
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

390

Application of a Similarity Measure for Graphs to

Web-based Document Structures
Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian and Max Mühlhäuser

Abstract— Due to the tremendous amount of information provided
by the World Wide Web (WWW) developing methods for mining
the structure of web-based documents is of considerable interest. In
this paper we present a similarity measure for graphs representing
web-based hypertext structures. Our similarity measure is mainly
based on a novel representation of a graph as linear integer strings,
whose components represent structural properties of the graph. The
similarity of two graphs is then defined as the optimal alignment of
the underlying property strings. In this paper we apply the well known
technique of sequence alignments for solving a novel and challenging
problem: Measuring the structural similarity of generalized trees.
In other words: We first transform our graphs considered as high
dimensional objects in linear structures. Then we derive similarity
values from the alignments of the property strings in order to
measure the structural similarity of generalized trees. Hence, we
transform a graph similarity problem to a string similarity problem for
developing a efficient graph similarity measure. We demonstrate that
our similarity measure captures important structural information by
applying it to two different test sets consisting of graphs representing
web-based document structures.

Keywords— Graph similarity, hierarchical and directed graphs,
hypertext, generalized trees, web structure mining.

I. INTRODUCTION

M
EASURING the similarity between graphs is a chal-

lenging problem, especially for graphs of large orders

the computation of similarity measures is quite involved [15],

[20]. Many similarity measures of graphs are based on isomor-

phic relations and subgraph isomorphism [15], [20], respec-

tively. Because it is well known that the subgraph isomorphism

problem is NP-complete, the complexity of the underlying

graph similarity measure is considered to be unacceptable for

practical use [16]. Apart from measures that are based on

isomorphic relations, there are methods in order to measure

the structural similarity of trees. For example SELKOW [13]

generalized the well known string edit distance [8], [14] to

trees. Algorithmic improvements of tree alignment techniques

for applications in Bioinformatics were proposed by, e.g.,

JIANG et al. [9] and ZHANG et al. [19]. But for the most graph

similarity problems these methods are not suitable because

the topology of the underlying graphs is more complex than

the topology of trees. For this reason, we will present a
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new method for measuring the similarity of labeled/unlabeled,

hierarchical and directed graphs. The term hierarchical means

that there is an underlying directed rooted tree which forms

a tree hierarchy. The main idea of our new method consists

of two steps: (i) derivation of property strings from a graph

and (ii) evaluating the alignment of the corresponding strings

representing graphs. This is uniquely possible, because we

restrict ourself to hierarchical graphs. In the following we call

these graphs generalized trees. This graph class has been first

introduced by MEHLER et al. [11] and is defined by

Definition 1.1: Let H = (V̂ , E1) be an directed rooted tree.

Let m
V̂

: V̂ −→ A
V̂

be a vertex labeling function and A
V̂

denote a vertex alphabet. The vertex set V̂ is defined by

V̂ := {v0,1, v1,1, v1,2, . . . , v1,σ1
, v2,1,

v2,2, . . . , v2,σ2
, . . . , vh,1, vh,2, . . . , vh,σh

}

where vi,j denotes the j-th vertex on the i-th level, 0 ≤ i ≤
h, 1 ≤ j ≤ σi. h denotes the depth of H and σi is the number

of vertices on level i. The edge set Ê := Ê1 ∪ Ê2 ∪ Ê3 ∪ Ê4

is defined as [11]:

• (Ê1) forms the edge set of the underlying directed rooted

tree H.

• (Ê2) Up-edges associate analogously nodes of the tree

hierarchy with one of their (dominating) predecessor

nodes.

• (Ê3) Down-edges associate nodes of the tree hierarchy

with one of their (dominated) successor nodes in terms

of that tree hierarchy.

• (Ê4) Cross-edges associate nodes of the tree hierarchy,

none of which is an (immediate) predecessor of the other

in terms of the tree hierarchy.

