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Abstract—A robust control approach is proposed for a high speed 

manipulator using a hybrid computed torque control approach in the 
state space. The high-speed manipulator is driven by permanent 
magnet dc motors to track a trajectory in the joint space in the 
presence of disturbances. Tracking problem is analyzed in the state 
space where the completed models are considered for actuators. The 
proposed control approach can guarantee the stability and a 
satisfactory tracking performance. A two-link elbow manipulator 
driven by electrical actuators is simulated and results are shown to 
satisfy conditions under technical specifications.   

 
Keywords—Computed torque, manipulator, robust control, state 

space. 

I. INTRODUCTION 
OBOTIC manipulators are extensively used in industrial 
tasks such as materials transfer, welding, paint spraying. 

In these tasks, end-effecter is commanded to move from one 
point to another, or to follow a given trajectory. Various 
control methods were developed to control manipulators such 
as PID [1], feed forward [2], adaptive [3], sliding mode [4], 
neural networks [5], and fuzzy control [6]. Traditional PID 
controllers are perfectly used for low speed manipulators to 
perform industrial tasks. Researches are motivated by 
requirements such as a high degree of automation and fast 
speed operation from industry in the past decades. Robot 
performance degrades quickly as speed increases. High 
velocity causes dynamic problems.    

Computed torque method compensates in a feedforward 
manner the nonlinear coupling inertial, coriolis, centripetal 
and gravitational forces arising due to motion of the 
manipulator [7]. Its operation is improved using other control 
methods as a hybrid approach to perform a task. Based on the 
Lyapunov stability a hybrid control system was proposed to 
control the position of a slider of the motor–toggle servo 
mechanism [8]. This approach combines the computed torque 
controller, the fuzzy neural network uncertainty observer and 
a compensated controller. A computed torque control 
approach was introduced using the sliding mode technique 
such that uncertainty bounds in which are estimated by an 
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adaptive scheme [9]. Computed torque controller was used to 
linearize nonlinear equation of robot by canceling nonlinear 
terms [10]. However, it requires precise dynamical model of 
the manipulator.  

Robust control of robotic manipulators has attracted 
considerable research over the past decade. The main reason 
for this work is that robust control can be used to handle 
nonlinear unknown dynamics. Several researchers addressed 
the problem of designing robust control for robot 
manipulators. For example, see [11-16] for detailed 
discussions of this problem.  

In this paper, a robust hybrid computed torque approach is 
proposed in the state space. This approach is implemented to 
control a high speed manipulator driven by permanent magnet 
dc motors. An analytical consideration is then presented in the 
state space for tracking problem including complete models of 
actuators. A linear state feedback control low is applied to 
cancel disturbances that are not compensated by computed 
torque. A feedforward control path is designed for both 
regulating and tracking designs. After that simulation results 
are presented to confirm the analytical approach and the 
system performance is then considered to improve the system 
behavior. 

II. LINEAR STATE FEEDBACK 
A linear system in the state space is given by 

 
ubAxx +=  (1) 

 
where x is a state vector, A is a state matrix, b is an input 
coefficient vector and u is an input. We can achieve any state 
in finite time using a suitable control law if the given system 
to be controllable. To control a linear system, we can use a 
linear state feedback control law of the form 
 

T
du u= − +k x  (2) 

 
where Tk is a coefficient vector and du is a desired input. 
Substituting (2) into (1) yields 
 

( )T
dA u= − +x bk x b  (3) 

 
The coefficient vector k is determined such that the system 

poles are placed in desired places. The closed loop poles are  
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eigenvalues of the matrix TA−bk . The linear state feedback 
provides possibility of achieving a wide range of closed loop 
poles.  One solution to determine k is given by the optimum 
linear control law of the form 

 
1 Tk R b P−

=  (4) 
 
where P and Q are the symmetric positive definite 
n n× matrixes and R>0 which satisfy the Riccaty equation as 
follows 
 

1 0T TA P PA PbR b P Q−+ − + =  (5) 

III. STABILITY 
For regulating purpose, we choose  

 
0du =  (6) 

