# The Baer Radical of Rings in Term of Prime and Semiprime Generalized Bi-ideals 

Rattiya Boonruang and Aiyared Iampan


#### Abstract

Using the idea of prime and semiprime bi-ideals of rings, the concept of prime and semiprime generalized bi-ideals of rings is introduced, which is an extension of the concept of prime and semiprime bi-ideals of rings and some interesting characterizations of prime and semiprime generalized bi-ideals are obtained. Also, we give the relationship between the Baer radical and prime and semiprime generalized bi-ideals of rings in the same way as of biideals of rings which was studied by Roux.


Keywords-ring, prime and semiprime (generalized) bi-ideal, Baer radical.

## I. Introduction and Preliminaries

THE notion of generalized bi-ideals which is a generalization of bi-ideals of rings introduced by Szász [5], [6] in 1970. In 1971, Lajos and Szász [3] studied bi-ideals in associative rings. In 1983, Walt [7] studied prime and semiprime bi-ideals of associative rings with unity. In 1995, Roux [4] extended the results of prime and semiprime bi-ideals of associative rings with unity to associative rings without unity. Moreover, Roux proved that the Baer radical of rings is the intersection of all semiprime bi-ideals. The concept of bi-ideals play an important role in studying the structure of rings. Now, the notion of generalized bi-ideals is an important and useful generalization of bi-ideals of rings. Therefore, we will study generalized bi-ideals of rings in the same way as of bi-ideals of rings which was studied by Roux.

Our aim in this paper is threefold.

1) To introduce the concept of prime and semiprime generalized bi-ideals of rings.
2) To characterize the properties of prime and semiprime generalized bi-ideals of rings.
3) To characterize the relationship between the Baer radical and prime and semiprime generalized bi-ideals of rings.
To present the main results we discuss some elementary definitions that we use later. Throughout this paper, $A$ will represent a ring. A subset $I$ of $A$ is called a left(right) ideal of $A$ if
(1) $I$ is a subgroup of $\langle A,+\rangle$,
(2) $a x \in I(x a \in I)$ for all $a \in A$ and $x \in I$.

A subset $I$ of $A$ is called an ideal of $A$ if it is both a left and a right ideal of $A$. Let $X$ be a subset of $A$ and support that $\left\{A_{j} \mid j \in J\right\}$ be a family of all (left, right) ideals of $A$ containing $X$. Then $\bigcap_{j \in J} A_{j}$ is called the (left, right) ideal of $A$ generated by $X$ [2] and denoted by $\left((X)_{l},(X)_{r}\right)(X)$. If
R. Boonruang and A. Iampan* are with the Department of Mathematics, School of Science, University of Phayao, Phayao 56000, THAILAND.
*Corresponding author. e-mail: aiyared.ia@up.ac.th.
As a part of the independent study.
$X=\{x\}$, then $\left((X)_{l},(X)_{r}\right)(X)$ is usually denoted by $(x)$ $\left((x)_{l},(x)_{r}\right)$. From [2], we have

$$
(x)_{r}=\left\{n x+\sum_{i=1}^{m} x s_{i} \mid s_{i} \in A, m \in \mathbb{Z}^{+}, n \in \mathbb{Z}\right\}
$$

and

$$
(x)_{l}=\left\{n x+\sum_{i=1}^{m} s_{i} x \mid s_{i} \in A, m \in \mathbb{Z}^{+}, n \in \mathbb{Z}\right\}
$$

