International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:7, 2012

Aspect Oriented Software Architecture

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Raj Sinha

Abstract—Natural language processing systems pose a unique
challenge for software architectura design as system complexity has
increased continually and systems cannot be easily constructed from
loosely coupled modules. Lexical, syntactic, semantic, and pragmatic
aspects of linguistic information are tightly coupled in a manner that
requires separation of concerns in a speciad way in design,
implementation and maintenance. An aspect oriented software
architecture is proposed in this paper after critically reviewing
relevant architectural issues. For the purpose of this paper, the
syntactic aspect is characterized by an augmented context-free
grammar. The semantic aspect is composed of multiple perspectives
including denotational, operational, axiomatic and case frame
approaches. Case frame semantics matured in India from deep
thematic analysis. It is argued that lexical, syntactic, semantic and
pragmatic aspects work together in a mutually dependent way and
their synergy is best represented in the aspect oriented approach. The
software architecture is presented with an augmented Unified
Modeling Language.

Keywor ds—L anguage engineering, parsing, software design, user
experience.

|. INTRODUCTION

NTIL recently, Object Oriented Design (OOD) was

considered as one of the best approaches for designing
complex software systems [1]-[4]. Recent investigations into
separation of concerns have led to the considerations of some
new approaches including Aspect Oriented Design (AOD) [5]-
[8]. This paper examines important software design issues and
presents justifications for AOD with a case study from natural
language processing. Architectural design, detailed design and
design reviews provide the most important steps in a cost
effective software development process. Software engineering
activities are goal directed in order to produce working
software in atimely manner within some cost constraints. For
any complex computer based system, software architecture
plays a very important role in its success or failure. According
to Pressman [1: page 223] “One goa of software design isto
derive an architectural rendering of a system”. Multiple
representations of software architecture are recommended for
providing different views of a complex system in order to
clarify the structure of the system, which comprises software
components and the externally visible properties of those
components. Software architecture is “the overal structure of
the software and the ways in which that structure provides
conceptual integrity for a system” [3]. It is also known as high
level design since conceptua integrity is clarified at a high
level of abstraction.

Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad
Amin and Bhaskar Rgj Sinha are with Nationa University, 3678 Aero Court,
San Diego, CA 92123, USA. They are now with the School of Engineering,
Technology and Media (phone: 858-309-3412; fax: 858-309-3420; e-mail:
pdey@nu.edu; rgonzales@nu.edu; gromney@nu.edu; mamin@nu.edu;
bsinha@nu.edu)

According to Braude and Bernstein [4: page 438], "A
software architecture describes the overall components of an
application and how they relate to each other." The emphasis
on components were considered very productive in OOD,
although this is recently questioned for systems with
crosscutting aspects. Security aspects are often considered to
be spread over multiple components in a complex manner that
defies most variants of OOD approaches. The best
architectural practices are rarely published and often inferred
from excellent products [9]. In practice, software architectural
design is immensely challenging, vastly multifaceted,
strikingly domain based, perpetualy changing, rarely cost-
effective, and deceptively ambiguous. Multiple
representations and intuitive explanations are often provided in
order to lessen the difficulty of interpretations of software
architecture.

Il. BACKGROUND

Practitioners and theoreticians have been debating about
software development approaches for a long time. Opposing
views are often presented with effective metaphors. Donald
Knuth initialy [11] suggested that software writing is an art.
David Gries [12] argued it to be a science. Watts Humphrey
[13] viewed it as a process. In recent years, practitioners have
come to realize that software is engineered [1]-[2], [4], [14]-
[17]. The scientific foundation of software engineering is not
fully understood. That is, we do not understand it the way we
understand chemistry as the scientific foundation of chemical
engineering. Software architectural design is based partly on
computer science and partly on behavioral sciences and
intuitive judgments although there were some minor attempts
to establish “software science” [2] as the primary basis for
software architecture.

It is often suggested that software architectural design is
creatively built from requirements analysis in an iterative
process [1], [4], [13]-[19]. In this process, after some initial
requirements analysis a software architectural representation is
developed and then the requirements analysis is augmented on
the basis of a combination of software architecture, new or
changed requirements or some other factors which in turn
leads to a revised software architecture. The architectural
representation developed in this manner traditionally consisted
of components and their relationships with the primary
assumption that the software is composed of these
components. The components were obtained mainly by
separating and grouping concerns or related computational
elements. Recent studies suggest that certain concerns cannot
be easily localized and specified with individual architectural
units such as components [5]-[8]. These crosscutting concerns
are best represented as architectural aspects in an architectural
design. In order to highlight architectural aspects of AOD, we
will consider an interesting case presented below.

