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Abstract—In this paper we present a substantiation of a new
Laguerre's type iterative method for solving of a nonlinear
polynomial equations systems with rea coefficients. The problems of
its implementation, including relating to the structura choice of
initial approximations, were considered. Test examples demonstrate
the effectiveness of the method at the solving of many practical
problems solving.
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|. INTRODUCTION

I T is well known that the problem of roots finding of a
nonlinear equations and their systems attracted the attention
of researchers for several centuries, so a variety of methods of
its solution were developed and published in the scientific
literature. Despite this, it remains one of the most important
tasks of computational mathematics, due to the necessity of
solving a large number of applications, whose models are
presented by systems of nonlinear equations.

A special case of nonlinear systems are nonlinear systems of
polynomial equations, which solving algorithms substantiated
and investigated in most detail. Nevertheless, a general method
for such systems solving, which could be considered universal
for most practical problems, has not been developed yet. This
is a motivation to search for new algorithms that are adapted,
at least for typical applications.

For example, mathematical models of many problems in
kinematics and dynamics of multilink mechanisms with afinite
number of degrees of freedom, in the numerical solution of
which the most commonly used algorithms of Newton-
Raphson or derivatives [1] - [7] etc., can be reduced to the
systems of a nonlinear polynomial equations. But it is known
that these algorithms in some cases may not be effective
enough.
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The main aim of this work is to develop a unified solution
algorithm of polynomial equations and systems, effective in
solving the problems of analysis and synthesis of multilink
mechanisms with an absolute rigid or elastic links.

In [8] is presented a process of withdrawal of the iterative
formula for the ¢ -estimates search of the real roots of
polynomial equations of finite degree. It turns out that a
constructive approach used for it, based on the continuation by
the parameter [9], leads to one of the Laguerre’s type Hansen-
Patrick family formulas [10], which can be written as follows:

pn (rk)
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(n-1) Dp"r(—rk)— o, (r)
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> (n-i)@&,, O,
Mo = Me—2 - 1)
Y (n-i-Nia,, O
i=0
where a, i:O,_n - the rea coefficients of an n- degree

polynomial equation p,(x)=0;r,- - estimation of the real
root of the equation by k- iteration. As shown by O.
Tikhonov, a formula of the form (1) is most effective
compared with others in selecting a relatively large |r|[11].
However, the results of a set of numerical experiments and
solutions of the practicd problems demonstrate its
effectivenessin other cases [12].

Later it was shown that generalization of (1) for the system
of nonlinear polynomial equationsis possible. In [13] has been
proved a new iterative method for finding the ¢- estimates
vector of the real roots of a finite system of polynomial
equations with real coefficients, and also a comparative
analysis with the Newton's method is presented. This paper
presents a generdization of the method and discusses its
practical implementation.

[1.ITERATIVE LAGUERRE’S TYPE METHOD FOR SOLVING OF A
POLYNOMIAL EQUATIONS SYSTEMS

A. Substantiation of the method

In the derivation of the iterative formula (1) were used an
LRP-polynomials of the form

p(>z z()an = p, (%) -1, (x).

where v - is a some real parameter [14]. The value of v
changes during the iterative process and is determined from
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the condition pn(v,rk): 0,i.e.as P;;(Xl xm):O
v, = Palli) . (©)
n1\k Psm“(xl,...,xm):O
Thus, if the iterative process converges, then
'k'f'l pn(vk,x) - pn(O, X) =P (X) and, therefore, at some Applying the method of obtaining the expression (& get

iteration numberK whenv, <& we getr,
of the real roots of the equatian(X) =0[14].

Now consider a multivariate polynomial

Psi(Xl,...,Xrn )

from the polynomial ringR[xl,...,xm] with m variables over
the fieldR: a,_, , , OR; n,...n, ON, where S= deg{P;)

- the degree of the polynomial,
polynomial equation

and the correspuandi

- ¢- estimation (in general) a system ofm inhomogeneous linear algebraic

equations
PL(12,..r0)-GLLE =0
. (7)
PO(r2,..r) - GILE =0
In matrix form the system (7) has the kind
P -TJ,E°=0, (8)

_ where
P01 %,) 0. @ s=mafs )irt =R P0)| i =(Gham L]
If any m- dimensional vector R®= (rl, ,rn‘f)T, -
:(vl,...,vm) .