If Ê2, Ê3 and Ê4 6= ∅ then Ĥ = (V̂ , Ê, m
V̂

, A
V̂

) denotes

a generalized tree. If we set A
V̂

= ∅, the generalized tree is

unlabeled (see Fig. (1)).
For the comparison of hypertext graphs there are simple graph

theoretic indices (see Section (II)) like Multiplicity defined by

WINNE et al. [17]. Multiplicity is defined as the ratio of the

edge cut set of two graphs to the number of all possible edges.

Because of this definition it is obivous that Multiplicity is not

suitable for a comparison of the overall structure of a graph.

In contrast to those simple indices we design in Section (III)

a powerful parametric model for measuring the structural

similarity of web-based document structures representing gen-

eralized trees. We solve this graph similarity problem by

first transforming the generalized trees into linear structures.

Then we apply a dynamic programming [1] algorithm for

determining optimal alignments of the corresponding property
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Fig. 1. Ĥ1 shows a generalized tree and his edge types fulfilling Defini-

tion (1.1). In contrast Ĥ2 represents an ordinary directed rooted tree, which

consists only of (bold) edges e ∈ Ê1. An edge e ∈ Ê1 overjumps always just

one level, e ∈ Ê3 overjumps at least one level, e ∈ Ê4 does not necessarily
overjump a level.

strings. On the basis of the values of the resulting alignments

we construct a graph similarty measure d.

This paper is organized as follows: In the next section

we repeat some graph theoretic measures for the structural

analysis of hypertext structures introduced so far in the context

of web-mining. We present in Section (III) our similarity

measure mathematically and apply it in Section (IV) together

with agglomerative clustering to two different data sets, each

one containing web-based document structures. This paper

finishes in Section (V) with a summary and conclusions.

II. GRAPH THEORETIC MEASURES FOR STRUCTURAL

ANALYSIS OF HYPERTEXT STRUCTURES

In order to motivate our new method for measuring the

similarity of generalized trees we first look at known mea-

sures for the structural analysis of hypertexts. We will see,

that those measures are not suitable for a similarity-based

structural analysis of graph-based documents, because they

can not capture enough information that allows a meaningful

clustering of web-based documents. In the field of structural

analysis of hypertexts there are many measures that are called

indices describing structural properties of hypertexts [2], [17].

The characteristic property of an index is that the described

structural property, e.g., connectedness, is mapped on a nor-

malised measured value. For example, BOTAFOGO et al. [2]

defined the well known graph theoretic measure Compactness

of a directed hypertext graph H as

C :=
(|V |2 − |V |) · K −

∑|V |
i=1

∑|V |
j=1 cij

(|V |2 − |V |) · K − (|V |2 − |V |)
∈ [0, 1],

which expresses how well connected a hypertext graph is.

Here,

(cij)ij :=

{

wij : if wij exists

K : else,

denotes the converted distance matrix and wij denotes the

shortest path from vi to vj . K defines the conversion constant,

|V | denotes the number of vertices of H and BOTAFOGO et

al. [2] set K = |V |. From definition of C we conclude: C = 1
iff H is completely connected, C = 0 iff H = (V, ∅). Now,

assume for two hypertext graphs H1, H2 holds C1 ≈ C2. It

is clear that the graph structures can be noticeable different.

Therefore the index C is not suitable for determining intervals

which contain similar hypertext structures. Hence, it is not

possible to derive quality features, like ”positive navigation

behavior” from a certain value C? ∈ [0, 1].
In contrast to this, the unsupervised learning approach we

suggest extends and improves the concept of graph theoretic

indices mentioned significantly. Our new approach for analyz-

ing web-based document structures consists of two steps:

1) Developing a method for measuring the similarity of

generalized trees. Up to now there are no contributions

in the area of the structural analysis of hypertext data

that present results in terms of measuring the similarity

of document structures by comparing the overall graph

structure.

2) Application of multivariate data analysis methods, e.g.,

clustering methods.

There are already known approaches determining the similarity

of web-based documents, e.g., [5], [10]. CRUZ et al. [5] pre-

sented results about the structural similarity of DOM-trees [4]

based on TDFA (Tag Frequency Distribution Analysis). JOSHI

et al. [10] proposed an approach for measuring the structural

similarity of web-based documents representing DOM-trees on

the basis of a bag of path model. However, our similarity

measure is completely different from all these contributions,

in the sense that it captures more structural information of a

graph.