909

International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:7, 2012

Ill. LANGUAGE PROCESSING

Aspects of natural language processing are stimgldor
many reasons, especially for the intricate relatdgm among
lexical, syntactic, semantic and pragmatic facet¥e speak
informally of the sound and meaning of a word, Wey it is
pronounced, and what it means” [20: p170]. It énerally
accepted among experts that the meaning of a sEnten
composed from the meaning of its words. An analysi
language for producing a meaningful interpretatothe most
crucial part of a of natural language processingtesy.
However, such an analysis is one of the most ahgilthg
problems in computer science [21]-[28]. Understagdthe
nature of challenge requires a thorough study bfrradjor
aspects of natural language and their proper ogistiips.

Although substantial progress has been made incdexi

processing, controversies on syntactic, semantigpaagmatic
aspects remain unresolved. Each of the processipgcts
mentioned above is easy to understand, but diffical
formalize for efficient processing. Structure antrpretation

of natural language have been among the most elusy

problems in formal modeling. Given an input sengesuch as
“The frog jumped”, computational problems can belaxed

as follows. Lexical processing of the sentengeeiormed by
searching the English lexicon for each of the woeisl

recognizing the word “The” as a determiner, “fras a noun
and “jumped” as a verb [23]-[24]. Syntactic prssiag is
carried out by finding relationships among the veond the

sentence, building constituents and providing aicstral

description [22]-[24], called a parse tree or secéediagram,
such as the one shown in Figure 1. It is usualbpeed that
lexical analysis precedes syntactic processinggoafth their
interdependent nature is also recognized.

Sentence

I

Noun Phrase Verb Phrase

Determiner Noun Verb

The frog Jumped

Fig. 1 A Parse Tree for “The frog jumped”

The semantic aspects are processed by analyzing
sentence into an interpretation that can be utilifer
reasoning, knowledge representation,
information retrieval or other uses. One of theysvdo
represent meaning is through first order logic iost forder
predicate calculus, although semantic networkse-frasnes,
modal logic and other forms are also popular [235], [28].
In first order logic, the meaning of “The frog jueg’ can be
represented as: 3x) [Frog(x) ~ Jump-Past(x)].
representations of meaning will be discussed ini@e8 of
this paper.

database emdata

Other

Language use in linguistic and extra linguistic teats is
the focus of the pragmatic analysis where commaesen
reasoning plays an important role [26], [28]. Tlmaper
addresses some of the central problems in theses aned
presents a new software architecture in order tovige
alternative analyses in semantics crucial for laggu
understanding. Semantic processing is usuallyopedd
compositionally, that is, the meaning of largegliistic units
is usually derived by combining the meanings of llEBnanes.
However, the rules of composition and the naturseshantic
representation are not yet fully understood posngnajor
challenge for the development of a fully functional
computational linguistic system with incomplete whedge.
Currently, several alternative approaches seem ® b
promising, especially in the semantic area wheognass has
been limited. A software architecture that accomates all
major semantic approaches including
operational, axiomatic and case frame methodsesgnted in
his paper with justifications.

The software architecture presented in this papkns the
current practices in identifying the major compaiseand their
relationships. A significant aspect of the reskais that
components of a language processing system nebd best
organized for computationally efficient and lindidally
adequate language engineering. According to theergén
guidelines and best practices in software engingdi1-13],
loosely coupled components are preferred overligioupled
components in a software system.

The architectural design of a natural language gssiog

system is one of the most difficult problems in Quter
science. It is immensely complicated, highly maltiéted,
extravagantly contextual, deceptively ambiguous, d an
strikingly controversial. The underlying compiat is
proven to be an NP-Complete problem [14-15]. Oh¢he
challenges is the interaction among lexical, syitasemantic
and pragmatic processing in the presence of antpiguin
addition to computational complexity, there are iaddal
problems of arrangements and relationships amorgy th
components where the aspects of processing takee.pla
Experts often try to solve these problems in aqipled way
using a pipeline architecture where the output efical
processing is input to the syntax analyzer, whosgput is
input to the semantic analyzer and so on. Thiki@cture is
ﬁ%gematically shown in Figure 2. This architeetis similar
to the one used successfully in compilers [16-17An
dvantage of this architecture is that it intuitpveesembles an
assembly line and it separates concerns in diffel@sely
coupled components. The elegant features of tloisitacture
are made very clear by may practitioners [4, 16]. 17
However, natural languages are not fully specifiednally
and do not lend themselves to compiler techniqdesjaately.
In the pipeline architecture, the interactions agothe
components are not flexible enough to handle somthe
complex natural language problems such as syntasistics
interactions.

