  
The period taken into consideration for the planning study is 
10 years long, with all nodes existing at the beginning of the 
period. For each node a constant power demand growth rate of 
5% per year has been assumed. The inflation and interest rate 
has been considered 7% and 10% respectively. The cost of 
energy has been assumed 4.2 ¢/kWh. 

The total cost of the network during the assigned study 
period is equal to k$486.5 (see Table I.) without any operating 
DG. Such a high generalized network cost is due to the 

significant growth rate of the demand, which requires the 
enforcement of a large number of branches. The attempt to 
minimize the global cost has led to a solution with many lines 
operate close to their maximum capacity and for this reason 
the cost of the energy losses counts for a significant 
percentage of the generalized cost of the network. The use of 
DG as an electric supply option can reduce both costs. 

Very often the planner needs more alternatives to evaluate 
and sometimes he can prefer to reduce the cost of losses 
instead of improving service quality, depending on strategic 
decisions, regulatory directives regarding the electric service, 
and budget restrictions. As showed in the following examples, 
the proposed MO optimization process permits of finding out 
alternative configurations, characterized by different costs for 
each single function constituent of the global cost. In each 
optimization stage the MO algorithm looks for alternative 
solutions according to weighting coefficient of objective 
functions. 

Three cases with different weighting coefficients have 
been investigated. In the first case study (see Table II. and 
Table III.), the power losses cost has been regarded and a 
larger weighting coefficient has been given to it. The value 
assumed by the cost of the power losses in the initial network 
configuration is equal to k$227.4. Three consecutive steps of 
iteration have been run. In the first iteration, the power losses 
cost and energy not supplied cost reduced in percentage of the 
23% and 5.3% respectively. The total cost also reduced 
13.6%. This cost reduction is obtained resorting to a DG 
penetration level (DG% is the ratio between the DG capacity 
and the power of load) of 15.98%. In the second iteration, the 
cost of CL decreases from the value of k$175.1 to the value of 
k$152.5. The penetration level of DG increases from the value 
of the 15.98% to the value of 26.67%. Finally, in the third 
iteration a new optimal solution has been achieved and CL
decreases to k$138.7 with DG penetration level of 37.34%.  

In the second case study, the cost of service interruptions 
CENS has been regarded with larger weighting coefficient. In
this case the planner aims at reducing the number and the 
duration of service interruptions by positioning DG in suited 
locations. Even though many standards and almost all the 
distributors do not generally allow resorting to “intentional 
islanding” operation, in order to emphasize the effect of DG it 
has been hypothesized that this practice can take place. In the 
proposed example, the capability of optimizing the location of 
DG has been advantageously used to find a network 
arrangement able to give the customers a much more reliable 
service avoiding the construction of new emergency ties. 

The starting network configuration is equal to the previous 
case study, where the CENS cost has the value of k$259.1. With 
the first optimization step this value is reduced to k$198.6 (see 
Table IV. and Table V). A further optimization permits 
reducing CENS up to k$169.3 thanks to a new allocation of DG. 
It is worth noticing that in this case generators are located at 
the end of long and heavy loaded lateral edges to serve as 
back up energy sources during upstream faults. Global 
benefits on energy not supplied and cost of not supplied 
energy are clearly recognizable, but benefits are much more 
significant for those customers that suffer for poor quality due 
to their position in the network.  
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In the third case, the weighting coefficient for both of costs 
has been considered the same and equal to 0.5. The results of 
optimization process were represented in Table VI. and Table 
VII.