III. SIMILARITY MEASURING OF GENERALIZED TREES

In this section we design a new similarity measure d for

measuring the structural similarity of generalized trees. In the

following we consider the unlabeled case, because the tran-

sition to the labeled case is possible by minor modifications

(see Section (IV)).

The main idea of this similarity measure is based on the

derivation of property strings for each generalized tree and

then to align the property strings representing our generalized

trees by a dynamic programming technique [1] (see Fig. (2)).

From the resulting alignment one obtains a value of the scoring

function, which is minimized during the alignment process.

The similarity of two generalized trees will be expressed by

a cumulation of local similarity functions which weighs two

types of alignments: out-degree and in-degree alignments on

a generalized tree level. Since we are examining hierarchical

graphs, we take a closer look at the out-degree and in-degree

sequences (on a level i), induced by the vertex sequences

vi,1, vi,2, . . . , vi,σi
and their edge relations (see Fig. (2)). Now,

the more similar with respect to a cost function α the out-

degree and in-degree alignments on the levels i are, the

more similar is the common structure of the graphs. Define

rĤ
k

k := vĤ
k

0,1 , k ∈ {1, 2}, and let Ĥ1 be a given graph and

vĤ
1

i,j , 0 ≤ i ≤ h1, 1 ≤ j ≤ σi denote the j-th vertex on the

i-th level of Ĥ1, analogous to vĤ2

i,j for Ĥ2. Then the problem

of determining the structural similarity between Ĥ1 and Ĥ2

is equivalent to computing the optimal alignment of

S1 := rĤ
1

1 ◦ vĤ
1

1,1 ◦ vĤ
1

1,2 ◦ · · · ◦ vĤ
1

h1,σh1

, (1)

S2 := rĤ
2

2 ◦ vĤ
2

1,1 ◦ vĤ
2

1,2 ◦ · · · ◦ vĤ
2

h2,σh2

, (2)

with respect to a cost function α which evaluates the align-

ments. Here, we distinguish different types of alignments:
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Fig. 2. Two generalized trees with their property strings. As an example the

property string in terms of out-degrees of Ĥ1 on level 1 equals ”3 ◦ 2”. The
symbol ◦ denotes usual string concatenation.

(v, v) (vertex-vertex), (−, v) (gap-vertex), and (v,−) (vertex-

gap). In order to determine the optimal alignment between

two given graphs, we consider the Sequences (1), (2) where

Sk[i] denotes the i-th position of the sequence Sk and it holds

S1[n] = vĤ
1

h1,σh1

, S2[m] = vĤ
2

h2,σh2

, IN 3 n, m ≥ 1, Sk[1] =

rĤk

k , k ∈ {1, 2}. The algorithm with the complexity O(|V̂1| ·
|V̂2|) for finding the optimal alignment of S1 and S2 generates

a matrix (M(i, j))ij , 0 ≤ i ≤ n, 0 ≤ j ≤ m. Now, we define

the optimal alignment on the basis of the following dynamic

programming algorithm [8]:

M(0, 0) := 0,

M(i, 0) := M(i − 1, 0) + α(S1[i],−) : 1 ≤ i ≤ n,

M(0, j) := M(0, j − 1) + α(−, S2[j]) : 1 ≤ j ≤ m,

M(i, j) := min







M(i − 1, j) + α(S1[i],−)
M(i, j − 1) + α(−, S2[j])
M(i − 1, j − 1) + α(S1[i], S2[j]),

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. In order to evaluate the alignments

on each level, we defined [6] the functions

γout = γout(i, σout
1 , σout

2 )

and

γin = γin(i, σin
1 , σin

2 ),

σout
k , σin

k ∈ IR, k ∈ {1, 2} in an natural way and constructed

a similarity measure d ∈ [0, 1] (on the basis of these func-

tions). γout, γin are two-parametric functions, which detect

the similarity of an outdegree and indegree alignment (on a

level i). Finally, if we assume a set of units U and a mapping

φ : U × U −→ [0,1], we called φ a backward similarity

measure if it satisfies the conditions

φ(u, v) = φ(v, u), ∀u, v ∈ U

and

φ(u, u) ≥ φ(u, v), ∀u, v ∈ U.