denotational,

910

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:7, 2012

Input

Lexical Lexical Analyzer
Syntax Y
string [Tokens—s| 7 % —O """"""""""
Analyzer Analyzer /\
yntactic , —‘O<
Parse Semantc, \ /| /N @ —| ~¥
Trees Pragmatic &)
1 Security Lexied, N\ prm——
Semantic aspects Semantic, DENQTATIONAL | %
fragrake & lsamwcs | T operaTionaL !
Analyzer Security LB, o 2
SEMANTICS
s e o
| Xl
Semantic

Representations

i e 1
| SEMANTICS J' | CASEFRAIE. |
T [SEMATICS |

Semantic Analyzer —————— “

l

i

User Interface %
N\ \
Security (
aspects

userAccess

Pragmatic ‘
Analyzer Lexical,
Syntactic,
gfagr‘?tf;lt'c & Pragmatic Analyzer
Pragmatic ecur %
aspects /\

Representations
Fig. 2 A Pipeline Architecture for Natural Langud@ecessing

Lexical,
Syntactic,
Semantic &
Security
aspects

The design and implementation of natural languaggiire
careful consideration of interactions among all ponents.
After initial requirements analysis the softwareswdesigned
using the Model-View-Controller architecture [18}1#hd an
initial prototype was developed following the itéva
development process. After several iterationgai realized
that the separation between the View and Controller
components did not have any advantages because th
Controller needed to work closely with the view amtess the
View elements repeatedly. The View and Contradiements
can be combined into a single component called Us
,'“teffac?- The Model is respon;ible for proc.esﬁhngd.omain supported by the fact that all major semantic apghhes are
mformatl_on; it includes the_ lexical, syntactic,nsmntic and ‘compositional, but the rules of composition arevitted by
pragmatic components which seem to work togetheh Wigyntax [22]-[25]. Some studies also demonstraae samantic
aspects. This architecture is presented in Figurehich information is required for syntactic decisions{&0]. A verb
allows more robust interactions among its companentAll |ike “pretend” is neither transitive nor intransii but takes a
major components are shown in Figure 3 using théiddn sentential complement as shown in (1). From the
Modeling Language (UML) notations augmented withunacceptability of (2) and (3) and similar exampl€seen
architectural aspects shown in shaded diamondsthén [30, p 10] concludes that semantic informatiomeiguired in
augmented UML, the components are presented wighined making syntactic predictions. That is, syntactiab-s
interfaces and provided interfaces. A requireceriace is categorization of verbs and imposition of seleaion
shown with a small semicircle attached to a compbna restrictions are not sufficient to solve these peots [30]-
provided interface is shown with a small circleaghted to a [33]. It is to be noted that unacceptability dfirgys is
component. The semantic processing needs to ccqmpéﬁdicated by a preceding stér,
meaning of a sentence from its parts. The ruleofposition (1) John pretended that he was in Paris.
are derived from syntax because the constituenttsires of (2) * John pretended.
syntax are properly guided by these rules. In tadi the (3) * John pretended Paris.
aspects of semantic analysis may include denotdfion |t is not easy to decide how to combine syntactid a
operational, axiomatic and case-frame semanticgause semantic information. To justify the AO softwanrekitecture
these approaches complement each other in orgeotide a for natural language processing, four interestirabfems that
comprehensive treatment of meaning. The architecinr require synergistic relationship among various congmts are
Figure 3 is, therefore, composed of UML based carmepts considered below.
augment_ed \{v_ith Aspects Orientgd (AO) features [18]. A A. Ambiguity
detailed justification of the architecture, presenin the next . . . s .

