
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

842

Resource Constraint Mobile Agent Framework
For Ambient Intelligence
Yung-Chuan Lee, Shahram Rahimi, and Bidyut Gupta

Abstract—In this paper, we introduce an mobile agent framework
with proactive load balancing for ambient intelligence (AmI) envi-
ronments. One of the main obstacles of AmI is the scalability in
which the openness of AmI environment introduces dynamic resource
requirements on agencies. To mediate this scalability problem, our
framework proposes a load balancing module to proactively analyze
the resource consumption of network bandwidth and preferred agen-
cies to suggest the optimal communication method to its user. The
framework generally formulates an AmI environment that consists
of three main components: (1) mobile devices, (2) hosts or agencies,
and (3) directory service center (DSC). A preliminary implementation
was conducted with NetLogo and the experimental results show that
the proposed approach provides enhanced system performance by
minimizing the network utilization to provide users with responsive
services.

Keywords—Ambient intelligence, load balancing, multiagent sys-
tems, ubiquitous computing.

I. INTRODUCTION

THE concept of ambient intelligence (AmI) is a vision of
a world in which humans are surrounded by computing

and networking technology unobtrusively embedded in their
surroundings [8], [9]. Here, people live easily in digital en-
vironments in which the electronics are sensitive to people’s
needs, personalized to their requirements, anticipatory of their
behavior and responsive to their presence. With the recent
advancement of embedded device technology, this vision is
merely a fiction but can be realized.

AmI is the convergence of three major key technologies:
ubiquitous computing, ubiquitous communication, and inter-
faces adapting to the user [8], [9]. First of all, ubiqui-
tous computing represents new types of computing devices
invisibly embedded into our everyday environment. Rather
than explicitly being the ”physical user” of a computer, a
human will implicitly profit from services running between
computers without taking notice of them. Secondly, ubiquitous
communication denotes that information-processing commu-
nication systems should be human-centric in the ubiquitous
informational society. This would allow anyone to access any
desired information, anytime, anywhere, easily and immedi-
ately. Finally, interface indicates that unlike today’s interfaces

Yung-Chuan Lee is a PhD candidate and Computer Information Specialist
with the Department of Computer Science, Southern Illinois University,
Carbondale, Illinois 62901 USA (phone: 618-453-6051; fax: 618-453-6044;
email: ylee@cs.siu.edu).

Shahram Rahimi is a Associate Professor and Director of Undergraduate
Program with the Department of Computer Science, Southern Illinois Univer-
sity, Carbondale, Illinois 62901 USA (email: rahimi@cs.siu.edu).

Bidyut Gupta is a IEEE Senior Member and Professor with the Department
of Computer Science, Southern Illinois University, Carbondale, Illinois 62901
USA (email: bidyut@cs.siu.edu).

which often allow only very limited forms of interaction
with computers and require extensive specialist knowledge to
operate, tomorrow’s interfaces should be much more intuitive
and responsive to prompts that include speech, vision and
touch.

The proposed AmI framework [11] allows users to obtain
their personal information such as preferences, profiles, lik-
ings and habits, while having minimum interactions with the
surrounding environment. The information of the user will
be available to him/her at the new location effortlessly. The
system is formed from multiple geographically distributed
environments. Each environment provides different services
to users such as shopping, banking, etc. There are three
major components in the environment: mobile devices, hosts
or agencies, and the Directory Service Center (DSC). Note
that an environment is a cluster that contains multiple mobile
devices, multiple hosts and one or more DSC(s).

Due to limited capabilities of the mobile devices such as
limited battery capacity, insufficient computing speed, small
amount of memory, and a lack of input or output facilities, mo-
bile agent technology is employed in AmI environments. Con-
trary to traditional client-server approach, agents can migrate
into different hosts to perform computation, communicate with
other agents, and bring the results back to its user [3]. Thus,
users dispatch agents from portable devices and the majority
of computations and power consumptions of agents are done
on the hosts. Comparing to portable devices, hosts have ample
computing capability and extensive power resource.

This paper presents a framework that utilizes mobile agents
for ambient intelligence in a distributed ubiquitous environ-
ment. It provides users with personalized knowledge and intel-
ligent interactions as well as sustains expeditious performance
under dynamic resource demands. In this paper, we describe
each component of the framework and formulate strategies
to balance network and host demands. We then implement
the framework and evaluate the merit of the proposed load
balancing method.

