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Abstract—In this paper, different nonlinear dynamics analysis
techniques are employed to unveil the rich nonlinear phenomena of the
electromagnetic system. In particular, bifurcation diagrams, time
responses, phase portraits, Poincare maps, power spectrum analysis,
and the construction of basins of attraction are all powerful and
effective tools for nonlinear dynamics problems. We also employ the
method of Lyapunov exponents to show the occurrence of chaotic
motion and to verify those numerical simulation results. Finally, two
cases of a chaotic electromagnetic system being effectively controlled
by a reference signal or being synchronized to another nonlinear
electromagnetic system are presented.

Keywords—bifurcation, Poincare map, Lyapunov exponent,
chaotic motion.

I. INTRODUCTION

T is well known that the characteristics of magnetic bearings

are inherently nonlinear due to the nonlinearities of

electromagnetic forces. To accurately control or predict the

performance of this system, the effects of these nonlinearities

must be taken into consideration. Therefore, in our previous

work [1], an experiment with a symmetric rotor with a spring

device, as shown in Figure 1, was carried out by applying a

series of nonlinear electromagnetic forces to identify a

nonlinear model for the system.

Fig. 1 Schematic diagram of the electromagnetic system

For easy reference, the experimental results are presented in

the previous work [1]. These experimental results show the

frequency responses of the rotor displacement for an input

amplitude 3.0 V in decreasing forcing frequency (ω ) from 80

Hz to 34.4 Hz. It can be seen that if the system starts at high

frequency and the forcing frequency is slowly decreased, there

is an increase in amplitude along the resonant part of the

response curve.
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The smooth variations in amplitude and frequency continue

until ω = 37.6 Hz, where the first period-doubling bifurcation

occurs. In this type of period-doubling bifurcation a stable limit

cycle loses its stability, while another closed orbit is born whose

period is twice the period of the original oscillation. Beyond

this point, the vibrating amplitude of the rotor and the coil

current grow sharply. As the forcing frequency continues to

decrease, the trajectory continues to experience

period-doubling bifurcations, which eventually result in likely

chaotic motion, and finally the rotor strikes the electromagnet,

i.e., the system blows up. This shows that the system exhibits

complicated nonlinear behavior due to the nonlinearities of the

electromagnetic force. In engineering applications, this should

be taken into consideration at the design stage.

To study the dynamics of this system further we have

modified the conventional identification technique based on the
principle of harmonic balance to identify this system. The
resulting nonlinear model [1] is obtained as:
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where I0 is the biased current calculated directly from the
average experimental current time series, i is the oscillating
current about I0 ( = 0.68 Amp ), y is the oscillating displacement

of the rotor about a reference point, R is the resistance of the
coil, and KA ( = 2.254 ) is the power amplifier gain. The other

necessary coefficients for (1) are listed in Table I.

TABLE I
IDENTIFIED RESULTS

Identified value System parameter

43.84 b1

1.75×104 b2

3.97×104 b3

-16.81×104 b4

3.31×104 b5

10.51×104 b6

-9.98×104 b7

-3.44×104 b0

0.018 L1

9.79 R

This model successfully captures the primary characteristics

of the system by comparing the frequency responses from

simulations to those from experiments. However, theoretical

analyses of this model showing whether the identified nonlinear

mathematical model obtained from the experiment can predict

and characterize the dynamics of the real system have not yet

been carried out.
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Furthermore, the occurrence of chaotic motion at the moment 

the rotor strikes the electromagnet has also not been undertaken.    

In this paper, many numerical simulation methods have been 

employed to study the dynamical behavior of the system, such 

as, bifurcation diagrams, time responses, Poincare maps, power 

spectrum analysis.  The method of Lyapunov exponents [2] is 

also applied to show the occurrence of chaotic motion.          

In many engineering problems of chaos control it is important 

to develop control techniques to drive a chaotic attractor to a 

periodic orbit.  Since the pioneering work of Ott, Grebogi and 

Yorke [3] in controlling chaos, many modified methods and 

other approaches have successively been proposed [4-9].  As for 

the synchronization of chaos, many efforts have been made, for 

example, the works studied by [10-14].    Usually, one chaotic 

system is referred to as the master (drive) system and the other 

as the slave (response) system.  The basic idea of 

synchronization is to use the output of the master system to 

control the slave system so that the output of the slave system 

follows the output of the master system asymptotically.  Some 

attempts to solve the problem have been made recently [13-15].  