Let $I$ be an ideal of $A$. Then
(1) $I$ is called a prime ideal of $A$ if

$$
X Y \subseteq I \text { implies } X \subseteq I \text { or } Y \subseteq I
$$

for any ideals $X$ and $Y$ of $A$. Equivalently,

$$
x A y \subseteq I \text { implies } x \in I \text { or } y \in I
$$

for any $x, y \in A[1]$.
(2) $I$ is called a semiprime ideal of $A$ if

$$
X^{2} \subseteq I \text { implies } X \subseteq I
$$

for any ideal $X$ of $A$. Equivalently,

$$
x A x \subseteq I \text { implies } x \in I
$$

for any $x \in A$ [1].
From [1], a semiprime ideal of $A$ is an intersection of prime ideals of $A$. If $I$ is a left(right) ideal of $A$, then $I$ is a subgroup of $\langle A,+\rangle$. Since $I I \subseteq A I \subseteq I$, we have $I$ is a subsemigroup of $\langle A, \cdot\rangle$. Hence $I$ is a subring of $A$. A subset $B$ of $A$ is called a bi-ideal [4] of $A$ if
(1) $B$ is a subring of $A$,
(2) $b_{1} a b_{2} \in B$ for all $b_{1}, b_{2} \in B$ and $a \in A$.

We can easily prove that bi-ideals are a generalization of left(right) ideals. A subset $B$ of $A$ is called a generalized bi-ideal [5] of $A$ if
(1) $B$ is a subgroup of $\langle A,+\rangle$,
(2) $b_{1} a b_{2} \in B$ for all $b_{1}, b_{2} \in B$ and $a \in A$.

Hence generalized bi-ideals are a generalization of bi-ideals. Let $B$ be a generalized bi-ideal of $A$. Then
(1) $B$ is called a prime generalized bi-ideal of $A$ if

$$
x A y \subseteq B \text { implies } x \in B \text { or } y \in B
$$

for any $x, y \in A$.
(2) $B$ is called a semiprime generalized bi-ideal of $A$ if

$$
x A x \subseteq B \text { implies } x \in B
$$

for any $x \in A$.
For any generalized bi-ideal $B$ of $A$, let

$$
L(B)=\{x \in B \mid A x \subseteq B\}
$$

and

$$
H(B)=\{y \in L(B) \mid y A \subseteq L(B)\}
$$

Let $\left\{P_{i} \mid i \in I\right\}$ be a family of all prime ideals of $A$. Then $\bigcap_{i \in I} P_{i}$ is called the Baer radical [1] of $A$ and denoted by $\beta(A)$. From [1], we have $\beta(A)$ is the smallest semiprime ideal of $A$. A ring $A$ is called regular [4] if for any $a \in A$, there exists $x \in A$ such that $a=a x a$.

## II. Lemmas

Before the characterizations of prime and semiprime generalized bi-ideals of rings for the main results, we give some auxiliary results which are necessary in what follows. The following two lemmas are easy to verify.
Lemma II.1. For all $x \in A, x A$ is a right ideal and $A x$ is a left ideal of $A$.

Lemma II.2. For all $x \in A, x A x$ is a bi-ideal of $A$.
Lemma II.3. Let $B$ be a generalized bi-ideal of $A$. Then $L(B)$ is a left ideal of $A$ such that $L(B) \subseteq B$.

Proof: By definition, it is clear that $\emptyset \neq L(B) \subseteq B$. Let $x, y \in L(B)$. Then $x, y \in B$ and $A x \subseteq B$ and $A y \subseteq B$, so $x-y \in B$ and $A(x-y) \subseteq A x-A y \subseteq B$. Thus $x-y \in L(B)$, so $L(B)$ is a subgroup of $\langle A,+\rangle$. Let $x \in L(B)$ and $z \in A$. Since $z x \in A x \subseteq B$, we have $z x \in B$ and $A z x \subseteq A A x \subseteq$ $A x \subseteq B$. Hence $z x \in L(B)$, so $L(B)$ is a left ideal of $A$ and $L(B) \subseteq B$.

Lemma II.4. Let $B$ be a generalized bi-ideal of $A$. Then $H(B)$ is a subgroup of $\langle A,+\rangle$.

Proof: Let $x, y \in H(B)$. Then $x, y \in L(B), x A \subseteq L(B)$ and $y A \subseteq L(B)$. Since $x \in L(B), x \in B$ and $A x \subseteq B$. Since $y \in L(B), y \in B$ and $A y \subseteq B$. Since $x, y \in B$ and $B$ is a subgroup of $\langle A,+\rangle$, we have $x-y \in B$. Thus $A(x-y) \subseteq$ $A x-A y \subseteq B$, so $x-y \in L(B)$. Now, $(x-y) A \subseteq x A-y A \subseteq$ $L(B)-L(B) \subseteq L(B)$, so $x-y \in H(B)$. Hence $H(B)$ is a subgroup of $\langle A,+\rangle$.

