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Abstract—In analyzing large scale nonlinear dynamical systems, 

it is often desirable to treat the overall system as a collection of 
interconnected subsystems. Solutions properties of the large scale 
system are then deduced from the solution properties of the 
individual subsystems and the nature of the interconnections. In this 
paper a new approach is proposed for the stability analysis of large 
scale systems, which is based upon the concept of vector Lyapunov 
functions and the decomposition methods. The present results make 
use of graph theoretic decomposition techniques in which the overall 
system is partitioned into a hierarchy of strongly connected 
components. We show then, that under very reasonable assumptions, 
the overall system is stable once the strongly connected subsystems 
are stables. Finally an example is given to illustrate the constructive 
methodology proposed. 
 

Keywords—Comparison principle, First integral, Large scale 
system,  Lyapunov stability. 

I. INTRODUCTION 
OST of the present day stability studies are done by 
simulation on an analogue or digital computer. In this 

way, the nonlinear differential equations of the system, for a 
given initial operating condition are integrated numerically. 
However, to find the boundary of the stability region for a 
large scale nonlinear system, the simulation method is slow 
and expensive. 

The Lyapunov function method appeared one of the most 
powerful methods for stability studies of large scale nonlinear 
systems [10], [14], [30]. However, this method did not seem 
suitable, owing to the continuous increase in size and 
complexity of composite systems under study; in particular 
and when the problem of stability domain estimate of the 
composite system is attacked. But, despite its elegance, it is 
still in general impossible to find it for composite system 
because of no universal and systematic procedure available to 
tell us how to find the required Lyapunov function. 
Consequently, the problem of finding the necessary and 
sufficient conditions for the stability of nonlinear system is a 
formidable one and as yet an unsolved problem. In particular, 
finding a Lyapunov function for a system under investigation 
formidable one and as yet an unsolved problem. In particular, 
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finding a Lyapunov function for a system under investigation 
is a nontrivial task. It is often the case that such a function can 
only be found using a method of systemized trial and error. 

Attempts to overcome the drawbacks of the Lyapunov 
approach have led to the decomposition-aggregation method, 
which is based on Bellman’s concept of vector Lyapunov 
function [4]. Application of the method to a large scale 
nonlinear system is carried out by decomposing the composite 
system into a number of subsystems. It is well know from the 
literature, a large scale system can be modelled as an inter- 
locking set of lumped subsystems or elements [1], [3]. Certain 
of the subsystems can be detached for analysis from the whole 
complex by inspection, but for systems composed of many 
elements, one of the first and most difficult tasks is to break 
the system down into manageable subsystems. By a proper 
ordering of the subsystems the dimensionality of the original 
model can be significantly reduced [7], [16]. This task can be 
made less subjective and more systematic by suitable 
algorithm for decomposition. In this paper we follow a graph 
theoretic approach to develop a decomposition tool which 
exploits the structure of the directed graphs associated with 
the nonlinear dynamic systems [5], [9]. In the author’s view, 
however, the structure of the directed graph associated with 
the dynamic system under consideration is the most crucial of 
all factors which may contribute for the overall complexity of 
a large scale nonlinear system since it is this structure which 
determines whether a system of equations must be treated as a 
whole or as a number of autonomous subsystems with a given 
precedence ordering. To do so, we focus in graph theory 
decomposition based on identifying the strongly connected 
components (scc) [20, 21]. We carry out an idea explicitly 
stated by Kevorkian: The stability analysis of a large dynamic 
system must begin by the exploitation of its digraph [19]. The 
algorithmic extraction of strongly connected components of a 
digraph was done by many authors; however the algorithm of 
Tarjan [31] is apparently more efficient using depth-first 
search. 

The impetus behind this decomposition is to assemble 
subsystems out of the overall system in some scheme so that 
each subsystem can be treated independently. The stability of 
such systems can often then be accomplished in terms of the 
subsystems and in terms of the interconnecting structure of 
such composite system [13], [15]. This method may be 
advantageous to adopt an approach in which the composite 
system is decomposed into appropriately interconnected 
subsystems. In this way, difficulties which usually arise in the 
qualitative analysis of complex dynamical systems may 
frequently be circumvented.  