Finally, in this paper, in order to improve the performance of a 

dynamics system or avoid the chaotic behavior, sometimes we 

have to convert a chaotic behavior into a periodic motion.  Two 

methods are presented to control and suppress chaos: 

synchronization by a sinusoidal signal and synchronization by 

another nonlinear electromagnetic system [13]. 

II.BIFURCATION DIAGRAMS AND LYAPUNOV EXPONENTS

The equations of motion were nondimensionalized in order to 

transform the system into the dimensionless domain, in which 

the behavior of different physical systems can conveniently be 

compared.  The time t was nondimensionalized by using the 

electromagnetic system natural frequency (
nω ).  For 

convenience, we first let 
2bn =ω , 

nωω /=Ω , tnωτ = , 

yx =1
, yx ′=2

 and ix =3
, and normalize (1) to a set of 

ordinary differential equations: 
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To clearly understand the characteristics of this system, we 

carry out a series of numerical simulations from (2).  The 

commercial package DIVPRK of IMSL in FORTRAN 

subroutines for mathematics applications is used to solve 

ordinary differential equations [16].  The resulting bifurcation 

diagram is shown in Fig. 2.  It can be clearly seen from this 

figure that the first period-doubling bifurcation occurs at about 

863.1=Ω , and that at 715.1=Ω  chaotic motion appears.  

More details about the various responses exhibited by the 

system are presented in Figures 3.  There, each type of response 

is characterized by a Poincare map (Poincare velocity vs. phase 

angle) and frequency spectrum.  Fig. 3(a) and 3(b) show that the 

fT -period mainly involves the constant term and the 

fundamental components.  From Fig. 3(c) to 3(d), we find that a 

cascade of period-doubling bifurcations causes a series of 

subharmonic components, which show the bifurcations with 

new frequency components at 2/Ω , 2/3Ω , 2/5Ω , ….  The 

particular features of two descriptors characterize the essence of 

the chaotic behavior: the Poincare map and the frequency 

spectrum.  The Poincare map shows an infinite set of points 

referred to as a “strange attractor.”  Simultaneously, the 

frequency spectrum of chaotic motion is a continuous broad 

spectrum.  The two features – “strange attractor” and continuous 

type Fourier spectrum – are strong indictors of chaos.  Chaotic 

motions are shown in Fig. 3(g) and 3(h). 

Fig. 2 Bifurcation diagram of the system for A0 = 3.0 V. 
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Fig. 3 Frequency spectra and Poincare maps of   various responses of 
numerical simulations for A0 = 3.0 V: 

(a) and (b) period-one motion, Ω = 1.95; 

(c) and (d) period-two motion, Ω = 1.80; 

(e) and (f) period-four motion, Ω = 1.7255;     

(g) and (h) chaotic motion, Ω = 1.708. 

The occurrence of chaotic motion can be verified by means of 
Lyapunov exponents analysis.  For every dynamic system, there 

is a spectrum of Lyapunov exponents ( λ ) [2] that tell how 
length, areas and volumes change in phase space.  As a criterion 
for the existence of chaos, one needs only to calculate the largest 

exponent, which tells whether nearby trajectories diverge ( λ > 0 

) or converge ( λ < 0 ) on average.  Any bounded motion in a 
system containing at least one positive Lyapunov exponent is 

defined as chaotic, while for periodic motion, the Lyapunov 
exponents are not positive. Referring to the algorithm for 
calculating the Lyapunov exponents described by Wolf et al. 

[2], the evolution of the largest Lyapunov exponent for 

0.30 =A V is computed as displayed in Figure 4.  From this 

figure, we find that the onset of chaotic motion is at Ω =1.710, 

because at this point, P4, the largest Lyapunov exponent, 
changes its sign from negative to positive when the normalized 

forcing frequency is slowly decreased.  For points P1-3, the 
largest Lyapunov exponents are shown to approach zero.  The 
system at these points may undergo bifurcations.  However, the 

Lyapunov exponent at such a point provides no means to 
determine the type of bifurcation, so that the bifurcation 

diagram presented in Fig. (2) must be applied.  For example, in 
Fig.(2), the occurrence of the first period-doubling bifurcation 
at about Ω =1.860, while point P1, where the largest Lyapunov 

exponent first approaches zero, is found at Ω =1.8475. 
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Fig. 4 The largest Lyapunov exponents of the system for A0 = 3.0 V. 

