
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

593

SBTAR: An Enhancing Method for
Automate Test Tools

Noppakit Nawalikit, and Pattarasinee Bhattarakosol

Abstract—Since Software testing becomes an important part of
Software development in order to improve the quality of software,
many automation tools are created to help testing functionality of
software. There are a few issues about usability of these tools, one is
that the result log which is generated from tools contains useless
information that the tester cannot use result log to communicate
efficiently, or the result log needs to use a specific application to open.
This paper introduces a new method, SBTAR that improves usability
of automated test tools in a part of a result log. The practice will use
the capability of tools named as IBM Rational Robot to create a
customized function, the function would generate new format of a
result log which contains useful information faster and easier to
understand than using the original result log which was generated
from the tools. This result log also increases flexibility by Microsoft
Word or WordPad to make them readable.

Keywords—Software Automation Testing, Automated test tool,

IBM Rational Robot.

I. INTRODUCTION
OFTWARE Testing Automation (STA) is one kind of the
software testing which use a computer program to perform

the test instead of manual checking. Several tools were created
to help testers to improve the quality of the software. In
addition, it also saves the development time and cost by
enhancing the productivity of testers and entire development
project teams. Using an automate tool, all essential procedures,
such as testing and reporting the testing results, will be
performed automatically without human interfering. Therefore,
many software companies have implemented automate testing
tools, such as Rational Robot from IBM, Winrunner from HP,
to ensure functionalities of the verified software. These tools
can run scripts which are developed by themselves or written
by languages they support [1].

Generally, the results which generated by automate tools
cannot present details in an understandable format. Similarly,
testers cannot use original log immediately because the log
does not contain only usable information, but also useless
information which testers must screen them out, and manually
generate new reports. Therefore, testers cannot use original
default log to show what exact steps are, or which data that
cause problems. Another problem is that the result is in the
application-based format, only its generator can open the file.
Thus, it is not convenience if testers would like to use this log
on other machines with different platforms; it needs to install
more applications and licenses to access this log.

Authors are with Department of Mathematics, Faculty of Science,

Chulalongkorn University Bangkok 10330, Thailand (e-mail:
n_nostep027@hotmail.com, pattarasinee.b@chula.ac.th).

In this paper, Rational Robot from IBM is used as a tool to
implement a new module. The new function creates a new
format of the result log in the “.doc” format. The testers can
customize information which would like them to be shown in
the result log. When testers use a new function in automated
testing, it can expel the useless information problems which
came with original result log and testers can use this result log
immediately.

The remainder of this paper is organized as follows. In
Section II, it is talking about related works. Rational Robot, an
automated test tools from IBM is introduced in Section III. In
Section IV, we describe the new method and an algorithm of
the new function which is implemented using Rational Robot.
The discussions are presented in Section V. Finally, the
conclusion is given in Section VI.

II. RELATED WORKS
Previous researchers have studied the effectiveness of

automated testing tools to develop a test. Their works mostly
mention about replaying tools to perform regression testing on
applications, or the way to efficient the tools by proposing the
way to increase reuse and flexibility so as to reduce the cost.
However, the research do not mention about how to utilize
ability of the tools to make most efficient result. For software
automation test using tools to capture and playback do not
mean the whole story of “Test Automation”, but it is only a
very small part of the entire testing processes, the ability to
create result and its usability is the one which must be included.

To use the Rational Robot as an automate tools to test the
functionality of the software, testers have to record the script,
perform an appropriate customization, then playback the script
to obtain the result that comes as a picture of a test log which
is generated by the Tools. Many problems will come with that
test log, the biggest problem is that tester cannot use test log to
communicate with the developer team efficiently because the
details in the log which generated by tools may not have
sufficient information. For example, in the log, generated by
that of Rational tools, has only the name of scripts, date and
times, a result (Pass, Fail or Warning). Information from this
log may have some messages for descriptive, but developer
still cannot know that what is the exact step, or data that is
used in test which causes an error. The problem that will come
after cannot effectively use the log which generate by the tools
is Executive peoples or Project Management will not see the
value of using tools to do software testing. Therefore, they will
decline the use of these tools.

Therefore, the expectation from using this new method is
that testers can perform an automate test easily and gain more
effective works.