The First Integral Approach in Stability Problem 
of Large Scale Nonlinear Dynamical Systems 
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II. DECOMPOSITION 
In this subsection, we discuss the technique for 

decomposing a given large scale system into an 
interconnection of several simpler subsystems. Most of the 
currently known results concerning the stability of large scale 
systems either in the Lyapunov sense or the input-output sense 
assume that the system at hand has already been decomposed 
into a form suitable for applying the theory therein. The 
purpose here is to tackle this issue. 

In what follows, we describe the decomposition technique. 
In the first, the system equations are rearranged into a lower 
triangular form by renumbering and regrouping the systems 
variables as needed. This technique is very powerful since it 
enables one to infer the stability properties of the overall 
system by examining the so-called strongly connected 
components (SCC) alone. 

This technique was applied to Lyapunov stability by Michel 
[18]. It requires some background of the theory of directed 
graphs, or digraphs, and this given next. 

A directed graph (or digraph) is an ordered pair ),( EV  
where { }nvvvV ,,, 21 L= a finite set is and E is a subset 
of VV × . The set V is referred to as the vertex set and E  is 
referred to as the edge set. If Evv ji ∈),( , then we say that 

there is an edge from iv to jv . We sometimes use a pictorial 

representation of a digraph ),( EV , whereby n points in the 
plane are labeled as nvvv ,,, 21 L and an arc is drawn from 

iv to jv  with an arrowhead directed towards jv  

whenever Evv ji ∈),( . We say that a vertex jv  is reachable 

from another vertex iv if there is a path from iv to jv . 

Given a digraph ),( EV , we define a binary relation ℜ on 
the vertex set V by letting ℜ consist of those vertex pairs 

),( ji vv  such that jv is reachable from iv . In this case, we 

write ji vv ℜ . 
 

Definition1: Given a digraph ),( EV , we say that a pair of 
vertices ),( ji vv is strongly connected if ji vv ℜ  and ij vv ℜ . 

We say that the digraph itself is strongly connected if every 
pair of vertices is strongly connected. 

To introduce the notion of decomposition into strongly 
connected components, we define another binary relation 
T on the vertex set V by letting a pair ),( ji vv belong to T if 

and only if the pair of vertices ),( ji vv is strongly connected. 

It is then easy to show that T is an equivalence relation on the 
set V . Hence it possible to partition V into its equivalence 
classes under T . Clearly, the digraph is strongly connected if 
and only if V it is a single equivalence class underT . 

Theorem1 [9, 29]: Given a digraph ),( EV , one can partition 
the vertex set V into disjoint Union of subsets kVVV ,,, 21 L in 
such a way that 

i) each iV  is an equivalence class under the 
relation T  

ii) if ia Vv ∈ , jb Vv ∈ , and Evv ba ∈),( , then 
ji ≥  

Equivalently, if we renumber the vertices in V in order, 
beginning with those in 1V and ending with those in kV , then 
the adjacency matrix of the graph is block triangular form. 

Therefore, for a given digraph, if we let 
kVVV ,,, 21 L denote the equivalence class of V under the 

relation T , ordered so as to satisfy condition ii) of the above 
theorem, then the digraph ))(,( EVVV iii ∩× is called the ith 
strongly connected component (SCC). It should be noted that 
there exist very efficient algorithms for carrying out 
decomposition into (SCC) The objective (SCC) 
decomposition is to determine the stability properties of the 
original large scale system by studying the SCC’s and the 
interconnecting subsystems alone. The result in this direction 
can be portioned into those that deal with Lyapunov stability. 
Up to now, the emphasis has been on the decomposition of a 
given large scale system into hierarchical interconnection of 
several lower order subsystems. The potential weakness of 
this method is that, in some cases, the system digraph is 
strongly connected, and as result no simplification can be 
achieved using this technique. 