TABLE I
COST OF DISTRIBUTION NETWORK BEFORE DG INSTALLATION

CTOT (k$) CENS (k$) CL(k$) 

486.5 259.1 227.4 

TABLE II
COST PROGRESSION IN MO ITERATIVE PROCEDURE (CASE 1)

W1=0.75 ,W2=0.25 
Iteration No. CL(k$) CENS (k$) CTOT (k$) 

1 175.1 245.2 420.3
2 152.5 230.4 382.9
3 138.7 221.5 360.2

TABLE III
DG LOCATION AND DG% (CASE 1)

Iteration No. DG Location (Bus No.) DG (%)
1 8,31 15.98 
2 24,25 26.67 
3 8,24,31 37.34 

TABLE IV
COST PROGRESSION IN MO ITERATIVE PROCEDURE (CASE 2)

W1=0.25 ,W2=0.75 
Iteration No. CL(k$) CENS (k$) CTOT (k$) 

1 220.8 198.6 419.4
2 205.5 180.2 385.7
3 198.2 169.3 367.5

TABLE V
DG LOCATION AND DG% (CASE 2)

Iteration No. DG Location (Bus No.) DG (%)
1 8,14 24.89 
2 8,30,32 30.23 
3 7,8,30,32 40.9 

TABLE   VI
. COST PROGRESSION IN MO ITERATIVE PROCEDURE (CASE 3)

W1=0.5 ,W2=0.5
Iteration No. CL(k$) CENS (k$) CTOT (k$) 

1 208.3 240.7 449
2 194.9 230.6 425.5
3 183.9 213.2 397.1

TABLE  VII
DG LOCATION AND DG% (CASE 3)

Iteration No. DG Location (Bus No.) DG (%)
1 8,32 14.22 
2 8,25 24.89 
3 8,24,25 33.78 

VI. CONCLUSIONS

The values of Distributed Generation are very dependent 
on its type, size and location as it was installed in distribution 
feeders. Hence, a PSO based multi-objective optimization for 
siting and sizing of distributed generation resources in 
distribution systems has been performed in order to minimize 

the cost of power losses and energy not supplied. Simulation 
results on 33-bus distribution test system have been presented 
for three case studies. The results show 25.96%, 24.46% and 
18.37% reduction on total cost for case1, case2 and case3, 
respectively.

APPENDIX

Fig. 2 The 33-bus radial distribution test system diagram 

TABLE VIII
LINE LENGTH FOR 33-BUS TEST SYSTEM

Length  
(km) 

Line 
No.

Length 
(km) 

Line 
No.

Length 
(km) 

Line 
No.

0.650 230.125 120.1031
0.641 240.427 130.350 2
0.270 250.452 140.335 3
0.390 260.457 150.279 4
0.194 270.245 160.134 5
0.449 280.300 170.560 6
0.304 290.120 180.540 7
0.496 300.224 190.453 8
0.187 310.512 200.510 9
0.192 320.423 210.306 10

--0.198 220.200 11

TABLE X
LOAD AND LINE DATA FOR TEST SYSTEM BEFORE DG INSTALLATION

TABLE IX
DATA USED FOR RELIABILITY CALCULATION

Parameter Overhead Lines 
 1.2 (year.km)-1

tloc 2 h 
trep 6 h 
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TABLE IX
DATA USED FOR RELIABILITY CALCULATION
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Load at Receiving 
Bus

Q (kVAr) P (kW) 

X
( )

R
( )

Receiving
Bus

Sending
Bus

601000.0477 0.0922 21
40900.2511 0.4930 32
801200.1864 0.3660 43
30600.1941 0.3811 54
20600.7070 0.8190 65
1002000.6188 0.1872 76
1002001.2351 1.7114 87
20600.7400 1.0300 98
20600.7400 1.0400 109
30450.0650 0.1966 1110
35600.1238 0.3744 1211
35601.1550 1.4680 1312
801200.7129 0.5416 1413
10600.5260 0.5910 1514
20600.5450 0.7463 1615
20601.7210 1.2890 1716
40900.5740 0.7320 1817
40900.1565 0.1640 192
40901.3554 1.5042 2019
40900.4784 0.4095 2120
40900.9373 0.7089 2221
50900.3083 0.4512 233
2005200.7091 0.8980 2423
2003200.7011 0.6960 2524
25600.1034 0.2030 266
25600.1447 0.2842 2726
20600.9337 1.0590 2827
701200.7006 0.8042 2928
6002000.2585 0.5075 3029
702500.9630 0.9744 3130
1002100.3619 0.3105 3231
40600.5302 0.3410 3332