A grammar is ambiguous if and only if it assigno tar

tion may help in makin tron for tichitactural) L
Zi;';n ay help | aking a strong case for tishiectura more syntactic structures to at least one inpirgstr

Fig. 3 An Aspect Oriented Software Architecture fatural
Language Processing

IV. JUSTIFICATIONS

?’he justifications for software architecture comeni

different sources. One of the significant assunmgtibehind
the AOD architecture is that the semantic and syiata
SBmponents need to work together. This assumpigon

911

International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:7, 2012

Loosely coupled modules of syntax and semanticsiato
adequately support ambiguity treatment without sragting
aspects. For example, a sentence like “Old menvwamen
danced” admits two distinct semantic interpretatjomach of
which corresponds to a syntactic structure. Thetagyic
structure given in Figure 4, according to most grems,
including tree adjoining grammars [22], [33], suppothe
interpretation that the adjective “Old” modifiesettentire
conjoined noun phrase “men and women” meaninf bwn
and women are old. On the other hand, the syntatticture
given in Figure 5 supports the interpretation tHexd”
modifies “men” only, because “Old men” form auno
phrase constituent l{oun Phrase (Adjective Old) G\Ioun men)]
whereas the noun “women” is not modified by “Old”.

Sentence

Noun Phrase Verb Phrase

— |

Adjective Noun Phrase Verb

Noun Phrase Conjunction Noun Phrase

ol men and women danced

Fig. 4 A Parse Tree where an adjective modifiesrgoined Noun
Phrase

Sentence

Noun Phrase Verb Phrase

T |

Noun Phrase Conjunction Noun Phrase Verb

Adjective Noun Noun

Old men and women danced

Fig. 6 A Parse Tree where an adjective modifieoarN

Syntax and semantics together interpret this tyge
ambiguity better than semantics alone. The propo&€éd
architecture allows robust interactions among \eio
components, including syntax and semantics. Qftical
ambiguity gives rise to syntactic and semantic guonby. In
the statement “Rice flies like sand” the word “fliecould be a
noun or verb [23]. If “flies” is a noun and “likas a verb then
the interpretation would be “Rice flies are fondsaihd”. On
the other hand, if “flies” is a verb and “like” & preposition
then the interpretation would be “Rice moves asisaaves”.

B.Semantic Approaches

Semantics is one of the most challenging fieldsaimguage
analysis and there is no clear winner among varnouaspeting
semantic approaches. Therefore, it is reasonablese all
foremost semantic approaches for accommodatingke
perspectives. The major approaches are explaindollags:

(a) Denotational SemanticsThis approach suggests that the

meaning of a linguistic unit, such as a noun, & démtity it
denotes. For example, in “Ernest killed himselfé tperson
who got killed and the killer is denoted by the sandividual.
That is, “Earnest” and “himself” denote the samespp. The
statements “He killed herself” and “She killed tremives” are
unacceptable because the subject and the objeotatiems
are not identical and violate reflexive constructio (b)
Operational SemanticsThis approach is also known as
behavioral semantics and advocates that the meamibgst
shown in the actions of a model, world, or virtma&chine.
Thus the meaning of the request “Please open tbe dobest
demonstrated by opening the door. The meaningagte” in
a computer environment is the set of actions talxgrthe
computer after the command is given. For eveiguiistic unit
in a language, a Turing Machine can be built areteted on
a universal Turing Machine [34] defining the opemaal
semantics of that linguistic unit. (A)xiomatic Semantics
According to this approach, the meaning of a listjti unit is
the set of consequences derivable from the linguistit in
combination with a set of axioms. This is a prdudoretic
approach utilizing mathematical logic, such ast fiosder
predicate calculus. Thus, the meaning of “Erneieck
himself” includes the consequences that “Ernestos alive
anymore,” “Earnest is not drinking anymore,” andao (d)
Case Frame SemanticsCase frame semantics is popular with
a number of practitioners including Fillmore [35}37Case
frame semantics was originally developed in andiedia and
was based on deep thematic relations among caertiparts
of the sentence. Fillmore [35] pointed out tha&t tloun phrase
“the door” is the logical object of the verb “opein’all three
sentences given in (4-6), but it is the syntactibject in (4).
Similarly the noun phrase “the key” is logically arstrument
in both (5) and (6) but a syntactic subject in (5).
(4) The door opened.
(5) The key opened the door.
(6) The janitor opened the door with the key.
According to case-frame semantics, the undeglyogical
or thematic relations that need to be discoveret secified
in semantic representation can be processed withpete
language analysis with robust interactions of afie t
@omponents. Every instrument case that appearsa as
prepositional phrase (with-phrase) cannot be useal subject
of the same verb, resulting in (8) and (10) beingaceptable.
(7) The janitor ate spaghetti with the fork.
(8) * The fork ate spaghetti.
(9) The janitor ate spaghetti with eggs.
(10)* Eggs ate spaghetti.