Now we state the key result which has been proven in [6] for

measuring the similarity for generalized trees.

Theorem 3.1: Let Ĥ1, Ĥ2, 0 ≤ i ≤ ρ,

ρ := max(h1, h2).

d(Ĥ1, Ĥ2) :=

∏ρ

i=0 γfin(i, σout
1 , σout

2 , σin
1 , σin

2 )
Pρ

i=0
γfin(i,σout

1
,σout

2
,σin

1
,σin

2
)

ρ+1

, (3)

is a backward similarity measure, where γfin is defined as

γfin = γfin(i, σout
1 , σout

2 , σin
1 , σin

2 )

:= ζ · γout + (1 − ζ) · γin, ζ ∈ [0, 1].

By construction we have d(Ĥ1, Ĥ2) ∈ [0, 1]. As a sum-

mary we note that our algorithm measures the similarity of

two generalized trees by applying the technique of sequence

alignments to outdegree and indegree sequences (on a level i).

These alignments have both global and local significance. On

the one hand, the sequence alignments will be implemented

in a global sense, to compute the optimal alignment between

the sequences S1 and S2. On the other hand, the alignments

will be evaluated on the levels of the generalized trees by

the function γfin. We note that the presented algorithm is

suitable for the comparison of large generalized trees, because

its complexity is enormously better then the complexity of

methods which deal with isomorphic relations.

IV. EXPERIMENTAL RESULTS

We applied our method to web-based document structures

representing generalized trees and, hence, to a problem from

web structure mining. To perform the evaluation, we used

a corpus TC which contains 500 conference websites from

mathematics and computer science due to MEHLER et al. [11].

Starting from conference calendar websites, MEHLER et al.

created the corpus with a java application that collects the

conference links. Based on this set of links, we extracted the

websites from the web by HyGraph [7]. Our evaluation is

based on the two following steps:

1) Examining the cumulative similarity distribution of TC

on the basis of website structures, that is we represent a

conference website w ∈ TC as a unlabeled generalized

tree. This examination is impossible without a meaning-

ful similarity measure which covers the complex graph

structure of two graph-based documents. Thereby, the

interpretation of the cumulative similarity distribution

leads us to various applications.

2) Application of agglomerative clustering to the obtained

similarity matrix where the web-based documents are

represented by their DOM-structure [4]. Here, a DOM-tree

is represented by a labeled generalized tree.

Definition 4.1: In terms of TC we define data classes D1−
D5 which are manifest by the following parameter spectra:

• D1: ζ = 1.0 (solely alignments of Kernel-edges); pa-

rameter settings:

σ1
out = 1.0, σ2

out = 2.0, σ1
in = 1.0, σ2

in = 2.0.

• D2: ζ = 0.3; parameter settings:

σ1
out = 1.0, σ2

out = 1.0, σ1
in = 1.0, σ2

in = 1.0.

• D3: ζ = 0.5; parameter settings:

σ1
out = 1.0, σ2

out = 1.0, σ1
in = 1.0, σ2

in = 1.0.

• D4: ζ = 0.5; parameter settings:

σ1
out = 3.0, σ2

out = 3.0, σ1
in = 3.0, σ2

in = 3.0.

• D5: ζ = 0.5; parameter settings:

σ1
out = 2.0, σ2

out = 2.0, σ1
in = 2.0, σ2

in = 2.0.

In general the computation of the cumulative similarity distri-

bution of a corpus of graph-based hypertext structures opens

new perspectives, e.g.:
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Fig. 3. The x-axes corresponds to the values of d ∈ [0, 1] and the y-axes
represents the cumulative similarity distributions for D1-D5.