II. RELATED WORKS

There are several studies that utilize mobile agents in
Ambient Intelligent (AmI) environments. For example, Satoh
employed RFID and software agents, creating location-aware
service to provide personalized information to users [16].
Every user is assumed to carry a unique RFID tag which will
be identified by the RFID sensors in each equipped location
server. When the user enters into the location server’s coverage
area, the location server identifies the host with the needed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

843

capabilities for the user according to his preferences or profile.
Then, a mobile agent will be assigned to each user and the
agent moves from one host to another to assist the user.

A similar approach was developed by the AMILAB, in
which they implemented the AMICO system to create an
integrated AmI environment in manufacturing. There were
three main functions provided by AMICO. First of all, AMICO
provides useful contextual information to users based on three
criteria: the user profile, the most suitable device and the cur-
rent user location. Secondly, in the AMICO environment, users
are allowed to access the machine functionalities according to
the user context such as professions or skills. Finally, AMICO
learns from the interactions with users and adapts them to the
user’s preference.

Furthermore, Costantini and others proposed the DALICA
project, which utilizes a multi-agent system to enhance user
interactions with culture assets and administering these assets
[4]. Agents observe user’s locations from a satellite signal and
proactively assist users and propose culture assets according to
their preferences. Users’ preferences are then refined based on
what culture asserts they visited and interacted with to improve
future visits. Another main feature of DALICA project is to
securely and actively monitor transportations of culture assets
from one location to another through agents.

On the other hand, Zhang and colleagues proposed a
context-aware AmI-Space based on a multi-agent architecture
[19]. In their approach, users use portable devices to obtain
services provided by the system such as controls of house-
hold appliances or multimedia service. The system can also
automatically measure the room temperature and humidity,
the user’s psychological or physiological status, and provide
personalized initiative services. Similar to AmI-Space, Hagras

and colleagues proposed an ambient-intelligence approach
called iDorm where it utilities embedded sensors, actuators,
and software agents to construct an context-aware environment
[7]. Users can interact with agents in the embedded controller,
robots or mobile devices to control the environment. The
system evolves from those interactions to provide a more
precise and user-friendly living environment.

Several initiatives have attempted to build AmI environ-
ments. The Aware Home project constructs a home to produce
an environment that is capable of collecting information about
itself, and the whereabouts and activities of its inhabitants [10].
The Philips’ home lab is a test bed for ambient intelligence
that is more like a real home than a laboratory [14]. MIT’s
Intelligent Room and Oxygen project [12], Georgia Tech’s
Aware Home and eClass projects [5], [6], and Stanford’s In-
teractive Workspace [2] are all attempts to study the impact of
ubiquitous computing on education. They have built prototype
classroom environments and the necessary software infras-
tructure to seamlessly capture much of the rich interaction
that occurs in a typical university lecture, reduce the need for
mundane note-taking and allow students to engage in better
classroom discussion. Finally, the PERSONA and SOPRANO
projects attempt to develop open standards and improvements
to the AmI environments in order to create a seamless Ambient
Assisted Living (AAL) environment for the elderly [13], [17].

None of the previously mentioned approaches have ad-
dressed the performance issue of the system or load balancing
among agencies in an AmI environment. Because of the
autonomy of the agents and the dynamicity of the environ-
ment, any approach should take the performance criteria into
consideration to provide users with responsive services. Hence,
based on our previous work [11], we propose a resource

: mobile agent

Directory
Service Server

User
registeration

Host
registeration

Host list

agent migration

Information retrieval

Host-1
Host-

N

Information exchanging

Directory
Service Server

User
registeration

Host
registeration

Host list

agent migration

Information retrieval

Host-1
Host-

N

Information exchanging

Fig. 1. Overview of proposed framework [11]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

844

constraint agent-based AmI system with a focus on optimizing
communication costs and load balancing among agents and
agencies.

III. PROPOSED METHODOLOGY

Derived from our previous study on AmI environments [11],
this work focuses on formulating the load balancing technique
to evaluate its performance. In this section, we will begin
by briefly describing the main concept and components of
our framework to provide a foundation for the current study.
We will then formulate algorithms in an attempt to minimize
network bandwidth usage and maximize host utilization.