A.Conjunctions and Disjunctions

Conjunctions and disjunctions are easy to undedstan
intuitively. However, their meanings are difficud specify
without robust interactions of lexical, syntactsgmantic and
pragmatic components. Logically, the order of conjs
should not be a problem for meaning. However sthieg in
(12) is unacceptable for interpretation.

(11) She took poison and died.
(12) * She died and took poison.

912

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:7, 2012

In above examples, each conjunct is true separatel?] A. Navasa , M. A. Pérez , J. M. Murillo , J. Herdén. Aspect Oriented
However, (11) is acceptable because the secondinnis Software Architecture: A Structural Perspectivepdeedings of the
y

k b f the fi iunsimilarl Aspect-Oriented Software Development (AOSD), 2002.
taken to be a consequence of the first conjunBimilarly, a [9] J. Hong, “Why is Great Design so HardZpmmunications of the

disjunction like “Don’t move or | will shoot” reques special ACM, July 2010.
treatments. These types of conjunctions and diijpms [10] J. L. Azevedo, B. Cunha, and L. Almeida, “Hieraozti Distributed
cannot be easily processed without the common sense Architectures for Autonomous Mobile Robots: A castidy”, in

. Proceedings of the IEEE Conference on Emerging f@olgies and
reasoning of the pragmatic component, in additmtekical, Factory AL?tomationZOOY. ging el

syntactic and semantic components, working togethgfi] b. E.” Knuth, Seminumerical Algorithms: The Art of Computer
Pragmatic information about speakers, hearers adiice is Programming 2Addison-Wesley, Reading, Mass., 1969
often needed for understanding consequences ofrahat12] D- Gries, The Science of Programmirpringer, 1981.

. . [13] W. Humphrey, Managing the Software Process Reading, MA.
language strings. Hearers of different cultural Kgacunds Addison-Wesley.

have different interpretations when they are toiéttan [14] |. Sommerville, Software Engineeringdth Edition, Addison Wesley,
immortal would die for his wife. These differencean be 2010.

accounted for in a properly defined AO architecture [15] S. Pfleeger, and J. Atle&oftware EngineeringPrentice-Hall, 2010.
[16] B. Agarwal, S. Tayal and M. Guptapftware Engineering and Testing

Jones and Bartlet, 2010.

V. CONCLUSION [17] F. Tsui, and O. KaramEssentials of Software Engineerjng Ed.,
. . : Jones and Bartlet, 2011.

The tradltl.onal view OT loosely .COITIpled Independenle] L. Bass, P. Clements, and R. Kazmé&wpftware Architecture in
compon_ents IS not prOdUCt'Ve_for deS|gn|ng_ natlaafuage Practice, 2nd Edition Addison-Wesley, 2003.
processing systems. The high level design for wral [19] J. Miller, and J. Mujerki, Editors, MDA Guide, ¥on 1, OMG
language processing system with an AO architegitesented Technical Report. Document OMG/200-05-01,
in this paper supports the synergistic relationshipong http:/Mwww.omg.com/mda, 2003.
lexical . . d . e th [20] N. Chomsky, New Horizons in the Study of Language and Mind
exical, syntactic, semantic and pragmatic comptme the Cambridge University Press., 2000.
system. Without the architectural properties @nésd here, a [21] R. Hausser,Foundations of Computational Linguistics: Human-
language processing system is unlikely to procesgliktic computer Communication in Natural Languag@nd ed.), Springer,
information adequately. The significance of thishitecture is New York, 2001.

th isti lati hi lexical act ti [22] A. Abeille, and O. Rambow]Tree Adjoining GrammarsUniv. of
e synergistic relationship among lexical, syntacgemantic Chicago Press., 2001.

and pragmatic components of the system. reéwtudies [23] J. Allen, Natural Language Understandin@nd ed. Addison-Wesley,
include a comprehensive language processing system New York, 1995. o
implementation using this AO architecture alonghwét tree [24] P. CulicoverNatural Language SyntalOxford University Press., 2008.

dioini d detailed | | | desiareiineati [25] H. Alshawi, The Core Language Engin®lA: MIT Press., 1992.
adjoining grammar and aetalled low level aesigresmatons [26] L. lwanska, and S. Shapiro, (EdsNatural Language Processing and

in an iterative development process. In additiomleation of Knowledge Representation: Language for Knowledgi &mowledge
AO software along line suggested in [38]-[39] would of for LanguageAAAI Press. 2000.
general interest in this area. [27] D. Jurafsky,Speech and Language Processing: An Introduction to

Natural Language Processing, computational lingostand speech
recognition.Prentice Hall., 2000.