S

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

594

III. IBM RATIONAL ROBOT
IBM Rational Robot is an application that used as Software

automate testing tools which have capability to record
activities that user perform, playback the recorded script and
also provides an environment for editing script. Rational Robot
can use for test Microsoft Windows client/server and Internet
applications which running under Windows NT 4.0, Windows
XP, Windows 2000 and Windows 98 environment. Rational
Robot can extend ability by integrating with Rational
TestManager to manage and playback a Rational Robot script
and use it to manage test logs too. However, Rational Robot
can be used as a standalone product.

In order to develop a test by Rational Robot, users can use
Rational Robot to develop 2 kinds of scripts which are GUI
scripts for functional testing, and sessions for performance
testing. Rational Robot can automatically generate the scripts
based on testers’ actions performed in the application-under-
test (AUT). After scripts were generated, testers can edit them
using the Robot editor which provides color-coded commands
for keywords as powerful integrated programming during
scripts’ development.

Fig. 1 IBM Rational Robot interface

Adding Features to Scripts
This section describes the basic information of Rational

Robot in details of creating and editing library source files and
SQABasic header files.

A. Library Source Files
There are 2 types of SQABasic library source files which

are:

 .rec (Script File) – This file type will automatically

generate by Rational Robot when users finished
recording scripts. The compiled script can be executed
(called as “playing back a script”). The script file can
add Verification point during recordimg, sub-
procedures and functions also can be added in to the
script file.

 .sbl (Library File) – This file type will not be
automatically generated by Rational Robot.
Additionally, it does not support the verification point.
The library file can store sub procedures and functions

that any script files can be accessed by every script, to
use sub-procedures and functions must use “CallScript”
command.

B. Header Files (.sbh)
Header files use for declaring custom procedures, constants,

and variables that would like to make them available to
multiple scripts and library source files. The Header file can be
created and edited using Rational itself. They can be accessed
by all modules within the project.

C. Example of Script file, Library File and Header File

Example of Script File (Master.rec)

‘$Include “global.SBH ”

 Dim iResult As Integer
 Dim sResult As String
Sub Main
 Dim iCount As Integer

 ‘Initially Recorded: 11/4/2009

 16:46:27
 ‘Script Name: Master

End sub

Example of Library File (Mastertlibrary.sbl)

Sub TestNumber(input1 as Integer,

input2 as Integer)

Dim iText as String
 If input1 > input2 then
 iText = “ Input1 greater than

Input2 ”
 Elseif input 1 < input2 then
 iText = “ Input1 less than

Input2 ”
 Else
 iText = “ The number you typed

equals ”
MsgBox iText

End Sub

Example of Header File (Mastertheader.sbh)

Global Input1 as Integer
Global Const Input2 as Integer =

10
Declare Sub TestNumber Basic Lib

“MasterLibrary” (input1 as Integer,
input2 as Integer)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

595

Rational Robot can also implement sub-procedures and
functions, either directly to script files or in library source file,
including in scripts. The custom procedures which developed
in library source files can be called from procedures in other
files (scripts and other library source files). Library source files
are useful for storing custom procedures that could be accessed
by multiple scripts. If a custom procedure needs to be accessed
by just a single script, testers should consider adding the
procedure to the script rather than to a library source file.

Using Robot with Rational TestManager
Rational Robot can be integrated with other Rational tools

to increase the capability of Automated testing, such as
integrated with Rational Test Manager to manage all testing
activities – planning, design, implementation, execution, and
analysis. In the Test Manager, Testers can evaluate tests by
examining the results of test execution in the test log, and by
running various reports. Table 1 is the picture from Test Log in
Rational Test Manager which generated after completed
running the test.

TABLE I
TEST LOG IN RATIONAL TEST MANAGER

Playing Back Scripts

Fig. 2 Architecture of Rational Robot

When playing back a script, Rational Robot repeats the step
from actions which performs while recording and automates
the software testing process which generated in the .rec file.
With this process automation, each new version of application
can be tested faster and more thoroughly than by manually
testing. Thus, the testing time decrease, while both coverage
and overall consistency increases.

Furthermore, the automate test can be enhanced by adding
the custom procedure or function into Library file (.sbl). This
method makes Rational Robot performs all tests much
dynamically. But in the case that a customized procedure or
function which in Library file (.sbl) is used, the declaration of
that function must be stored in the Header file (.sbh), then
included the Header file into the Script file (.rec). When
playing back finished, Rational TestManager will generate a

result log; a result log is a file that contains records of events
that occur while a script is playing back. Logs will be
generated and available in Rational TestManager.