 
Thus 
 

( )TA= −x bk x  (7) 

 
Consequently, x asymptotically approaches zero. For tracking 
design, we choose 
 

( )T
du A= − −d db x bk x  (8) 

 
where dx  is a desired trajectory. Substituting Equation (8) 
into (3), yields 
 

( ) ( )A A= − + − −
T T

d dx bk x x bk x  (9) 

 
( )( )A− = − −

T
d dx x bk x x  (10) 

 
Laplace transform of Equation (10) is calculated as 
 

1( ) ( (0) (0))T
dX X sI A −
− = − + −dbk x x  (11) 

                                                                           
where dX and X are Laplace transform of dx  and x, 
respectively. Thus, assuming stability, despite any differences 
given by )0()0( xdx − , the error approaches asymptotically 

zero. If for an initial state ( ) ( )0 0t t= dx x , then the tracking 

error will be zero all the time. Here, k plays a significant role 
to vanish the tracking error. Taking Laplace transform of (9) 
and rearranging, leads to  
 

( ) ( ) ( )1
[ ]T

d dX sI A sI A X bk X X
−

= − − + −  (12) 

 

A block diagram of the tracking design is then represented 
in Fig. 1. The block diagram comprises a system given 

by( ) 1
sI A

−
− , a feed forward path( )sI A− , and a linear 

controller Tbk . The closed loop system will be stable if 
satisfying the following conditions. 
1. The plant represented by A to be stable and non minimum 

phase since the system poles are the zeros of the 
feedforward path. 

2. The closed loop system represented by TA−bk  to be 
stable. 

  

 
Fig.1 Tracking design 

 
The system stability involves problems subject to 

disturbances. Disturbances are such inputs which are not 
under control. Disturbances can be assumed to be a difference 
between the physical system and its model. Therefore, system 
equation is modified as 

 
dbAxx ++= u  (13) 

 
Where d is a disturbance vector. Thus, for regulating purpose, 
(7) is modified as 
 

( )TA− − =x bk x d  (14) 

 
Assume the system is stable in the lack of disturbances.  

Based on the stability analysis of a LTI system stability, we 
can conclude that the state vector x is bonded if d is bonded. 
However, there will be steady state error. There is the same 
discussion about regulating problem subject to disturbances. 
Equation (10) is modified as 
  

( )TA− − =e bk e d  (15) 

 
where xxe d −=  is the tracking error. It is concluded that 
tracking error is not zero subject to disturbances. The tracking 
error is reduced by selecting a suitable k. In addition, as much 
as disturbances to be smaller, the tracking error will be less. A 
control law is proposed to cancel the tracking error as follows  
 

( )T
d d du A= − − −b x bk x d  (16) 

 
Substituting (16) into (3) yields (10) with no disturbances.  
This is why we apply the computed torque method.  
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IV. HYBRID COMPUTED TORQUE 
Dynamic equation of a permanent magnet dc geared motor 

is derived as 
 

2( ) ( ) ( )
d lJ L J R LB RB K K rK v r R Lm m m m m mb l dt

τ
θ+ + θ+ + θ= − τ +

(17) 

 
where θ  is the load angular velocity, v is the motor voltage, 

lτ  is the torque load, L is the armature inductance, R is the 
armature resistance,  Kb is the back emf constant, Km is the 
torque constant and r is the gear ratio, mJ is the moment of 

inertia, mB  is the damping coefficient and r is the gear ratio. 