• The distribution in terms of structural similarity of graph-

based hypertexts is unknown, because there is no efficient

graph similarity measure available, which capture enough

structural information for measuring the structural simi-

larity. Our graph similarity measure d together with the

cumulative similarity distribution provides a better under-

standing of web-based hypertexts and their interactions.

• Suppose we have a test corpus T of graph-based hyper-

texts from a specific web-genre, e.g., conference websites.

MEHLER et al. described in [12] the interesting problem

of computing a structural prototype of T by a graph

median. As a preprocessing step for the graph prototyping

[12] we can decide, on the basis of the cumulative

similarity distribution, how structurally different the web-

based document structures are.

Here, we compute the cumulative similarity distribution of TC

based on Definition (4.1) in order to examine the navigation

strategies in terms of a web-genre. We assume that a gener-

alized tree reflects all possible navigation paths of a graph-

based conference website. The computation and interpretation

of the cumulative similarity distribution of TC leads us to

the question how different the navigation strategies within the

specific web-genre are. As example, we choose the web-genre

of conference websites. In order to discuss the cumulative

similarity distribution of TC (see Fig. (3)) we note that the

data classes D1-D5 are manifest by the same corpus TC . We

obtain a certain data class by only varying the parameters

mentioned in Definition (4.1). Now, by varying the parameters

we find the parameter tuple (ζ, σ1
out, σ

2
out, σ

1
in, σ2

in) which

captures enough structural information during the similarity

measuring. In the following we notice that the plot of class

D1 differs in principle from the plots of data classes D2-

D5. We recognize that, e.g., 20% of the conference websites

have already the similarity value d ≤ 0.5. Unlike 90% of the

conference websites in D2 have the similarity value d ≤ 0.5.

In summary, we conclude from Fig. (3), that the similarity

values of the conference websites in D1 were significantly

higher compared to the conference websites of data classes

D2-D5. This is plausible, because the conference websites in

D1 are treated solely as rooted trees without Cross-edges, Up-

edges and Down-edges. Hence, the main part of the conference

websites of D1 is significantly less structurally different than

TABLE I

RESULTS OF PERFORMANCE EVALUATION OF THE CLUSTERING

PROCEDURE CONCERNING W1 .

Ci cluster precision recall

C1 staff web pages 84% 99%

C2 lecture announcements 76% 91%

C3 summary web pages 65% 92%

C4 lecture materials 85% 60%

C5 Download pages 72% 84%

TABLE II

RESULTS OF PERFORMANCE EVALUATION OF THE CLUSTERING

PROCEDURE CONCERNING W2 .

Ci Cluster precision recall

C1 Staff web pages 99% 99%

C2 summary web pages 99% 99%

C3 seminar announcements 75% 99%

C4 lecture announcements 93% 93%

C5 techn. doc. pages 50% 99%

the websites of the remaining data classes. In terms of D2-

D5 the situation is inverted: In consideration of all types of

conference websites the main part of the graph-based hypertext

structures are structurally dissimilar on the basis of d. The plot

of D4 equals the plot of D5. Finally we notice that for the

data classes D2-D5 the main part of all possible navigation

strategies are very different within our web-genre. This is

reflected by psychological features of hypertext navigation,

e.g.:

• Certain strategies of treatment

• Existence of previous knowledge

• Specific user preferences

The next application consists of an evaluation of a set of

websites {W1, W2}
1 which are treated as sets of their DOM-

structures [4]. Now we have to modify our similarity measure

d because our generalized trees are vertex labeled by HTML-

markups. We define in a similar way

γfin
m (i, σ̂1

out, σ̂
2
out, σ̂

1
in, σ̂2

in) :=

(1 − ζm) · γfin(i, σ̂1
out, σ̂

2
out, σ̂

1
in, σ̂2

in)

+ ζm · γm(i, σm),

where ζm ∈ [0, 1], σm ∈ IR and γm(i, σm) state a cumula-

tive function which detects the similarity of vertex markup

alignment on a level i. With ζm = 0.5 (σ1
out = 1.0, σ2

out =
2.0, σ1

in = 1.0, σ2
in = 2.0) and on the basis of a simple

scheme which expresses the similarity relations between vertex

labels, we apply an agglomerative clustering method2 [3] to

the obtained similarity matrices (dij)ij , 1 ≤ i ≤ |W1|, 1 ≤
j ≤ |W1| and (dij)ij , 1 ≤ i ≤ |W2|, 1 ≤ j ≤ |W2|,
dij ∈ [0, 1]. |W1| and |W2| denote the number of extracted

DOM-structures from W1, W2, respectively.