When the forcing frequency is larger than P1, 95.1=Ω ; as an 

example, the Lyapunov exponents computed from (2) are 
1λ = 

−0.082501, �2 = −0.396172, and 017426.4�3 −= .  Their sum 

is�1+�2+�3 = -4.496099, which is negative, showing that the 

motion of the rotor at these values finally converges to a stable 

limit cycle.  Indicating with 
nλλ ≥≥ ...1

the Lyapunov 

exponents of a dynamical system, Kaplan and Yorke [17] 

provide an estimation for the Lyapunov dimension 
Ld  as: 

�
=+

+=

j

i

i

j

L jd

11

1
λ

λ
,                                   (3) 

where j is the largest integer that satisfies 0
1

>� =

j

i
iλ .  By 

applying the technique, the Lyapunov dimension of (2) for 

95.1=Ω  is Ld =1.  Because the value of the Lyapunov 

dimension is an integer, the system has a periodic motion.  

When the forcing frequency Ω  decreases across the bifurcation 

point, for example Ω =1.708, the Lyapunov exponents are 

,1447.01 =λ 6234.02 −=λ  and 4.017733 −=� .  Here, the 

Lyapunov dimension is Ld =2.232.  It should be noted that the 

value of the Lyapunov dimension is not an integer; the system at 

this point can process fractal basin boundaries [18].  This 

reveals that a measure of the fractal geometry of the attractor 

and the property of sensitivity dependence on initial conditions 

exist in the system.  Fig. 5 shows the fractal basin boundaries in 

such a case, with fixed 0.30 =A V, 708.1=Ω  and various 

initial conditions.  For calculation [19], 1600 × 250 sets of 

initial conditions were chosen in the form of a grid, and 

integration of (2) using a fifth-order Runge-Kutta integration 

algorithm was continued until the system either converged to the 

bounded attractors or diverged.  Initial conditions in the light 

regions lead to the divergent solutions, while the dark regions 

are the basins for the bounded attractors.  The fractal structure 

points out that small uncertainties in the initial conditions can 

lead to unpredictability of the system output. 

Fig. 5 Fractal basin boundaries of the system for A0 = 3.0 V at Ω = 
1.708 
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III. SYNCHRONIZATION AND CONTROL OF CHAOS

From the Lyapunov exponents and the bifurcation diagram, 

we can clearly find that the chaotic motion is seen to occur at 

about 710.1≤Ω .  Now, the chaotic system considered in this 

paper is given as follows: 

21 xx =′                                                    (4a) 

)() , ,( 3212 τuxxxfx +=′                        (4b) 

n
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where ) , ,( 321 xxxf  is a nonlinear function and )(τu  is the 

control signal that is to be designed.  The main goal of the 

control is to determine )(τu  based on )(τy  that is an 

arbitrarily given reference signal and its derivatives so that: 

0)()(1 →− ττ yx ,       as ∞→τ               (5) 

Let 1α  and 2α  be any two positive constants and defined: 

)() , ,()( 122211321 yyyxxxxxfu αααατ +′+′′+−−−=      (6) 

Substitute (6) into (4) and obtain: 
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where 1α  and 2α  are the constant feedback gains.   

In the following, a chaotic system is controlled by a reference 

signal or is synchronized to another nonlinear system are 

discussed [13]. 

A. Synchronization by a sinusoidal signal  

 We consider the chaotic system for (3) at 708.1=Ω .  We 

adopt the control signal, )(τu , (such as (6)) and plot the 

stability region in the 1α  and 2α  plane, as shown in Fig. 6.  So, 

if the chaos will be controlled to the period motion, then the 

choice of 1α  and 2α  should be taken from stability region.  On 

the other hand, the feedback gains 1α  and 2α  should be two 

positive constants except from empty region in Fig.(6).  After a 

time 150=τ , as the values 11 =α  and 12 =α , the chaotic 

electromagnetic system is to be synchronized with the 

sinusoidal signal, 

)2.0sin(2.0)( ττ =y .                        (8) 

Fig. 6 The stability and unstability regions of the controlled system 
with sinusoidal signal. 