The load torque lτ is applied on motor shaft by the 
manipulator. The load torque vector is calculated by dynamic 
robot equation as 
 

( ) ( , )M C G+ + = lq q q q q (q) τ  (18) 

                   
where lτ  is the 1×n  joint torque vector, q is the joint 
position vector, M(q) is the n×n  inertia matrix, ),( qqC  is 
the 1×n  Coriolis/centripetal matrix, (q)G  is the 1×n  gravity 
vector. Equation (1) is formed as 
 

( ) ( )

( )

x x0 1 01 1
x 0 0 1 x2 2

xRB K K J R LBx m m 3b m m3 0
J L J Lm m

0 0 2r R LrK l lm0 v 0
J L J Lm m1 1

=

− + − +

τ + τ
+ −

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(19) 

 
According to (13), we have 
 

( ) ( )

0 1 0
0 0 1

0 m m b m m

m m

A
RB K K J R LB

J L J L

=

− + − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

, 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎡
==

θ
θ
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3
2
1

x
x
x

x ,
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⎤
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⎣

⎡
=

1
0
0

b , m

m

rK
u v

J L
=  

(20) 

 

 
Fig. 2 Hybrid computed torque control of manipulator 

    

( )l l

m

20
r R L

0
J L

1
d

⎡ ⎤
τ + τ⎢ ⎥= − ⎢ ⎥

⎢ ⎥⎣ ⎦

 
(21) 

 
Vector lτ  comprises of motor load torques. Now, we present 
an algorithm to form the control law shown in Fig. 2.  
 
1. Computed torque is calculated at desired trajectory by (18) 

in off-line case as  
      

lcdGdddCddM τ)(qqqqqq =++ ),()(  (22) 

  
    where dq  is the desired trajectory and lcτ is the computed 

torque vector. The computed torque of each motor lcτ is 

given by vector lcτ . 
2. Equation (21) is then calculated for each motor. We named 

it cd . 
3. The control law given by Equation (16) is applied to cancel 

the tracking error.  
 

The computed torque will not be the same as load torque if 
exits any tracking error. We can modify computed torque 
control by measuring qqq ,,  and calculating computed torque 
from (18). In practice, we can measure qq  and , precisely and 
then calculate q  from them. This control law reduces tracking 
error as much as possible.  

V. SIMULATION 
Specifications of the two-link manipulator driven by 

permanent magnet dc motors are given in Table I.  
 

TABLE I 
Manipulator Motors 

m1l1 =   Ω= 1.0R ,  H001.0L =  

m1l2 =  2
m m.kg0001.0J =   

kg1m1 =  Nm.s/rad001.0Bm =  
kg1m2 =  02.0KK bm == Nm/A 

 02.0r = , 24V  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1496

 

 

The desired trajectory shown in Fig. 3 is designed to be 
smooth. It starts at zero with a velocity of zero and will finish 
at time 1sec with a zero velocity. The manipulator moves 1rad 
for operating time of 1sec that is a short time if we compare it 
with operating range of industrial robots. The trajectory is 
required to be smooth since the first and the second derivative 
of the trajectory are used in the control system. This point 
should be considered for planning the trajectory. In the case of 
existing jumps, derivatives of variables may cause the infinity 
problem in simulation. In addition, it causes responses that 
maybe out of the specifications and limits of the system. We 
have applied a model of dc motor which comprises inductance 
as well. The system order has been increased one order due to 
including inductance. It is also noted that the trajectory is 
started in where the joint angle is positioned. This yields a 
zero initial tracking error which is a significant factor to 
reduce the tracking error.  Therefore, the trajectory is planned 
to satisfy the above conditions. An example of such trajectory 
is proposed as follows 
 

cos( ) ,   t 0a t a
T

π
θ =− + ≥  

 

 
The trajectory begins at zero and ends at T where the 

position angle is 2a. Here we set 0.5 ,  a rad=  and 
T 1sec= shown in Fig. 3. We consider the motor 
specifications to operate well under the technical limits such 
as voltage limit, current limit and torque limit. A gear ratio of 
0.02 is used in this simulation to provide the operation 
requirements. 