A. Overview of Framework

Figure 1 illustrates the overview of the framework. The
system is formed from multiple geographically distributed en-
vironments. Each environment may provide different services
to users such as banking, shopping, etc. Each environment
consists of three main components: (1) mobile devices, (2)
hosts or agencies, and (3) a directory service center (DSC).
Different environments are connected through their directory
service centers. When a mobile device or a host joins an
environment, it registers itself to the DSC. Others can later
inquire the DSC to obtain a list of preferred mobile devices
and hosts to communicate with. In the following sections, we
briefly describe each of the components.

1) Mobile Device: A mobile device is a pocket-sized
computing device, typically with a display screen with touch
input or a miniature keyboard. Smartphone is an example
of such a device. In an AmI environment, we assume that
each user carries at least one mobile device that holds his or
her personal information. Four modules have been proposed
in a user device: Registration Module, Admin Module, Load
Balancing Module and Learning Module. The user profile as
well as the hosts and agents’ information are stored in the
Master Agent Database of the mobile device. A master agent
resides in the mobile device to communicate with the hosts
and DSCs, handles user interactions, spawns and dispatches
agents to agencies when needed, and administers dispatched
agents. According to the user’s goal, these dispatched agents
will migrate to hosts to perform computations and services for
its owner.

2) Host or Agency: Hosts or agencies provide facilities
and services for mobile agents to migrate onto and perform
various tasks for their owners. Two modules are defined in this
component: Registration Module and Information Module. In
addition, Java Application Development Framework (JADE)
[1] is utilized to provide an agent runtime environment.
Interactions between the host and user’s agents are stored in a
User History Database as references for the host to improve
its services to the same user in the future.

3) Directory Service Center (DSC): The Directory Service
Center (DSC) is responsible for managing mobile devices,
hosts/agencies, and their intercommunication in its environ-
ment, as well as communicates with the DSCs in other
environments. Two modules are defined in this component:

Registration Module and Communication Module. Registra-
tions of mobile devices and hosts are stored in a Registration
Database to provide directory service to others.

B. Load Balancing Strategy

The Load Balancing Module in the mobile device is respon-
sible for spreading the communication and computation loads
among the hosts in the environment to minimize host service
delay. Whenever the Admin Module in the mobile device
creates a mobile agent, it forwards a list of candidate hosts
for the mobile agent to invoke the Load Balancing Module
to compute the optimal communication method and identify
which host to communicate to. The list is constructed from
its Master Agent Database and by querying the DSC in the
network.

The Load Balancing Module then checks the current net-
work usage from the DSC to determine whether migrating
an agent to a host or traditional client-server approach is
more beneficial. In addition, the module sends a message to
each host in the list to obtain their resource utilization to
determine their response time. It then estimates the cost of
migrating the agent to each of these hosts and provides the
most underutilized one to the Admin Module. Algorithm 1
provides a broad representation of the operations performed
by the Load Balancing Module.

Because the load balancing task is performed by the individ-
ual mobile device, we expect that our proposed AmI frame-
work will provide high scalability and reliability regardless
of the ad-hoc dynamicity of AmI environments. In addition,
based on user preferences, the Load Balancing Module obtains
a snapshot of the system load and response time of interested
hosts and then chooses an optimal host from this snapshot.
However, this soft real-time operation does not prevent the
possibility that agents of all users with the same requests
migrate to the same host, especially when there are just few
hosts in the network.

IV. FRAMEWORK IMPLEMENTATION

The simulation of our approach was developed by using
NetLogo software. NetLogo was developed by the Center
for Connected Learning and Computer-based Modeling at
Northwestern University [18]. It is written in Java and pro-
vides both modeling and simulation tools for agent systems.
NetLogo utilizes a simple and efficient scripting language that
allows entities to be controlled and their interactions with the
environment to be described.