...,
the solution ism- dimensional vector

N
- =g )
1 m

where {v? OR: v{ #1}, j=1..m

(4)

- is the components of the

.
errors vectorg® = (vf,...,v") . Then

m

that allows us to write

P00 r) = P, 1 8) - GLLEY =0, (5)

rn? OR is not a solution of equation (3), then, assuna¢ th

Assuming thatdetl'2, # 0, we multiply (8) on(rg 1)7 . As
a result, we obtain

E°=(re, ) P, ©

(vf)2+...+(v ) <¢,thenR’ = (rl, r")T -&-

Tm

it E=

0 o \'
p solution of (6). Otherwise, acceR' = i - i 5
1-v) " 1-v

and move on to the next iteration. The iterativ®cpss
continues as long as at the iteration numBethe following
condition will not be satisfied

||EK|| :\/(le)z +...+(|/r‘§ )2 <e

(10)

where G, (gl, g;n) - a row vector whose components are

values of polynomials g'J j=1...m, of degrees

S; :deg{gij)s S-1 in the point R°. Polynomials gij are
obtained in a natural way as a coefficients »@t in the
polynomial (2) after the substitution of the compots of (4),
if we neglect the muIt|pI|cat|on$/ Vk ,Oj,k=1...m and to
consider thav) #1.

This procedure allows us to construct an algorithinthe
iterative process for solving of the nonlinear palgnial
equations systems.

Consider a finite system of equations (3)

or until the number of iterations does not excebé t

permissible valueK .,
Let I,.,- identity matrix of the size mxm,
ma =(11..1) - column matrix of the mx1 of single

elements. Then, using (4) and (9), identifyimg dimensional
vectors

and

RO = (o E = M 'R = (v kDN
k < K} With column matrices of the sizenx1, we can
write

RO =1 (1. -E'RY, (11)
or
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Rk+1_|m[| (e Pk] RX. (11a)

It is easy to see that when=1 the iterative formula (11 a)
is transformed to (1) and, therefore, belongs eltaguerre’s
type family of formulas.

Considering thatR* =1 nml_lm,(l—(st_'ll)_lPsk'lij‘l and so
on, we obtain

. R . !
Rkl:|m[|m—(r§_l) Psk] D..Dmm[lm—(rg_l) P§] R,

from which it follows that the iterative processil]lis
convergent, if for som& : R** = R¥ | i.e.

CK ON: lim (&, )P =0 or £ - 0.

If m=1 this condition is as follows:

and, if we consider that, p”(rk) , then
gn—l rk
CK ON: fim -2 0 _g or v - 0.
gn 1( )

Define in the metric spadé™ a multimetric

Dist(R!, R) = (dist(R:, R?).....dist(R:, R2 )] OR ™.

Definition The mappingF: X - X of the multivariate
space X with multimetric Dist: X - R} is called L-

compressing if there exists a nonnegative Lipafmigrix L of
the size mxmwith spectral radiusp(L)<1, such that the

following inequality holds
pist(F(R!), F(R?))< L ist(R", R?).

Fixed point Schroder's theorem [9Let the mapping
F:R™O X - R™ is compressing on a closed subsébf
R ™ space with multimetricDist . Then, for anyR® sequence
of iterations R“* = F(R¥), k= 012..

unique fixed pointR™ of the mappingF in X and we have
the estimation

converges to the

Dist(R*, R )< (1 - L)L ist(R*, R?).

Thus, not for allR® (in the case of one dimensiony) the

iterative process (11) is convergent. To ensure/@@ence it
is necessary that the mapping (11) was compressidgthe
Schroeder's theorem about the fixed point was held.