Lemma II.5. Let $B$ be a left ideal of $A$. Then $L(B)=B$.
Proof: Clearly, $L(B) \subseteq B$. Conversely, let $x \in B$. Since $B$ is a left ideal $A$, we have $A x \subseteq B$. Thus $x \in L(B)$, so $L(B)=B$.

## III. Main Results

In this section, give some characterizations of prime and semiprime generalized bi-ideals of rings. Finally, we prove that the Baer radical of rings is the intersection of all prime and semiprime bi-ideals.

Proposition III.1. Let B be a generalized bi-ideal of $A$. Then $B$ is a prime generalized bi-ideal of $A$ if and only if for any right ideal $R$ and left ideal $L$ of $A, R L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof: Assume that $B$ is a prime generalized bi-ideal of $A$. Let $R$ be a right ideal of $A$ and $L$ a left ideal of $A$ such that $R L \subseteq B$. Suppose that $R \nsubseteq B$, let $x \in L$ and $r \in R \backslash B$. Then $r A x \subseteq R L \subseteq B$. Since $B$ is a prime generalized bi-ideal of $A$ and $r \notin B$, we have $x \in B$. Hence $L \subseteq B$.

Conversely, assume that for any right ideal $R$ and left ideal $L$ of $A, R L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$. Let $x, y \in A$ be such that $x A y \subseteq B$. Then

$$
(x A)(A y) \subseteq x A^{2} y \subseteq x A y \subseteq B
$$

By Lemma II.1, we have $x A$ is a right ideal and $A y$ is a left ideal of $A$. By assumption, we have $x A \subseteq B$ or $A y \subseteq B$. Suppose $x A \subseteq B$. Then $x^{2} \in B$. Let $z \in(x)_{r}(x)_{l}$. Then, by I and I, we get

$$
z=\sum_{i=1}^{n}\left(m_{i} x+x a_{i}\right)\left(k_{i} x+b_{i} x\right)
$$

for some $a_{i}, b_{i} \in A$ and $m_{i}, k_{i}, n \in \mathbb{Z}^{+}$, so

$$
z=\sum_{i=1}^{n} m_{i} k_{i} x^{2}+m_{i} x b_{i} x+k_{i} x a_{i} x+x a_{i} b_{i} x .
$$

Since $x^{2} \in B, b_{i} x, a_{i} x, a_{i} b_{i} x \in A$ and $x A \subseteq B$, we have $z \in B$. Hence $(x)_{r}(x)_{l} \subseteq B$. By assumption, we have

$$
(x)_{r} \subseteq B \text { or }(x)_{l} \subseteq B .
$$

Hence $x \in B$. We can prove in a similar manner that $y \in B$. Therefore $B$ is a prime generalized bi-ideal of $A$.

Proposition III.2. Let $B$ be a prime generalized bi-ideal of $A$. Then $B$ is a prime one-sided ideal of $A$.

Proof: We have to show that $B$ is a one-sided ideal of $A$. Now,

$$
(B A)(A B) \subseteq B A B \subseteq B
$$

Since $B A$ is a right ideal and $A B$ is a left ideal of $A$ and by Proposition III.1, we have $B A \subseteq B$ or $A B \subseteq B$. Hence $B$ is a right ideal or a left ideal of $A$.

Proposition III.3. Let $B$ be a generalized bi-ideal of $A$. Then $H(B)$ is the largest ideal of $A$ such that $H(B) \subseteq B$.