On the other hand, Netlogo does not provide a full-scale
network emulator nor an agent communication language (ACL)
for agents to communicate in its contained environment. To
allow us to measure the network performance and study the
proposed framework, we defined and constructed a simple
network emulator to simulate sending and receiving packets.
There is no communication protocol except for ACK and
NACK packets for acknowledgement purposes, and several
control packets used in the Admin Module to administer agents.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

845

Algorithm 1 Load-Balancing(Hosts H)
1: Let nu be the current network usage
2: Let t be the threshold of Network-Usage
3: Let m be the communication method
4: Let hbest be current optimal host
5: if client-server mode is OK and nu is less than t then
6: m = client-server mode
7: hbest = NULL
8: else
9: m = agent migration mode

10: Let slbest be the current lowest system load
11: Let rtbest be the current shortest response time
12: for every hi in H do
13: Let sli be the current system load of host hi

14: Let rti be the current response time of host hi

15: if Host priority is system load then
16: if sli is less than slbest then
17: slbest = sli
18: rtbest = rti
19: hbest = hi

20: end if
21: else
22: if rti is less than rtbest then
23: rtbest = rti
24: slbest = sli
25: hbest = hi

26: end if
27: end if
28: end for
29: end if
30: return (m, hbest)

A. Networking Simulation

NetLogo does not provide communication interface for
agents to send and receive packets. Therefore, we defined a
special agent, Network Agent, to simulate network facility of
an environment and handle all communications among mobile
devices, hosts and DSCs within that environment. Figure 2
depicts the flow of a regular communication between a sender
and a receiver through the network agent. In our implementa-
tion, the Network Agent employs a FIFO queue to store and
route packets. To simplify the implementation complexity of
the Network Agent, we loosely defined a packet structure in
which the payload size is flexible and can be divided into any
size to completely utilize the network bandwidth if possible.

A packet is constructed with 6 fields: operation, sender
ID, receiver ID, message ID, message content and message
size. The operation field indicates the type of the packet, and
can be either forward msg or send msg. The forward msg
packets are sent from senders to the Network Agent to be
”forwarded” to the receivers. On the other hand, any packet
from the Network Agent is always the send msg type since it is
”sent” directly to receivers. The message ID is used for simple
referencing and identification. The message content field is
the actual payload of the packet and the message size field
indicates the size of this packet.

Sender Receiver

Network Agent

1. Request
(forward_msg)

2. Request
(send_msg)

3. Response
(forward_msg)

4. Response
(send_msg)

Fig. 2. Flow of a communication routed through a Network Agent

Two special types of packet, the ACK and NACK, act as Yes
and No, respectively, to provide interactions between the users
and hosts (i.e., to inquire the progress of migrated agents).
More details are given later in the Admin Module subsection.
Since both ACK and NACK packets are control packets, their
size are assumed to be 1 unit.

Because of this simulated network facility, the network
performance is now two-fold. On the one hand, agents, hosts
and DCS communicate with each other using forward msg
function. On the other, the Network Agent delivers the packets
using the send msg method. Hence, the Network Utilization
(NU) can be calculated as follows:

NUi =

∑i
j=1

(Sj
forward msg + Sj

send msg)

Ti ∗ NB

where Sj is the size of the packets sent via forward msg and
send msg methods at time j, Ti is the total time elapsed at
time i, and NB is the network bandwidth of which is one of
the input parameters.

B. Migration Module

To simulate agent migration and execution on hosts, we
introduced a system load variable on each host. When an
agent ”migrates” to a host, the host actually receives a packet
in which the message content is the initial execution time of
the migrated agent and the message size is the size of the
agent. After the host receives an agent, it puts the agent in
the RemainingJobList queue and ”executes” all agents in the
queue at each iteration. Once an agent finishes its execution, if
the agent does not request more execution time, the host puts
the agent into the FinishedJobList queue. The agent execution
scheduling uses the Round Robin method and each time slice
(TS) of host j at iteration i can be computed as follows:

TSj
i =

hj
CPU

size(hj
RemainingJobList)

where hi
CPU is the number of instructions that host i can

process per iteration and size(hi
RemainingJobList) is the size

of the RemainingJobList queue of the host i.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

846

The system load (SL) of host j at iteration i can then be
updated as follows:

SLj
i =

∑i
t=1

∑sizet(h
j
RemainingJobList)

m=1
time(aj

m)

Ti ∗ hj
CPU

,

time(aj
m) =

{
execute T ime, if execute T ime ≤ TSj

i

TSj
i , otherwise

where execute Time is the remaining execution time of agent
am on host j.

C. Admin Module

Agent inquiry and retrieval functions are implemented in
the Admin Module. Whenever an agent migrates to a host, the
master agent keeps the agent ID, host ID and agent size in the
ObjectInfoList table inside Master Agent Database. The owner
of an agent can inquire the status of the mobile agent object
by sending a request containing the ”agent ID” to the migrated
host. After the host receives the inquiry request, it checks
the ID of the mobile agent objects in its FinishedJobList.
If the searched object exists in the FinishedJobList, it will
reply with the ACK status. If it does not find the object in the
FinishedJobList, it will send a message with the NACK status.