B.Test examples

In order to evaluate the iterative processes impteed in
accordance with (11), was made their analysis vgieanching
for ¢ -solutions of various systems of polynomial equaio
As a test cases several systems that are characteby
specific features that were previously used in [fB]similar
purposes were chosen. In this section, these ersrapé used
to assess the functional properties of the itegdftivmula (11).
Fig. 5.1 presents illustrations showing the dynamiuf
convergent iterative processes for the chosen €@negl)
arbitrary initial approximations.

1. Consider the system of equations

4% 3% - X%, =0 (12)
X12 —X% =0
which has three real solutiong0,0],[- 0750.5629 [1.0,.0].
Let's represent the iterative process (11) in detai

considering that the Jacobian of the systém12x? —2x, -3
goes to zero ak, = X;; = -0.4236 and x, = x,, = 0.5902.
For arbitraryx, and x, the system (8) is as follows:

(4&3 B 3% = sz + [6& +3x, —4x * 3X1J(V1J - (0] (13)
X =X 2%, X Vs 0
The solution of (13) is a vector
)(2(4)(12 X 3)
eoVi)o] 26 (4% -3)-3x(2x +x,
V, ..2X13(4X2 _3)+ X\ X _3X12 o
x[2x¢ (4%, = 3) = 3%, (2% + )]
Thus, the mappin@R = | 32(' o~
><1[2><1 (4x, -3) - 3x,(x, + 2)
[xij | 2626 -3)-x,(2% +3)
%) | _x[2x(ax, -3)-3x,(x +2)
It is easy to see that system (14) is an identitino cases:
1) (XlJ = [ - 0.75} ) [le = [LOJ , that is whenx, and x,
X, 0.5625 X, 10

6%, + X,
. xé 0
both are non-zero solutions of (12). In the case|= 0 the
X

2

E)’lR can be represented as

(14)

system (14) is not defined.
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Therefore, the zero solution cannot be obtainedahy
iterative process (11).

As an initial approximation for finding - solutions of (12)
the numbersx” = x,, = -0.4236 and x,° =15 were chosen.
That is, considered one of the cases, wher0.

An iterative process was converging and on the rgbve

. . . X, - 075
iteration the ¢ -solution of the syste = was
X, 0.5625
obtained with the required accuracy (Fig.1).
Similar dynamics of the iterative process was olesbr
when choosing as an initial approximatiafl = x,, = 0.5902,
but in this case the second non-zegasolution of the system

)

10
( J was obtained.
10

—=xk1] x[2]

_14

] =
o 2 =12
E 1.5 2 101
g 1 5 8
T 05 S 6
F 0] e Y
23l
OS2
T T T T T T 0-

2 4 6 8
Tteration number

10 4 6 8 10
Tteration number
Fig. 1 The dynamics of the iterative process ofisgl the system of

equations (12)

2

Thus, it is important to note that the iterativeqesses (11)
converge in cases where the Jacobi matrix of tistesy of
equations is ill-conditioned or even singular. Tisi€xplained
by the structure of formula (11), which special ecaghen
m=1 is the formula (1). At the same time, obvioustgrative

processes are divergent wh%rpm —(Fg‘_l)_ng =0. This fact

can be used in the design of software modulesdtwirg of
the polynomial equations systems.

2.Let’'s now consider the iterative process of sohdng
almost linear Brown's system of equations

2% X X+ X, + % =6

X+ 2% + X+ X, + % =6

X X + 2%+ X, + % =6.

X1+X2+X3+2X4+X5:6
XX XgXyXs =1

(15)

As an initial approximation was chosen numbersicefitly
large in absolute value for the given systenq?:s.o;

x'=60; x =40; x’=-20. The dynamics of the
iterative process is shown in Fig.2.

, No:9, 2012

[—201—=2]— =B — =[] —=[5]]

. =
o 61 508
I 3

o 806
5 .l 8

= 2 =0.4
= 07 502

0 5 10 15 20 25 30 35 40

(R e e S
5 10 15 20 25 30 35 40
Iteration number

Tteration number
Fig. 2 The dynamics of the iterative process o¥iggl the system of
equations (15)

It should be noted that in this example to obtaia-
solutions with the required accuracy a large numbér
iterations K =20 was taken. However, when choosing the
initial approximations in sufficiently small neigbthoods of

the roots required solutions were obtained for allsmumber
of iterations.