III. PROBLEM FORMULATION 
Consider a system described in state-space form by the set 

of equations 
))(,),(()( 1 tztztz kii L& φ= ,   ki ,,2,1 L=               (1) 

where )(tzi is the state of the ith subsystem and k is the 
number of subsystems. Define a digraph as follows: the vertex 
set consists of{ }k,,2,1 L , and there is an edge from vertex 
j to vertex i if and only if the function iφ depends explicitly 

on the variable jz . Now carry out a decomposition of this 
digraph into its strongly connected components, and let 

kVVV ,,, 21 L denote the equivalence classes of vertices 
satisfying the conditions of the above theorem. If we define 
the new vector variables 

{ }iai Vatztx ∈= :)()(                               (2) 
Then condition ii) of the theorem1 implies that the state 
equations now have the triangular form 

))(,),(()( 1 txtxtx kii L& ϕ=     ki ,,2,1 L=                 (3) 
The noteworthy feature of (3) is that the differential equation 
for the variable ix  depends only on the variables ixx ,,1 L , 
and not on the variables ki xx ,,1 L+ .  

It is frequently possible to view system (3) as an 
interconnection of subsystems. The process of the 
decomposition into an appropriate form is by no means a 
trivial task, and it is usually influenced by mathematical 
convenience to overcome technical difficulties [26],[27]. We 
study systems described by (3) and we further assume that the 
digraph associated with it is strongly connected. We have in 
mind system (3) which can be modeled equivalently by 
equations of the form: 

))(())(())(()( txhtxftxgtx iiiii =+=&   ki ,,2,1 L=       (4) 
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where in
i Rtx ∈)( is the state vector of the ith subsystem; 

[ ]Tk
T txtxtx )(,),()( 1 L= , and ii nn

i RRRg →×+: ; 
inn

i RRRg →×+: are continuous function. It is assumed that 
the set of differential equations (4) has a unique solution for 
each initial condition, which depends continuously on the 
initial condition. The system  

))(()( txgtx iii =&                               (5) 
is called the ith isolated subsystem, and the term ))(( txf i is 
called the ith interaction term. 

IV. LYAPUNOV STABILITY 
The function ( )h x is assumed to satisfy the necessary 

smoothness requirements for the existence, and continuity of 
the solution for every nRx ∈0 and +∈ Rt0  so that there 
exists one and only one solution ),;( 00 txtx  for 00 ≥t   and 
also to satisfy (0) 0h =  so that 0x = is an equilibrium point 
for the interconnected system.  

Lyapunov stability results involve the existence of 
functions RDV →: . We assume that such functions are 
continuous on their respective domains and that they satisfy 
locally a Lipschitz condition with respect to x and 0)0( =V . 
The upper right hand derivative of V with respect to t along 
the solution of (4) is given by  

{ }][)],;([1suplim)(
0

)4( xVtxhtxV
h

xDV
h

−+=
+→

            (6) 

If V is continuously differentiable with respect to all its 
arguments, then the total derivative of V with respect to t 
along the solution of (4) is given by 

=)()4( xDV { }1 2( ) ( ) ( , , , )T
i i i i i i lv x g x f x x x∇ + L           (7) 

where i iv∇ denotes the gradient vector of ( )i iv x with respect 
to ix given by 

1
, ,

i

T

i i
i i

i im

v v
v

x x

⎛ ⎞∂ ∂
⎜ ⎟∇ =
⎜ ⎟∂ ∂⎝ ⎠

L                            (8) 

In the analysis of large scale nonlinear systems, the problem 
of determining the stability region of a stable equilibrium 
point is very important in many applications. Basically, there 
are two approaches to estimate the stability regions of large 
scale systems; namely the scalar Lyapunov approach and the 
vector Lyapunov function approach. In the scalar Lyapunov 
function approach, the stability region is estimated via a 
Lyapunov function, which is a function of the Lyapunov 
function for each isolated subsystem. In the vector Lyapunov 
functions approach, an estimated stability region of the so-
called comparison system [2] is found first, based on which 
the stability region of the overall system is then determined. It 
is not clear at the current stage which approach offers better 
results. The vector Lyapunov function approach provides an 
estimated stability region of each subsystem independent of 
other subsystems; a feature not shared by the scalar Lyapunov 
function approach. It is well known that both the scalar 
Lyapunov function approach and vector Lyapunov function 

approach give very conservative results in estimating the 
stability regions. This undesirable fact is partly due to the 
nature of Lyapunov function approach and partly to the 
characteristic of the decomposition-aggregation technique 
used in analyzing the large scale nonlinear system. In this 
paper we focus on vector Lyapunov function approach since it 
is more general in terms of assumptions imposed on the large 
scale nonlinear system. 