A user might wish to retrieve his mobile agent object from
the host to access the data held by the agent. In this case, the
user sends a retrieval request with the ”agent ID” to the host to
retrieve the object. After the host receives the request, it tries to
locate the object by first searching the mobile agent object in
the FinishedJobList. If the agent exists in the FinishedJobList,
it replies with the ACK status along with the requested agent.
On the other hand, if the object exists in the RemainingJobList,
the host sends a reply message with the requested agent and
the NACK status.

D. Registration Module

The concept behind the mobile agent registration is that
whenever a mobile agent moves from one cluster to another,
the mobile agent submits its registration details (unique id,
specifications or requirements) to the DSC of the new cluster.
The DSC stores the registration details of the mobile agent in
its Registration database. The whole registration communica-
tion is processed through the Network Agent.

On the other hand, the hosts are stationary and assumed to
be inside the cluster. When each host initializes, it registers
itself to the DSC with its host ID and service profile (capabil-
ities or specialties). Host registration is also routed through the
Network Agent. Table I illustrates the communication details
of this registration process.

Through this registration process, the DSC then provides a
directory facility to allow all users to inquire host services as
well as other users. In general, user to user communication
does not impose high volumes of network traffic. Thus, in
this implementation, we ignore user to user communications
and concentrate on the performance comparison with different
ways to access host services.

TABLE I
AGENT/HOST REGISTRATION

From Agent/Host to Network Agent

ask u s e r / h o s t [
ask Network [

(forward msg s e n d e r DSC sende r−msg msg−i d
msg−s i z e)

]
]

From Network Agent to DSC

ask Network [
ask DSC [

(send msg s e n d e r DSC sende r−msg msg−i d
msg−s i z e)

]
]

From DSC to Network Agent

ask DSC [
ask Network [

(forward msg DSC r e c e i v e r r e p l y−msg msg−i d
msg−s i z e)

]
]

From Network to Agent/Host

ask Network [
ask r e c e i v e r [

(send msg DSC r e c e i v e r r e p l y−msg msg−i d
msg−s i z e)

]
]

V. FRAMEWORK SIMULATION

To evaluate the performance of the proposed framework,
we conducted experiments on three different communication
methods: a traditional client-server approach, a pure agent
migration and our proposed load balancing method. The client-
server approach requires a continuous connection among the
users and hosts throughout the entire requested session. On
the other hand, the agent migration technique requires only a
split second of network connection to migrate an agent to a
host, and the agent with the computed results can be retrieved
later.

To the best of our knowledge, none of the current agent
frameworks for AmI environments consider a host’s resource
utilization before migrating an agent. As a result, a host
providing similar services in an AmI environment might be
full of agents while others only have a few. Hence, with
negligible computation costs to each mobile device to perform
load balancing, we expect our method to produce a better
network and host utilization in an AmI network.

A. Experiment Setup

For simulation purposes, we simplify the AmI environment
to only contain one DSC with multiple hosts and users. By
eliminating the directory synchronization among the DSCs and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

847

the inter-environment agent migration problems, the experi-
mental results obtained contain less noise and can be served
as a baseline. More sophisticated AmI environments can be
derived from this baseline.

To create reasonable network usage for the client-server
approach, we assume that users would continuously interact
with the hosts until they fulfill their request. The sum of the
network usage per request is then defined as one experimental
packet size. Furthermore, the implementation of the simulating
agent size, agent execution time, and data size computed by
each agent is randomly generated based on the experimental
packet size to simulate a realistic AmI environment.

There are 500 users and 25 hosts in our simulated AmI
environment. Experimental results are obtained in regard to 4
different experimental packet sizes, 100, 200, 500 and 1000.
Other simulation parameters are shown in Table II.