The first simulation is performed using the hybrid computed 
torque control of manipulator in state space shown in Fig. 2. 
Substituting parameters into Equation (20) yields 

 

0 1 0
0 0 1
0 5000 110

A = ⇒
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

01

55 44.4412

55 44.4413

i

i

λ

λ

λ

=

= − +

= − −

 

 

Where ,  and 1 2 3λ λ λ are eigenvalues of matrix A that are 
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Fig. 3 Desired trajectory 

system poles. System involves stability problem due to 
existing a pole at origin which should be moved to the left 
hand side of S plan. It is required to consider controllability by 
forming 
  

0 0 1
2 0 1 110

1 110 7100
b Ab A bφ = = −

−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 
 

 
The determinant of φ is 
 
det( ) 1φ =−   
 
where φ  is the controllability matrix. The system is 
controllable since det( ) 0φ ≠ . A linear feedback control law k 

of the form [ ]100 16 0=k  can replace the closed loop 
poles at 
 

0 1 0
0 0 1
100 5016 110

TA bk
⎡ ⎤
⎢ ⎥− = ⇒⎢ ⎥
⎢ ⎥− − −⎣ ⎦

1

2

3

0.0199
54.99 44.6083
54.99 44.6083

i
i

λ
λ
λ

= −
= − +
= − −

 

 
Such that all poles are placed in the left hand side of S plan. 
The acceleration coefficient in linear state feedback k is zero. 
Therefore, the motor acceleration is not required to be 
feedback which is a practical facility. Fig. 4 shows tracking 
error in all over the operating range. The tracking error is 
limited under about 0.0008rad that is acceptable due to 
mechanical resolution.  

It is ramped up to 13V when starting, then it is ramped 
down at once and after about 3sec it decreases continually to 
be negative for the final section of trajectory to reduce motor 
velocity. Considering the technical limits shows that motor 
work well. Fig. 6 shows the load torque applied on the motor 
shaft. The load torque is goes up to 90Nm when starting to 
move and it is then decreasing to be a negative value of about 
20Nm at the end. It is concluded that in the last section 
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Fig. 4 Tracking error using hybrid controller 
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Fig. 5 Motor voltage using hybrid controller 

 
of the trajectory, the acceleration is negative which cause 
reducing velocity. Fig. 6 represents a vibration on the motor 
torque due to simulation problem to compute torque load. The 
first and second derivatives of the load angle are required for 
calculating the motor torque.    
In this simulation, the computed control law is omitted to find 
out its effect on system responses. Fig. 7 shows the system 
response. Tracking error is increased to a maximum of 
0.05rad in Fig. 8. Comparing Fig. 4 and Fig. 8 shows that 
tracking error is about 62 times of one that was already.  It 
means that computed torque control has found a significant 
role to reduce tracking error. 

In the next simulation, the feedforward control path is 
removed from the control system to find out its effect on 
system responses. Fig. 9 represents system response. Tracking 
error is increased to a maximum of 0.020rad in Fig. 10. 
Comparing Fig. 4 and Fig. 10 shows that tracking error is 
about 25 times of one that was already. Therefore, the 
feedforward control can operate well to reduce the tracking 
error. Finally, we simulate the control system for tracking 
purpose just using the linear state feedback control. System is 
stable and there will be a tracking error with a maximum value 
of about 0.062rad shown in Fig. 11. The control system is 
stable. However, the tracking error is larger than other cases. 
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Fig. 6 Motor torque using hybrid controller 
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Fig. 7 System response without computed torque 

VI. CONCLUSION 
A hybrid control approach was proposed for a high speed 

manipulator comprises computed torque control, feedforward 
control and linear state feedback in state space. The 
manipulator is driven by permanent magnet dc motors to track 
a trajectory in joint space. The linear state feedback control 
law provides a wide range of closed loop poles to stabilize the 
system. The computed torque control has found a significant 
effect on the control system to reduce the tracking error. The 
control system cannot work perfect without feedforward 
control. A smooth trajectory was proposed to satisfy the 
technical specification and limits. Analytical consideration in 
state space for tracking problem confirms that the initial error 
is required to be zero. The proposed control approach can 
guarantee the stability and satisfactory tracking performance. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Tracking error without computed torque control

Time(sec)

tra
ck

in
g 

er
ro

r(r
ad

)

 
Fig. 8 Tracking error without computed torque control  
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Fig. 9 System response without feedforward control 

 
 

 
Fig. 10 Tracking error without feedforward control 
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Fig. 11 Tracking by linear state feedback control 
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