A. Stability of the Isolated Subsystem 
The Lyapunov theory is very powerful. However, in 

general, great difficulties arise in applying these results to 
high dimensional systems with complicated structure. The 
reason for this lies in the fact that there is no universal and 
systematic procedure available which tell us how to find the 
required Lyapunov functions. Although converse Lyapunov 
theorems have been established, these results provide no clue 
for the construction of the Lyapunov functions. For this 
reason we will pursue an approach which allows us to analyze 
the stability of large scale system with intricate structure in 
terms of simpler system component. First we need to consider 
the stability of the isolated subsystem also called free 
subsystem. It is still obvious that the construction of 
Lyapunov function of the free subsystem with lower order is 
comparatively manageable since it is characterized by its own 
Lyapunov function and the characterization does not require 
the knowledge of others subsystems. Secondly, once the 
Lyapunov stability of the composite system has been 
established, it remains to show that the overall system is 
stable. 

The reader is referred to [23-25] for the principal Lyapunov 
stability results.  

In characterizing the qualitative properties of the isolated 
subsystem S, we use the following conventions 
 
Definition2: Isolated subsystem S possesses Property A if 
there exists a continuously differentiable function 

RRv in
i →:  functions ,, 21 KRii ∈ψψ Ki ∈3ψ and a constant 

Ri ∈σ such that the inequalities 
( ) ( ) ( )iiiiii xxvx 21 ψψ ≤≤ ,                     (9a) 

( ) ( ) ( )iiiiSi xxDv 3ψσ≤                          (9b) 

holds for all in
i Rx ∈   

Clearly if 0piσ  the equilibrium 0=ix of S is uniformly 
asymptotically stable in the large. If 0=iσ the equilibrium is 
uniformly stable. If 0fiσ  the equilibrium of S may be 
unstable.  
 
Theorem2 [28]. The equilibrium 0=ix  is uniformly 
asymptotically stable in the large if the following conditions 
are satisfied. 
(i) Each isolated subsystem S possesses Property A 
(ii) Given iv and 3iψ of hypothesis (i), there exist constants 

Raij ∈ such that 
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( )[ ] ( )[ ] 2
1

1
3

2
1

31 ),,()( ∑
=

≤∇
k

i
jiijiiki

T
ii xaxxxxv ψψθ L    (10) 

for all in
i Rx ∈ and where iθ are the interactions terms. 

(iii) Given iσ of hypothesis (i) there exists an k-vectors 

( ) 0,,1 fL k
T ααα = such that the test matrix [ ]ijpP =  

specified by  

⎪⎩

⎪
⎨
⎧

≠
+

=+
=

jiaa
jia

p jijiji

iiii
ij

2
)(

(
αα

σα
                      (11) 

is negative definite. 
Before proceeding further, we note that the test 
matrix [ ]ijpP =  is negative definite if and only if 

( ) 01

1

111

f

L

MLM

L

mmm

m
m

pp

pp
− ,    km ,2,1 L=            (12) 

B. Stability of the Composite Subsystem 
In this section the framework and the methodology of the 

work are illustrated. The sufficiency of using in our new 
unified approach ( )1 2, inT Tx x x R= ∈  1, 2i = for discussing will 

be evident. On the necessity side, a preliminary 
characterization of the system dynamic is also given to 
stability and performance characterizations which are directly 
related to contribution of Lyapunov functions. The system 
equation (4) is assumed to be expressible as a nonlinear 
interconnection of subsystems given by the following 
structure: 

1 1 1( )x g x=&                                 (13a) 

2 2 2 2 1 2( ) ( , )x g x f x x= +&                         (13b) 
One of the main impediments to the application of 

Lyapunov’s method to composite subsystem is the lack of 
formal procedures to construct the required Lyapunov 
function for the differential equations describing the given 
composite sequential subsystem. This construction is an 
intractable problem and a crucial part of the design because of 
the dimensionality and the nonlinear interconnection term. For 
this reason, we adopt an approach which can make this 
construction a feasible task.  