ACKNOWLEDGMENT [28] A. Cruse,Meaning in LanguageAn introduction to Semantics and
Pragmatics.(2nd ed.). Oxford Univ. Press., 2004.

The authors gratefl_JIIy aCknOW|9dge _the hEIp and/(f£9] R. Rumbaugh, I. Jacobson, and G. Boothe Unified Modeling
encouragements received from Joh@icero, Hassan Language Reference Manug2nd Edition), Addison Wesley, 2005.
Badkoobehi, Byunggu Yu, Arun Datta, Jodi Reevesmany [30] G.M. Green, Semantics and Syntactic regularityhitry & Whiteside
others during the preparation of this paper. Limited, Don Mills, Ontario, 1974.

[31] P. P. Dey, Y. Hayashi, and E. Battistella, (1989).A combination of
strategies for parsing grammatical agreement indHimternational
REFERENCES Journal of Pattern Recognition and Artificial Inligence 3, 1989,
o o 261-273.
(1 eRd)S.'\I/ngsrsal;nvifl?ﬁ%irg Engineering: A Practitioner's Approadfith [32] R. D. Van ValinExploring the Syntax-Semantics Interfacgambridge
" ' . ’) : University Press, 2005.
2] Y. Wang, Software Engineering FoundatiansA Software Science . o
2l Perspec%iveAuerbach Pgblicatiogus 2008 [33] P. P. Dey, B. Bryant, and T. Takaoka, Lexical Amiig in Tree
[3 M. Shaw, and D. Garlan “Formu’Iations. and Formadism Software Adjoining Grammars,Information Processing Letter84, 1990, 65-69.
Architectl’Jres” Computery Science Today: Recent Trends ané34] D. Cohen, Introduction to Computer Theory , 2ndtigd, John Wiley
o~ y & Sons, 1997.
DevelopmentsSpringer-Verlag LNCS, 1000, 307-323, 1995. —
[4] E. Braude, and M. BernsteinSoftware Engineering: Modern (3] C._Flllmore,_The_ cas_e_for case. In E. Bach _& R-HE‘”T‘S (Eds.).
Approaches(2™ Edition), John Wiley & Sons, 2011. Unlversals in Linguistic Theory. New York: Holt, mhart and
[5] C. Chavez, A. Garcia, U. Kulesza, C. Sant'’Annal.@ena. Taming 36 \Cl:\llr;:s_ltlon, 1968# dth " i . derni di
Heterogeneous Aspects with Crosscutting Interfadesirnal of the (36] S. ! mt_ore,G 2 ?zn;ezssin 198esseman ics of undeéng. Quaderni di
Brazilian Computer Society2006. emantica 0.z, 22c-254, . .
[6] E. Baniassad, P. Clements, J. Araujo, A. Moreifa, Rashid, and B [37] R. Schank, and R. P. Abelson, Scripts, Plans, Gaat Understanding,
o i Lo iy ' y ’ Lawrence Erlbaum. 1977.
Tekinerdogan, Discovering Early AspedSEE Software2006. . o o .
[7] I Krechetov, B. Tekinerdogan, and A. Garcia. Taigaan integrated (38] 2 hTtek(telnerdggap, a'r\1/|d tth ,,Ak$"' MCIaAsilf_);mg dgtnd al:‘;xtz\i;smg
aspect-oriented modeling approach for softwareitacture design. In . Archl_tecture esgn c ethods 't mT h | St | (e 'Or')ASOd are
In 8th Aspect-Oriented Modeling Workshop, Aspecie®ted Software reniiectures an omponen echnologyluwer Academic

Publishers, 2002.
Development (AOSD) 2006. [39] P. Clements, R. Kazman, and M. KleirEvaluating Software

Architectures Addison-Wesley, 2005.

913