The synchronization errors, 

)()()( 11 τττε yx −= and )()()( 22 τττε yx ′−= , are shown in 

Fig. (7), respectively.  The time response of 1x  is shown in Fig. 

(8a) where the control signal is added after 150=τ .  The 

chaotic system is controlled with the sinusoidal signal and 

converges into a period motion.  The phase portrait of the 

controlled system is shown in Fig. (8b). 

Fig. 7 The synchronization errors via the controlled system with the 
sinusoidal signal 

Fig. 8 Injecting a sinusoidal signal control which is used to control 

chaotic motion of the system for A0 = 3.0 V at Ω = 1.708.  The 

sinusoidal signal is added after a time 150=τ :(a)time response; 

(b)controlled orbit. 

Unstability Region 

Stability Region
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B. Synchronization by another nonlinear electromagnetic 

system  

We choose the slave electromagnetic system given by: 

21 xx =′                                                             (9a) 

)() , ,( 3212 τuxxxfx +=′                                (9b) 
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The master electromagnetic system, where we have changed 

the forcing frequency in the slave system as follows: 

21 yy =′                                                              (10a) 
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According to (6), the control signal, )(τu , is provided by: 

. )(

) , ,()(

11121

2211321

yyy

xxxxxfu

αα

αατ

+′+′′+

−−−=
      (11) 

We adopt the control signal, )(τu , (such as (11)) and plot the 

stability region in the 1α  and 2α  plane, as shown in Fig. (9).  

So, if the chaos will be controlled to the period motion, then the 

choice of 1α  and 2α  should be taken from stability region.  In 

other words, the feedback gains 1α  and 2α  should be two 

positive constants except from empty region in Fig. (9)  After a 

time 300=τ , the chaotic electromagnetic system is to be 

synchronized by the control signal when 11 =α  and 12 =α .  

The synchronization errors, 

)()()( 111 τττε yx −= and )()()( 122 τττε yx ′−= , are shown in 

Figs. (10), respectively. 

Fig. 9 The stability and unstability regions of the controlled system 
with a reference signal which generated by an electromagnetic system 

Fig. 10 The synchronization errors via the controlled system with a 
reference signal which generated by an electromagnetic system 

The chaotic system is controlled with the sinusoidal signal 

and converges into a period motion.  The control signal is added 

after 300=τ  , the time response of 1x  is shown in Fig. (11a) 

and the phase portrait of the controlled system is shown in Fig. 

(11b). 

Fig. 11 Injecting a reference signal which generated by an 
electromagnetic system, which is used to control chaotic motion of the 

system for A0 = 3.0 V at Ω = 1.708.  The controll signal is added after a 

time 150=τ : (a)time response; (b)controlled orbit 

IV. CONCLUSIONS

The nonlinear response characteristics of an electromagnetic 

system have been studied in order to unveil the nonlinear 

dynamic behavior, which has been displayed in bifurcation 

diagrams.  In this paper, many numerical simulation methods 

have been employed to study the dynamical behavior of the 

system.  An interpretation of the periodic and chaotic motion 

has been offered based on time responses, phase portraits, 

Poincare maps and power spectrum analysis.  Furthermore, the 

chaotic motion has been detected by using Lyapunov exponents 

and Lyapunov dimensions effectively.  

The presence of chaotic behavior is generic for certain 

nonlinearities, ranges of parameters and external force, where 

one wishes to avoid or control so as to improve the performance 

of a dynamic system.   

Unstability Region 

Stability Region
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Two cases of a chaotic electromagnetic system being

successfully controlled by a reference signal or being 

synchronized to another electromagnetic system are presented.  

Thus, we can also efficiently suppress chaos and convert the 

chaotic system into a periodic orbit.  Finally, the stability and 

unstability regions of the controlled system in control 

parameters space, 1α  and 2α , are found. 
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