In particular, we concentrate on the case where each 
composite subsystem admits a simplified local subsystem by 
which we start the recursive design procedure; defined by the 
following differential equation.  

rmmqxhx sspqq ++== ,,1)( L&               (14)                           

where    1−= js   for   mj ,,3,2 L= ,   rmmp ss
xxx ++= ,,1 L                                                           

And we assume that (13) have an appropriate definite first 
integral )( pr xv  of order r for 1++ ss mrm p .  

We recall that, by first integral, we understand a 
differentiable function )(XΓ defined in domain D of the state 

space such that when sxi ' constitute a solution, 
)(XΓ assumes a constant value C [18]. 

A necessary and sufficient condition for (14) to have first 
integral is given by the condition 

0
)(

1

=
∂

∂
∑
= +

+
r

i im

pim

s

s

x

xh
                           (15) 

In what follows the constructive methodology of the first 
integral will be illustrated for 2=r (second order). Then (14) 
is equivalent to the ordinary first order differential equation 
given by 

)(

)(

2

1

2

1

pm

pm

m

m

xh

xh

xd

xd

s

s

s

s

+

+

+

+
=                          (16) 

Multiplying and integrating (16) ,the result can be expressed 
as energy integral of (14) as follow 

0)()(
0

=−+ ∫ tdxvxv
t

psps &                      (17) 

where )( ps xv  is the second order first integral which we 
assume it is definite and constitutes a Lyapunov function of 
(14) and 

 im
im

s
r

i
s s

s

x
x

v
v +

+= ∂
∂

=∑ &&

1

                          (18) 

is the time derivative of the Lyapunov function )( ps xv along 

the motions of (14).        
This proposed methodology uses the resulting Lyapunov 

function )( ps xv 2V=  of (14) and proceeds by constructing a 
new Lyapunov function for the subsystem under study. Let 

)(
)(

)(
1

e

r

i
im

im

ps
ec x

x
xv

xv
s

s

∑
=

+
+∂

∂
= φ& = 

              )()()( eceaps xuxuxv =+ &&                       (19)  
 where  

21 , ++=
ss mmp xxx     ;       3,,1 +=

sme xx L                       

Since the derivative (19) along the trajectories of the 
subsystem considered must satisfy the condition 

)()( eaps xuxv && + 0≤                               (20) 

an attempt is made to make it at least negative semi definite. 
This may be accomplished by grouping terms of similar state 
variables and choosing in obvious way a function )( ep xu  
such that 

)()()()( epeapsea xuxuxvxv ++= &&&                    (21) 

If condition (15) is satisfied it follows that:  

0)],,([)],,([ 0000 =⇒= txtXvCtxtXv psps &             (22) 

Therefore by augmenting the order of the subsystem by one, 
and by virtue of (22) equation (21) takes the following form: 

)()()()( eTepecea xuxuxuxv −=+=&           (23) 
If we define  

∫=
t

epep dtxuxv
0

)()(                          (24) 
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The resulting Lyapunov function is found by integrating (23) 
)()( ece xvxv = )( ep xv+ 3V=                   (25)                                   

And its time derivative is given by 
)()( eTe xuxv −=&                                 (26) 

By reapplied iteratively the above steps, we can construct 
4V from 3V and so on to )( ld xV where 

1
,,1 ++=

sx mml xxx L                                               
We proceed with the same scheme for every composite 
sequential subsystem to the original composite system. The 
methodology uses the idea of the “top-down” procedure to 
construct a sequence of Lyapunov functions started from the 
second order definite first integrals associated with each free 
subsystem. This methodology frequently enables us to 
circumvent difficulties which arise when the Lyapunov 
approach is applied to high dimensional composite subsystem 
with computational and analytical difficulties [13].  

C. Overall Composite System Stability 
Suppose that the system (13) satisfies the following 

assumptions. 
 
