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Abstract—Two geometrically nonlinear plate theories, based 

either on first- or third-order transverse shear deformation theory are 
used for finite element modeling and simulation of the transient 
response of smart structures incorporating piezoelectric layers. In 
particular the time histories of nonlinear vibrations and sensor 
voltage output of a thin beam with a piezoelectric patch bonded to 
the surface due to an applied step force are studied. 
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I. INTRODUCTION 
ODELING and  simulation of the geometrically linear 
and nonlinear static and dynamic response of adaptive 
structures with integrated distributed control capabilities 

has attracted considerable research interest in recent years. 
This paper addresses modeling aspects and finite element 
simulation of the nonlinear transient vibration response of 
thin-walled smart structures and of the sensor output voltage 
of integrated piezoelectric layers or patches.  

Numerical simulation of smart piezointegrated thin-walled 
beam, plate, and shell structures with distributed control 
capabilities has been performed in many papers in the 
geometrically linear (see e.g. [1-4]) and geometrically 
nonlinear [5-13] range of deformation. Typically these 
structures are very thin and the deformations may exceed the 
range of validity of linear structural theories (see e.g. [14]). In 
[5, 8-13] we have shown the importance of geometrically 
nonlinear analysis, especially when the sensing capabilities of 
the piezoelectric layers are investigated and for actuation of 
structures that exhibit stress stiffening effects. In the context 
of modeling another important issue is the improvement of the 
linear or nonlinear structural theories on which finite elements 
are based, especially from the point of view of the adopted 
kinematical hypothesis. In this paper linear and nonlinear dynamic 
analysis is performed based on first- and third-order transverse shear 
deformation plate theory. 
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II. STRAIN-DISPLACEMENT RELATIONS 

A. First-order transverse shear deformation plate theory 
The results presented in this work, which refer to the first-
order transverse shear deformation (FOSD) or Reissner-
Mindlin hypothesis, are based on two different types of 
nonlinearity, namely either on the large deflection von 
Kármán-type nonlinearity or on the more general nonlinearity 
associated with the occurrence of moderate rotations. The 
FOSD hypothesis for the through-thickness variation of the 
tangential and normal displacement components in the range 
of validity of these two nonlinear plate theories reads 

0 1 0
3

3 3,v v v v vα α α= + Θ =  ,                                             (1) 

where the header 0 denotes the mid-surface displacements and 
the header 1 denotes the rotations at the mid-surface. For a 
proof that the hypothesis in Eq. (1) is valid in the range of 
moderate rotations, i.e. up to rotations of at most 10° (but not 
beyond this range), see [15]. 

The Green-Lagrange strain components for the nonlinear 
von Kármán-type FOSD plate theory can be expressed as 

0 1 0
3

0 0 3 3 0 33, , 0αβ αβ αβ α αε ε ε ε ε ε= + Θ = = .              (2) 

The constant terms (denoted by 0), and the linear terms 
(denoted by 1) are given by 
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where the nonlinear terms are marked by a solid line. 
The strain-displacement relations for the simulation of the 

structural behavior in the range of moderate rotations are 
adopted from the small strain and moderate rotation shell 
theory of Schmidt and Reddy, see [16, 17].  

 

B. Third-order transverse shear deformation theory 
The results referring to the third-order transverse shear 
deformation theory (TOSD) are obtained with a finite plate 
element developed in [11, 18] accounting for large deflections 
in the sense of the von Kármán-type nonlinearity, too. The 
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TOSD hypothesis for the through-thickness variation of the 
tangential and normal displacement components reads 

( ) ( )
0 1 2 3 02 33 3 3

33,v v v v v v vα α α αα = + Θ + Θ + Θ =      (4) 

where the constant, linear, quadratic and cubic terms are 
denoted by the headers 0, 1, 2 and 3, respectively. If no 
tangential loads are acting on the upper and lower surfaces, 
the number of kinematical variables can be reduced from nine 
in Eq. (4) to only five (like in FOSD theory) and the Green-
Lagrange strain components for the TOSD plate element can 
be expressed as 
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and 
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The cubic terms of the tangential strains (denoted by the 
header 3) is usually neglected for thin-walled structures. 
 