Figure 3 illustrates the simulation model of the framework
in NetLogo. There are input parameters on the left and realtime
network bandwidth usage in the right. The realtime network
utilization is plotted on the lower left and the realtime overall
system load is plotted on the lower right. The realtime system

TABLE II
EXPERIMENT INPUT PARAMETERS

Number of Users: 500
Number of Hosts: 25
Number of DSCs: 1
Number of iterations to run: 10000 units
Network Capacity: 1000 units
ACK/NACK package size: 1 unit
Experimental packet size: 100, 200, 500 and 1000 units

map is in the center window in which the human icons
represents users, house icons denotes hosts and smiley-face
icon in the center of the white area symbolizes the DSC.
In each iteration, each user randomly walks and turns, and
a house icon is covered by a human icon when a user
”walks into” it. When a user is inside an AmI environment, it
randomly communicates with the DSC and requests services
from the hosts. Instead of assuming that the whole system map
is an AmI environment, the white area indicates the coverage
of the simulated AmI environment to simulate the registration

Fig. 3. Simulation Screenshot

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

848

process mentioned earlier. The radius of this white area can
be changed using the DSC rado coverage input parameter on
the left.

B. Experiment results

Figure 4 shows the performance comparison among the
three approaches with 4 different experimental packet sizes.
Compared to the other two approaches, our load balancing
method results a better performance in each packet size. The
less the network utilization, the more efficient the approach
is. When the network activity is scattered (i.e., experimental
packet size is 100), the performance is only slightly enhanced;
however, there are extra load-balancing computation costs
on each user’s mobile device. On the other hand, when the
network resource demand is high (i.e., experimental packet
size is 1000), the performance is significantly better. Even
through our load balancing method does not prevent expo-
nential network demand in which the network is flooded with
packets, it provides better stability and scalability than the
other two approaches.

0

0.3500

100 200 500 1000

Client-Server Approach
Agent Migration Approach
Load Balancing Approach

N
et

w
o

rk
 U

ti
liz

at
io

n

Packet Size

Fig. 4. Packet Size vs. Network Utilization

Every host in the simulated AmI environment maintains
its own realtime system load information. Since we do not
use mobile agents in the client-server approach, Figure 5 only
shows the comparison between the agent migration approach
and the load balancing approach. Since we did not model the
system usage for client-server communication, some of the
hosts in the load balancing approach will result in a near 0
system load when the load balancing module uses client-server
communication rather than agent migration. The hosts in
the simulated AmI environment are created with overlapping
services. Thus, we expect to see similar system loads among
all hosts.

From Figure 5, we see that there are several hosts with
higher loads in the agent migration approach. This occurs
when the majority of agents migrates to the same host. This

outburst situation is managed as expected in our load bal-
ancing approach. However, as mentioned previously, the load
balancing module obtains a snapshot of the current network
utilization and the system loads of each interested host, and
determines which method to utilize in a split second. The
result of our proposed approach may be the same as that of
the traditional agent migration approach under extreme and
unrealistic situations (i.e., immensely high user-host ratio with
constant agent migration).

Agent Migration Approach
Load Balancing Approach

S
ys

te
m

 L
o

ad

Host

Agent Migration Approach
Load Balancing Approach

S
ys

te
m

 L
o

ad

0

0.0047

2 4 6 8 10 12 14 16 18 20 22 24 26

Fig. 5. System Load Comparison

VI. CONCLUSION

The purpose of this study is to implement and evaluate the
general purpose of the mobile agent framework for ambient
intelligence (AmI) environments [11]. From our simulated
results, we confirm that it is beneficial to implement the
load balancing method in an AmI system. The load balancing
method can provide better network stability and extends the
AmI system scalability by maintaining network utilization.
Furthermore, the extra costs introduced by this method are
very minimal (i.e., inquiring current network usage from
the DSC and current system load from interested hosts to
determine which communication method to use).

In addition, our approach also ensures that hosts with
the same services in an AmI system are utilized evenly.
Current research neglects this topic and mainly focuses on the
interactions between users and hosts in an AmI environment.
Although the host utilization may not be an immediate issue,
it massively impacts service availability of the AmI systems
when a full-scale AmI implementation is deployed into our
daily life.

In this preliminary implementation, we assumed a simplified
AmI system by eliminating directory synchronization among
DSCs and agent migration from one AmI system to another.
In the future, we need to create multiple AmI environments in
our simulation model to study the effects of these two features.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

849

The system resource usage of client-server communication of a
host should also be modeled to provide a more comprehensive
and accurate system load. Inter-environment agent migration
needs to be investigated to validate our proposed method
under multiple AmI environments. Ultimately, a realistic AmI
environment will be implemented and deployed to conduct an
empirical study to verify the merit of our framework.