Proof: Since $H(B) \subseteq L(B)$ and $L(B) \subseteq B, H(B) \subseteq B$. By Lemma II.4, we have $H(B)$ is a subgroup of $\langle A,+\rangle$. Let $x \in H(B)$ and $y \in A$. Then $x \in L(B)$, so $A x \subseteq B$ and $x A \subseteq L(B)$. Thus $y x \in A x \subseteq B$. Since $A y \subseteq \subseteq A x \subseteq B$, we have $y x \in L(B)$. By Lemma II.3, we have $y x A \subseteq A x A \subseteq$ $A L(B) \subseteq L(B)$. Thus $y x \in H(B)$. Hence $H(B)$ is a left ideal of $A$. Similarly, $x y \in x A \subseteq L(B)$. Thus $x y A \subseteq x A \subseteq$ $L(B)$, so $x y \in H(B)$. Hence $H(B)$ is a right ideal of $A$. Therefore $H(B)$ is an ideal $A$ such that $H(B) \subseteq B$. Assume that $S$ is an ideal of $A$ such that $S \subseteq B$ and let $s \in S$. Then $s \in B$ and $A s \subseteq A S \subseteq S \subseteq B$, so $s \in L(B)$. Hence $S \subseteq L(B)$. Now, $s A \subseteq S A \subseteq S \subseteq L(B)$, so $s \in H(B)$. Hence $S \subseteq H(B)$. Therefore $H(B)$ is the largest ideal of $A$ such that $H(B) \subseteq B$.

Proposition III.4. Let $B$ be a generalized bi-ideal of $A$. Then $H(B)$ is a prime ideal of $A$.

Proof: Let $X$ and $Y$ be ideals of $A$ such that $X Y \subseteq$ $H(B)$. Since $H(B) \subseteq B, X Y \subseteq B$. By Proposition III.1, we have $X \subseteq B$ or $Y \subseteq B$. By Proposition III.3, we have $H(B)$ is the largest ideal of $A$ such that $H(B) \subseteq B$. Thus

# International Journal of Engineering, Mathematical and Physical Sciences 

ISSN: 2517-9934
Vol:5, No:12, 2011
$X \subseteq H(B)$ or $Y \subseteq H(B)$. Hence $H(B)$ is a prime ideal of $A$.

Corollary III.5. The Baer radical $\beta(A)$ is the intersection of all prime generalized bi-ideals of $A$.

## Proof: Let

$\mathscr{B}=\{B \mid B$ is a prime generalized bi-ideal of $A\}$,
$\mathscr{H}=\{H(B) \mid B$ is a prime generalized bi-ideal of $A\}$,
$\mathscr{P}=\{P \mid P$ is a prime ideal of $A\}$.
Since every prime ideal of $A$ is a prime generalized bi-ideal, we have $\mathscr{P} \subseteq \mathscr{B}$. Thus

$$
\bigcap \mathscr{B} \subseteq \bigcap \mathscr{P}=\beta(A)
$$

Since $H(B) \subseteq B$ and by Proposition III.4, we have

$$
\beta(A)=\bigcap \mathscr{P} \subseteq \bigcap \mathscr{H} \subseteq \bigcap \mathscr{B} .
$$

From III and III, we have $\beta(A)=\bigcap \mathscr{B}$. This completes the proof.
Proposition III.6. Let $B$ be a semiprime generalized bi-ideal and $L(R)$ a left(right) ideal of $A$. If $L^{2} \subseteq B\left(R^{2} \subseteq B\right)$, then $L \subseteq B(R \subseteq B)$.

Proof: Assume $L^{2} \subseteq B$ and suppose that $L \nsubseteq B$. Then there exists $x \in L$ but $x \notin B$. Now, $x A x \subseteq L A L \subseteq L L \subseteq B$. Since $B$ is a semiprime generalized bi-ideal of $A$, we have $x \in B$ that is a contradiction. Hence $L \subseteq B$. In a similar way, we can prove that if $R^{2} \subseteq B$, then $R \subseteq B$.

Proposition III.7. Let B be a semiprime generalized bi-ideal of $A$. Then $H(B)$ is a semiprime ideal of $A$.