From the original result log, which generated from Rational
Robot and Rational TestManager, may not be able to adapt to
use for every place/situation. Fortunately, Rational Robot has
capabilities which allow creating new functions and using
another object program outside Rational Robot itself, such as
Microsoft Word. The new module will using command to
create a word document (.doc format) and wrote the
information which specify in script put it in that word file to
make a new format of result log. In next section will mention
about the new module which create by use Rational Robot and
how to use it to solve problem.

IV. PROPOSED METHOD
A new method will change the way of using the result log.

The new report will be generated from mechanism which is
implemented in the Library file. The new module will generate
another file which has extension “.Doc” (Microsoft Word
format), this type of file is very common which can be opened
by the program name “WordPad”, the tools that bundle with
Microsoft OS, or by very famous office tools named
“Microsoft Word”. The architecture of the new method is
show in Fig. 3.

Fig 3 Architecture of New Practice adapt to Rational Robot

In a new result log, the information that would be included

are:

- name of script
- name of person who run the script
- date and time that running the script
- information of each test step
- test result (Pass or Fail) and description
- capture screen

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

596

Fig. 4 Example of Result log from SBTAR function

From Fig. 4 is a result log created from new function, this

result log generated from a small scenario because of example
purpose then it contains only 2 test steps. All of this
information can be distributed and easy for testers to
understand and make a re-test manually. Additionally,
developers can use this information to drive for locating causes
and problems of the entire software processes.

A. Custom Function
The custom function starts with implementing a function in

the library file (.sbl) because this function must be available
for every script when needed. The name of this function which
develops to serve this practice is
“ScreenBasedTrackingARray” (SBTAR). The algorithm of
SBTAR function is described as follows.

(1) Check output folder which using date as folder name if

it is not available then create a new folder.
(2) Capture currently logon name of machine which is used

for running script and keep it in variable.
(3) Create object of Microsoft Word application.
(4) Write information to Microsoft Word, start with name

of script, username of person who run this script and
current date and time.

(5) Loop writing each test step until last step.
(6) Print last screen by pushing “Prtsc” (PrintScreen) to

keep the screen shot in clipboard and paste it at the end
of file.

Once, implementation a new module in library file finished.
It’s the time for declaration in header file (.sbh). Fig. 5 shows
how to declare function SBTAR in header file.

Declare Function

ScreenBasedTrackingARray BasicLib
“ MasterLib ” (sDocPath As
String,_
 sFileName As String,_

 iCount As Integer,_
 sErrMessage As String,_
 vValues() As Variant)

Fig. 5 Declaration statement of SBTAR function

After completing the implementation of the custom function

in the library file and declaring the function in the Header File,
the next step is to perform Script customization.

Script Customization
In the script file must be customized by specifying the value

to variables and adding them to the script.
The first parameter which is “sDocPath” will be assigned

the path or location that uses to store the log file. In Fig. 6, is
an example of the value specification for “sDocPath”.

sDocPath = “C:\Master\”

Fig 6 An example of value specification for “sDocPath”

The second parameter is “iCount”. It will be used to

represent the sequence of test step then it needs to be reset its
value to “0” every times. For resetting the value just assign the
variable “iCount” = 0.

iCount = 0
iCount = iCount + 1
vValue(iCount) = “Start web

browser and try www.chula.ac.th”
StartBrowser

http://www.chula.ac.th/,
“ WindowTag=WEBBrowser ”
Window WMaximize, “ ”, “ ”

Fig. 7 Add description for each test step

After resetting “iCount” to 0 then we start to add description
for each test step by assigning a sentence to keep in array
variable name “vValue()”. In this function iCount must adding
1 for every test step because it will using as indicator of array
element. Last step put the call statement to use SBTAR
function. To using this function users must use the Call
Statement to call the function written in library file and must
provide values for 5 parameters which are

1. “sDocPath” is parameter for keeping a value of

location which is used to store the result log.
2. “sFileName” is parameter for keeping a value of

name of the result log.
3. “iCount” is parameter for keeping a value of

number of the testing steps that are used in a test.
4. “sErrMessage” is parameter for keeping a

description/reason of the result.
5. “vValue()” is an array for keeping values of

descriptions of each testing step.