3. The problem of the intersection of the circles

(Xl _’3‘10)2 + (Xz - ‘5‘20)2 =r?

{(x1 “b,, +(x, - 05) = (05-b,, )" (16)

where a,=100; b, =-100;
9=1; 12 =(05-a,f+1g29).

ay = 05+ (ay,, — 05)tg9 ;

0.8 AN
0.6 Ao

0.4]

0.2 i

0_ 1
_0_2,
,0_4,
-0.6] /
~0.84——

0 5 10 15
Tteration number

=12
[IE|
iy
il

i] values, 1

[
Error vector nomn, ||E||

2 B2
& v = o =

20 3) 10 15 20

Tteration number
Fig. 3 The dynamics of the iterative process ofisgl a system of
equations (16)

As noted in [15], the process of the roots findimigthe
system (16) by the method of bisection for the givgut data
is very difficult. When using the formula (11) withe initial

approximations ><10 =001, x20 =-08, the iterative process
was convergent, and the required solution
0.4999576
%o was obtained afteK =12 iterations.
X, 0.5291806

The dynamics of the iterative process is shownign3F

4.Combustion chemistry problem

This is a real practical problem of a hydrocarbons
combustion in the case of excess of fuel.
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Its mathematical model can be represented by @&maysf

A%+ A XX + X + A% + X, + A% +07 =0
four polynomial equations —
p y q a8X1X3 + a9X2X3 + al()xl + allx2 + a12X4 + al3 - 0
AXGX, + QX + T XX, + A% +asX, =0 A1aXeXe * 1% + 01X, =0
B+ By + B, + Bk, + Bxs + Bk + B, =0 1 7% * i, * ho =0 (18)
XX =%, =0 X +x;-10=0
X2 =% =0 X2 +x;-10=0
XX +x2-10=0
where @, =-1697010"; a,=217700"; a,= 055; X +% -10=0

a,=045; a,=-10; f =1585010"; pB,=4126010°; where a,=473110°% a,=-03578 a,=-01238,
B, =—8285010C°; B, = 228400 ; L =-1918010°; a,=- 163700°; a,=-0.9338;, a,=-09338; a,=10;

B, =484; B, =-2773. a,=-03571 0,=02238 a,=0.7623, a,,=02638;
a,, =-0.7745107; a,, =—0.6734; a,; =—0.6022;
_
oob | —250] a,=10; a,=03578; a, = 473110°%; a,,=-07623
e 2 5 a,, =02238; a,,=0.3461
g e AN g el The system (18) representsthe transformed systdm o
E g & 100] four trigonometric equations by introducing
= 507 E » new variables, = cosg; ; X, =sing, ,.., X, = C0SP, ; X, =sing,
) and its supplementation with four trigonometric ritites of
-100+4 | ol—

0 10 20 30 40 50 0 20 30 40 so0 the form x*+x% -1=0, i=1357. During its solution the
_ “era‘“’“_““mber o SRR initial approximation were chosen arbitrarily in ngeal, but
Fig. 4 The dynamics of the iterative process ofisgla system of  wjth the allowable ranges ofos and sinfunctions values
ti 17 .
equations (17) and were taken the following: x° = 015; x,”=-07;
As you can see, the main problems that may arigegiu x,’ =03; x,’=-06; x =-07; x’=01; x,’=-08;
the iterative  solution of (17) are determined by %(80 =-08.
significant difference between the values of the For these valuesturned out that an iterative
coefficients and their absolute values. When usiiegformula rocess converged rapidly (see Fig. 5) and alresidy = 6
.(1.1.)’ . these pro_blems were manifested in thEeration desiredt -solution  with the required accuracy
initial iterations (see Fig. 4). Nevertheless, as rasult of has been obtained:
K =28 iterations the only solution was obtained for $ineall )