Proof: By Proposition III.3, we have $H(B)$ is an ideal of $A$. Let $X$ be an ideal of $A$ such that $X^{2} \subseteq H(B)$. Since $H(B) \subseteq B, X^{2} \subseteq B$. By Proposition III.6, we have $X \subseteq B$. By Proposition III. 3 again, we have $X \subseteq H(B)$. Hence $H(B)$ is a semiprime ideal of $A$.

Corollary III.8. The Baer radical $\beta(A)$ is the intersection of all semiprime generalized bi-ideals of $A$.

Proof: Let
$\mathscr{S}=\{S \mid S$ is a semiprime ideal of $A\}$,
$\mathscr{C}=\{C \mid C$ is a semiprime generalized bi-ideal of $A\}$,
$\mathscr{H}=\{H(C) \mid C$ is a semiprime generalized bi-ideal of $A\}$.
Since every semiprime ideal of $A$ is a semiprime generalized bi-ideal, we have $\mathscr{S} \subseteq \mathscr{C}$. Since $\beta(A)$ is the smallest semiprime ideal of $A$, we have

$$
\bigcap \mathscr{C} \subseteq \bigcap \mathscr{S}=\beta(A) .
$$

By Proposition III.7, we have $H(C)$ is a semiprime ideal of $A$ and $H(C) \subseteq C$. Thus

$$
\beta(A)=\bigcap \mathscr{S} \subseteq \bigcap \mathscr{H} \subseteq \bigcap \mathscr{C} .
$$

From III and III, we have $\beta(A)=\bigcap \mathscr{C}$. The proof is then completed.

Proposition III.9. A ring $A$ is regular if and only if every generalized bi-ideal of $A$ is a semiprime generalized bi-ideal.

Proof: Assume that $A$ is regular and let $B$ be a generalized bi-ideal of $A$. Let $a \in A$ be such that $a A a \subseteq B$. Since $A$ is regular, there exists $x \in A$ such that $a=a x a$. Thua $a=a x a \in a A a \subseteq B$. Hence $B$ is a semiprime generalized bi-ideal of $A$.

Conversely, assume that every generalized bi-ideal of $A$ is a semiprime generalized bi-ideal. Let $a \in A$. Then, by Lemma II.2, we have $a A a$ is a generalized bi-ideal of $A$. By assumption, we have $a A a$ is a semiprime generalized bi-ideal of $A$. Now, $a A a \subseteq a A a$, we get $a \in a A a$. Thus $a=a x a$ for some $x \in A$. Hence $A$ is regular, and so the proof is completed.

## IV. Conclusion

In comparison our above results with results of bi-ideals of rings, we see that the Baer Radical is the intersection of all prime and semiprime generalized bi-ideals of $A$ which is an analogous result of bi-ideals of rings.

## Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

## REFERENCES

[1] K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noetherian Rings, Cambridge University, 2004.
[2] T. W. Hungerford, Algebra, Department of Mathematics, Cleveland State University, USA, 1974.
[3] S. Lajos and F. A. Szász, Bi-ideals in associative rings, Acta Sci. Math. 32, 185-193, 1971.
[4] H. J. L. Roux, A note on prime and semiprime bi-ideals, Kyungpook Math. J. 35, 243-247, 1995.
[5] F. A. Szász, Generalized biideals of rings. I, Mathematische Nachrichten 47, 355-360, 1970.
[6] F. A. Szász, Generalized biideals of rings. II, Mathematische Nachrichten 47, 361-364, 1970.
[7] A. P. J. van der Walt, Prime and semiprime bi-ideals, Quaestiones Mathematicae 5, 341-345, 1983.

Rattiya Boonruang was born in Lampang, Thailand, in 1989. She received her B.S. from University of Phayao, Thailand, under the independent study advisor of Dr. Aiyared Iampan.

[^0]
[^0]:    Aiyared Iampan was born in Nakhon Sawan, Thailand, in 1979. He received his M.S. and Ph.D. from Naresuan University, Thailand, under the thesis advisor of Asst. Prof. Dr. Manoj Siripitukdet.