Fig. 8 is call statement and required parameter for use
SBTAR function.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:8, 2009

597

Call
ScreenBasedTrackingARray(sDocPath,

sFileName, _
 iCount, msgtext, vValue())

Fig 8 Example of call statement for SBTRA

V. DISCUSSION
One important process in software development is the

verification procedure where various tests must be performed
to ensure the performance of the delivered software. Most of
software developers apply automated test tools to perform this
process in order to safe their time and cost. Unfortunately,
these tools cannot fully support the testing process according
that the results from the test tools may be stored in the
unusable format. Therefore, the testers must perform manually
analysis process in order to capture and locate the defect of the
software.

This paper proposed the SBTAR method to support the
testing process. This method is different from other testing
methods of other testing tools since it focuses in storing testing
results rather than fast execution mechanisms with difficult
understanding of the output log. As a result, the users of this
new proposed module can derive and fix errors of the
developed software correctly and easily in a short period of
time. Thus, the objective of saving time and cost for using the
automate test tools is completely achieved.

VI. CONCLUSION
In order to obtain a qualified software for clients, developers

must perform a good software process, including the testing
procedure, to guarantee the quality of the delivered software.
Although the testing process is time consuming and is the
tedious task for all testers, this process needs to perform with a
high skill of software tester group. Most testers implement
software testing tools, automatic software testing, to obtain the
test results. The testing scenarios are used as inputs and the
expected results are the running transactions and events stored
in the log file. The common problem from most software test
tools is that this common log file is difficult to understand and
use. This paper proposes SBTAR, a mechanism to manage the
result log obtained from the testing process to be in the form
that testers can locate and solve bugs in the software quickly
and correctly. The benefits of applying this method are that
cost and time in the testing procedure is reduced, with results
are generated and used easily.

ACKNOWLEDGMENT
We would like to give thanks for fully help of QA Team of

IBM Solution Delivery Co.,Ltd., Thailand who always give
help when I faced the problems and thanks for every advices
that make me finally got a solution. Also a big gratitude to
“RationalUsers” group that sharing the idea, information and
example for implementation function with Rational Robot.

REFERENCES
[1] ZHU Xiaochun, ZHOU Bo, 1LI Juefeng, GAO Qiu, “A Test Automation

Solution on GUI Functional Test”, Eighth ACIS International
Conference on Volume 3, Issue, July 30 2007-Aug. 1 2007 Page(s):1124
– 1128.

[2] IBM Rational Robot, http://www-
01.ibm.com/software/awdtools/tester/robot/support/index.html

[3] Rational User Group, http://tech.groups.yahoo.com/group/RationalUsers/
[4] Karhu, Katja; Repo, Tiina; Taipale, Ossi; Smolander, Kari, “Empirical

Observations on Software Testing Automation”, Software Testing
Verification and Validation, 2009. ICST apos;09. International
Conference on Volume , Issue , 1-4 April 2009 Page(s):201 – 209

[5] Michael, J.B.; Bossuyt, B.J.; Snyder, B.B., “Metrics for measuring the
effectiveness of software-testing tools”, Software Reliability Engineering,
2002. ISSRE 2002. Proceedings. 13th International Symposium on
Volume , Issue , 2002 Page(s): 117 – 128

[6] Cheng-hui Huang; Huo Yan Chen, “A Tool to Support Automated
Testing for Web Application Scenario”, Systems, Man and Cybernetics,
2006. SMC apos;06. IEEE International Conference on Volume 3, Issue ,
8-11 Oct. 2006 Page(s):2179 – 2184

[7] Bering, C.A.; Covey, J.H., “Software testing-concepts and approach”,
Aerospace and Electronics Conference, 1991. NAECON 1991.,
Proceedings of the IEEE 1991 National Volume , Issue , 20-24 May
1991 Page(s):750 - 756 vol.2

[8] O. Taipale, K. Smolander, and H. Kälviäinen, "Cost Reduction and
Quality Improvement in Software Testing," in Software Quality
Management Conference, Southampton, UK, 2006.

[9] E. Dustin, J. Rashka, and J. Paul, Automated software testing:
introduction, management, and performance. Boston: Addison-Wesley,
1999.

[10] Mark Fewster, "Common Mistakes in Test Automation," Grove
Consultants 2001.