REFERENCES

[1] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, “Jade Programmer’s
Guide,” http://sharon.cselt.it/projects/jade/, 2002.

[2] J. Borchers, M. Ringel, J. Tyler, and A. Fox, “Stanford Interactive
Workspaces: A Framework for Physical and Graphical User Interface Pro-
totyping,” http://hci.stanford.edu/research/istuff/iRoom SmartHomes.pdf.

[3] P. Braun and W. R. Rossak, Mobile Agents: Basic Concepts, Mobility
Models, and the Tracy Toolkit. San Fransisco: Morgan Kaufmann, 2004.

[4] S. Costantini, L. Mostarda, A. Tocchio, and P. Tsintza, “DALICA:
Agent- based ambient intelligence for cultural-heritage scenarios,” IEEE
Intelligent Systems, vol. 23, no. 2, pp. 3441, Mar. 2008.

[5] Georgia Tech., “Aware Home Research Initiative Resi-
dential Laboratory at Georgia Institute Of Technology,”
http://awarehome.imtc.gatech.edu/research.

[6] Georgia Tech., “eClass,” http://www.cc.gatech.edu/fce/eclass/index.html.
[7] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,

and H. Duman, “Creating an Ambient-Intelligence Environment Using
Embedded Agents,” IEEE Intelligent Systems, Vol. 19, pp. 12-20, Nov.
2004.

[8] ISTAG,“Scenarios for Ambient Intelligence in 2010,”
http://www.cordis.lu/istag.htm.

[9] ISTAG, “Ambient Intelligence: from vision to reality,”
http://www.cordis.lu/istag.htm.

[10] C. Kidd, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt,
and T. Starner, “The Aware Home: A Living Laboratory for Ubiquitous
Computing Research,” in the Proceedings of the Second International
Workshop on Cooperative Buildings, 1999, pp. 191-198.

[11] Y. Lee, E. S.Khorasani, S. Rahimi, B. Gupta, “A Generic Mobile Agent
Framework for Ambient Intelligence,” Proceedings of the 2008 ACM
Symposium on Applied computing, 2008, pp. 1866-1871.

[12] MIT, “MIT Project Oxygen Pervasive Human-Centered Computing,”
http://www.oxygen.lcs.mit.edu/Overview.html.

[13] PERSONA, http://www.aal-persona.org/.
[14] Philips Research, “Philips Research Technologies,”

http://www.research.philips.com/technologies/misc/homelab.
[15] M. A. Perez, L. Susperregi, I. Maurtua, A. Ibarguren, F. Tekniker, and

B. Sierra, “Software Agents for Ambient Intelligence based Manufac-
turing,” IEEE Workshop on Distributed Intelligent Systems: Collective
Intelligence and Its Application, 2006.

[16] I. Satoh, “Software Agents for Ambient Intelligence,” IEEE Interna-
tional Conference on Systems man and Cybernetics, 2004.

[17] SOPRANO, http://www.soprano-ip.org/.
[18] U. Wilensky, “Netlogo”. Center for Connected Learning

and Computer-based Modelling, Northwestern University,
http://ccl.northwestern.edu/netlogo.

[19] Y. Zhang, Y. Hou, Z. Huang, H. Li, and R. Chen, “A context-aware
AmI system based on MAS model,” IEEE Proceedings of the 2006 In-
ternational Conference on Intelligent Information Hiding and Multimedia
Signal Processing, 2006, pp. 703-706.

Yung-Chuan Lee received the B.S. and M.S. degree in computer science from
the Southern Illinois University, Carbondale, in 2002 and 2005, respectively.

He is currently a PhD candidate and Computer Information Specialist in
computer science at the Southern Illinois University, Carbondale. His research
interests include distributed computing, bio-inspired intelligence, ubiquitous
computing, and trustworthy computing.

Shahram Rahimi received two M.S. degrees in Computer Science and
Engineering and the Ph.D. degree in computational sciences from Stennis
Space Center/University of Southern Mississippi, in 2002.

He is the Undergraduate Program Director and an Associate Professor
of computer science at Southern Illinois University Carbondale. He is the
editor in chief for International Journal of Computational Intelligence theory
and Practice and the associate editor for Informatica. He has over 130 peer
reviewed publications in computational intelligence and distributed computing
areas.