values of the variables: X 0.1644316658
X, -0.9863884769
X -0.0001588472 X3 0.2396160174
X, | | 2523242375107 X, | _| —0.9708677374
x,| | 01478747693 | X | | —09976353915
X, 0.3845448859 X5 0.0687285398
At the same timeas theinitial approximations were X% -0.6155084071
adopted the following values: X - 0.788130320¢
%’ =20: x,° =x"=x,"=001. it Tt e NN
O 0.8
5. A robot kinematics problem e e £0.7]
A mathematical model of the kinematics of the robo 7 -0-2] £ 0

manipulator with rotational kinematic pairs repmsel by a
system of eight polynomial equations

0 2 4 6 8 10 2 4 6 8 10
Iteration number Tteration number

Fig. 5 The dynamics of the iterative process ofisgl the system of
equations (18)
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Ill. DISCUSSION
Analysis of the results of numerical experiment
on solving polynomial systems of equations, setbctas
the test, shows the  effectiveness ofthe itera@arch

process of ¢-solutions vectors in accordance with th
formula (11). These iterative processes can bibatidd to the
Laguerre’s type family. But at the same time, theg similar
to a family of quasi-Newton’s methods. For exampteijs
easy to see that in the
P.r,
When(n—l)# -0,
k
iterative formula of Newton-Raphson. This situatiarises in
almost every iteration process in the finalitemati [1]
WhenPn(rk) - 0 and is particularly evident in cases where the

desired real root of the equation is significagiigater than [2]
zero. Even more this becomes noticeable in cas?a,

(n—l)w <<|Pn'(rk)|. It can be shownthat a
k

the

the formula (1) is a well-known

when

similar effect is observedin the solution of syste of

equations. Consequently, the method proposed abiovey (4]
sense has the advantages inherent in Newton's cheBbat
the same time, the implementation of the methqutastically (5]

independent of the properties of the Jacobi mafrixhe
system of equations. As shown by the results oftlimaerical
experiments, the iterative process implementeid]
in accordance with the formula (11), are rapidlyngrging in

cases wherethe Jacobi matrices are ill-conditiamed
even singular. Analysis of the dynamicsof iterativ[7]
processes of the solutions of different systenusall

noting that the randomly selected initial approxioms can

be nonmonotonic, or divergent. However, the[B]
iterative processes (11)are strictly monotonic with a
successful choice of initial approximations.As wew, this is
typical of other methods for solving systems of lim@ar g
equations.

One of the important advantages of the methodéslabhk [10]

of differentiation operations needed in the calgofa of the
Jacobi matrix elements, but, as in Newton's method.]
the iterative process (11) requires a procedure dolving
systems of linear equations. In cases of largeessgstems it
is a significant disadvantage, so in practical @alions it is
desirable to bring the original systemsto the eyst
of smaller dimension. For polynomial systems of aguns,
there are many algorithms that reduce the dimen&on
example, the method of resultant of two polynomaalthe
method of expanding the system to a Grobner bagis This
approach is appropriate, for example, when solthieg
problems of analysis and synthesis of linkageshgir
solution the formula (11) is very effective.

As noted above, the numerical solutions of soméegys of
equations can be obtained only in the case of ridigice
of initial approximations. If such a choice is difflt, there is
aneed for the procedure of localization of thetsom the
iterative process, or at least, the definitiontait boundaries.

[12]

[13]

[14]

[15]

In
dmplemented fairly simple, but much more complickite the
localization of
space. Significant
the interval
Ghe similarity of the formula (11) and the iter&tiNewton's
formula, we can assume that it is possible to gdizerit for

) ! Newton's methods are
one-dimensional casgnlinear equations and systems. Further workigatea will
be devoted to solving this particular problem.

the one-dimensional case, such procedures are

the roots in a multidimensional
advantages can be achieved bing us
arithmetic operations. Moreover,  cdaesing

case of spaces of interval variadlRsin  which

essential for  solving linearnd a
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