As a result we found cluster Ci which contain graph-

based document structures where the Ci manifest structure

1http://www.algo.informatik.tu-darmstadt.de, http://www.sec.informatik.tu-
darmstadt.de.

2We used Average Linkage [3].
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types, e.g., staff web pages, and special structured template

web pages. We evaluated the performance of clustering with

the well know measures recall =
|Mr∩Mg|

|Mr|
and precision

=
|Mr∩Mg|

|Mg|
[3]. Here, Mr denotes the number of all relevant

documents and Mg the number of documents found, based on

a Cluster C. The results in the Tables (I), (II) show clearly

that the agglomerative clustering method created type classes,

which contain structurally meaningful web pages. The high

precision values express that the web pages found in a cluster

Ci are actually relevant and the high recall values state that the

web pages, which are relevant for Cluster Ci, were actually

found. In comparison with the remaining precision values the

cluster C5 in Table (II) achieves a lower precision value.

However, C5 has a high recall value. That means, (i) some

web pages found related for C5 are not relevant and (ii) all

relevant web pages for C5 were found. Regarding to recall the

situation for C4 in Table (I) is reversed. Hence, we have shown

that d is successfully applicable for the structural filtering of

web pages.

V. CONCLUSIONS

We started pointing out the problems that graph theoretic

indices have in capturing important structural information of

graphs. For this reason we designed a new method to measure

the structural similarity of generalized trees. Our similarity

measure is based on the representation of generalized trees

as linear strings. We call these strings property strings, be-

cause their components represent structural properties of the

generalized trees. The similarity of two generalized trees is

then defined as the optimal alignment of the corresponding

property strings of the generalized trees. From this definition

it is clear, that our similarity measure is also different from

measures, which are based on isomorphic relations [15], [20].

We demonstrated in Section (IV) that the similarity measure

d has important applications in web structure mining [3]. We

have shown that the cumulative similarity distribution provides

useful information about the test corpus TC . On the basis of

Definition (4.1) we answered the question how structurally

different the conference websites of TC are. In our experiment

in Section (IV) the corpus TC comprised 500 generalized trees

and the average number of nodes per tree was 23. Because

our similarity measure is a parametric measure depending on

(ζ, ζm, σ1
out, σ

2
out, σ

1
in, σ2

in, σ̂1
out, σ̂

2
out, σ̂

1
in, σ̂2

in) we are able to

emphasize different structure types of generalized trees during

the evaluation of the alignment. For example, by setting ζ = 1
we consider a unlabeled hypertext structure as a directed

rooted tree. More precisely, we align only the out-degree

property strings induced by edges from the underlying directed

rooted tree. If we set ζ = 0, we align the property strings

induced by in-degree sequences only. In most of the cases

we used ζ = 1
2 , which weighs in- and out-degree sequences

equally, γfin = γout

2 + γin

2 . In the case of labeled generalized

trees we considered in Section (IV) websites as sets of their

DOM-trees (|W1| + |W2| = 270). We applied agglomerative

clustering to the obtained similarity matrix and found type

classes, which contain structurally meaningful web pages. We

evaluate the clusters found by comparing them with labels

manually assigning to the web pages and find high recall and

high precision values. That means web pages found in a cluster

Ci are actually relevant and web pages which are relevant for

cluster Ci were actually found. Hence, our similarity measure

d is applicable to filter web pages according to their structural

organization. The interpretation of our results from the filtering

process is that similar DOM-trees tend to have a similar content

and layout elements. Furthermore, clusters tell us something

about the meaning of web pages. Altogether we have found

document groups which are comparable on the basis of their

structure types.
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