III. NUMERICAL METHOD 
According to the virtual work principle, for a state of 

equilibrium the internal virtual work δWi is equal to the 
external virtual work δWe. As a continuation of our earlier 
work[19] in the present paper a total Lagrangian approach is 
chosen. Consequently, the second Piola-Kirchhoff stress and 
Green-Lagrange strain tensors are adopted. The electric field 
vector referring to the undeformed configuration is calculated 
as the negative gradient of the electric potential Φ along the 
undeformed surface parameters θi as 

0 i iE φ∂
= −

∂Θ
.                                                                   (9) 

The mechanical and electrical quantities are coupled to 
each other by two constitutive equations, namely the direct 
and the converse piezoelectric effect 

{ } [ ]{ } [ ]{ } { } [ ]{ } [ ] { }0 0 0 0 0 0, TD e E S c e Eε δ ε= + = − , (10) 

where {0S} denotes the stress vector, {0ε} the strain vector, 
{0D} the electric displacement vector and {0E } the electric 
field vector: 
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Further [e] = [d][c] and [e]T = [c][d]T, where [c] denotes 
the elasticity matrix for anisotropic materials, [d] the 
piezoelectric constant matrix and [δ] the dielectric constant 
matrix: 
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If it is further assumed that the electric field is 

homogeneously distributed over the electrode pair, only one 
additional degree of freedom has to be introduced per 
electrode pair, namely the electric potential. After introducing 
the principle of virtual work, the differential equations of 
motion to be solved are 

[ ]{ } { } { } , { } { }i e i eM q F F Q Q+ = =&&                                (12) 
where [M] denotes the mass matrix and {q} are the 
generalized nodal displacements. The in-balance nodal force 
and electrode charge vectors are denoted by {Fi} and {Qi}, 
respectively. The externally applied force and charge vectors 
are denoted by the right subscript e. The electric potentials are 
calculated from the equilibrium between the mechanically and 
the electrically induced in-balance charges. 
 

IV. NUMERICAL EXAMPLE 
The following numerical example deals with a cantilevered 

beam consisting of an isotropic master structure with a PZT 
sensor patch attached 60 mm from the clamping point as 
depicted in Fig. 1, see also [6, 9]. A step force of 0.6 N is 
applied at the tip of the beam and the time histories of the 
transient response (Fig. 2) and sensor output voltage (Fig. 3) 
are simulated. The step load was chosen such that the 
maximum rotations occurring in the structure do not exceed 
the range of moderate rotations. This can be seen in Fig. 4 
from the plot of the tip rotations over time. 

The material parameters of the beam are E = 197 GPa, ν = 
0.33, and ρ = 7900 kg/m3, while those of the PZT are E = 67 
GPa, ν = 0.33, ρ = 7800 kg/m3, d31 = 1.7119 10-10 m/V, and 
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δ33 = 2.03 10-8 F/m. The present results are obtained with a 
[10x1] mesh and a time step of Δt = 2⋅10-7 s.  

Fig. 2 and Fig. 3 show the graphs of the tip displacement 
and of the sensor output voltage, respectively, over time 
predicted by FOSD and TOSD theory. For linear analysis the 
results of both theories are identical and confirm those of [9]. 
In [6] a considerably stiffer response of the beam is predicted. 
This can be recognized in Fig. 2 by the smaller vibration 
amplitudes and the higher frequency. It should be mentioned 
that in [6] a larger step load was applied and that the results of 
linear analysis presented there were scaled down to the 0.6 N 
step load applied here. 

A step force of 0.6 N, however, results in nonlinear 
vibrations, just at the limit of the range of moderate rotations 
(i.e. < 10°), see Fig. 4. In this case still the FOSD and TOSD 
simulations based on the von Kármán-type nonlinearity 
(FOSD RVK and TOSD RVK) are identical. Both nonlinear 
theories predict a slightly stiffer beam response than the linear 
theories. This can be recognized in Fig. 2 by a decrease of the 
amplitudes of the tip displacement and an increase of the 
frequency. The stiffer behavior is explained by the 
additionally induced membrane stresses near the clamping 
point, which cannot be predicted by any linear theory. This 
stress stiffening effect is also visible in the time history of the 
sensor output voltage in Fig. 3. 

A very good agreement is also observed between the 
predictions of the moderate rotation (FOSD MRT) and von 
Kármán-type (FOSD RVK and TOSD RVK) theories. Since 
in the FOSD MRT theory the structural nonlinearity is 
modeled more accurately, the predicted stress stiffening effect 
is more pronounced than in the simulations based on the 
simpler von Kármán-type nonlinearity.  

If one compares in Fig. 2 the tip displacements predicted 
by nonlinear FOSD and TOSD simulations, one recognizes 
that the FOSD theory predicts a slightly stiffer response than 
the TOSD theory. This tendency is also visible in the graph of 
the sensor output voltage over time in Fig. 3. 
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Fig. 1 Cantilevered piezolaminated beam 
 

 
 

Fig. 2 Time history of the tip displacement of the cantilevered beam 
loaded by a 0.6 N step force 

 

 
 

Fig. 3 Time history of the sensor voltage of the cantilevered beam 
loaded by a 0.6 N step force 

 

 
 

Fig. 6 Time history of the tip rotation of the cantilevered beam 
loaded by 0.6 N step force 
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V. CONCLUSION 
A conclusion section is not required. Although a conclusion 

may review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on 
the importance of the work or suggest applications and 
extensions.  
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