 Assumption1.  The function ),( 212 xxf satisfies a linear 
growth assumption, that is, there exists two class-K functions 

(.)1γ and (.)2γ , differentiable at 01 =x , such that  
)()(;( 12211212 xxxxxf γγ +≤                   (27) 

 
Assumption 2 (Growth of the Lyapunov function )( 2xW ) 

The positive definite function )( 2xW is 2C , radially 
unbounded, and satisfies  
(i) 0)( 22

≤xWLg for all 2x . 
(ii) In addition, there exists constants c and b such that 

for bx f2 , )( 22
2

xcWx
x
W

≤
∂
∂

                       (28) 

 

Theorem3 If there exists a positive semi definite radially 
unbounded function )( 2xW and a positive constants c  and M 
such that for Mx f2 assumptions 1 and 2 are satisfied and 
for the equilibrium 01 =x& the 1x -subsystem is uniformly 
asymptotically stable in the large, then the overall composite 
system is stable. 
 
Proof:  We have that for each 0≥τ   

( )( ) ( ) ατγτ −

∂
∂

≤
∂
∂ ex

x
Wx

x
W

1
2

2
2

(~ ( ) ))(~
21 τγ ατ xex −+      (29) 

Because )( 2xW is radially unbounded, this implies that 

)(~
2 τx and ))(~( 2

2
τx

x
W
∂
∂ are bounded on [ )∞,0 . Therefore 

there exists K∈1γ such that  

ατγτ −≤
∂
∂ exxx
x
W )),())(~( 1212

2
                 (30) 

Using (ii), we obtain the estimate 

texKW α−≤ ))0(( 11
& W  

for { }Mtx ,0max)(2 f . This estimate proves the bounded 
ness of )( 2xW , therefore, if we denote the estimated 
Lyapunov function  of the overall composite system by 

),( 210 xxV then 

))0(()0(())0((),( 21

))0((

2210

1
0

1

xWxKexWxxV
dsexK s

≤≤
−∫ α

τ

 
 

It follows that 0),( 210 =xxV implies 01 =x . By 
construction )(),0( 220 xWxV = , and because the equilibrium 

01 =x of (13a) is  uniformly asymptotically stable in the large 
and assumption 2 is satisfied , then it exists a positive semi 
definite radially unbounded function ),( 210 xxV such that  

)0,0(),(0),( 21210 =⇒= xxxxV . 
We conclude that the overall composite system is stable. 

V. EXAMPLE 
To illustrate how the results can be applied and to 

demonstrate the usefulness of the method of analysis 
advanced herein, let’s consider the following composite 
nonlinear system given in hierarchical form by: 

3
1211

3
1111 5.1 xxxx −−=& ;   2

12
2
11

5
1212 xxxx +−=&  

2221 xx =& ; 21232122 sin xxxx −−=& ; 
2
1223212223 sin xxxxx −=&  

The isolated subsystem )( 11 xg where ),( 12111 xxx = is 
given by the first two equations. The required Lyapunov 
function of is found by decomposition. Let 

3
1111 xx −=&  and 5

122 xx −=&  

Choosing 2
11111 )( xxv =  and 2

12122 )( xxv = , we have 
4
11111 2)( xxDv −=  and 6

12122 2)( xxDv −= . Using the notation 

of theorem2 we make the identification 2
1211 )()( rrr ==ψψ , 

4
13 )( rr =ψ , 2

2221 )()( rrr ==ψψ  , and 6
23 )( rr =ψ . The 

interconnecting structure is characterized by 
3

121112111 5.1),( xxxx −=θ and 2
12

2
1112112 ),( xxxx =θ  

We have now 

3
12

3
11

3
12111111111 )3()5.1)(2()()( xxxxxxxv −=−=∇ θ   

= 21
1223

21
1113 )()3()( xx ψψ −  

2
11

3
12

2
12

2
111212122 )2())(2()()( xxxxxxxv ≤=∇ θ  

= 21
1113

21
1223 )()2()( xx ψψ  

We now have 02211 == aa , 312 −=a , 221 =a , 
221 −== σσ . Choosing 121 ==αα , the test matrix assume 

the form 
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⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
25.0
5.02

P  

Since P is negative definite it follows from theorem2 that the 
equilibrium 0),( 11211 == xxx is asymptotically stable in the 
large. 

The composite subsystem is given by the last three 
equations.  Using (15) we get 

2221 xx =& ; 2122 xx −=&  

from (17) )2(
2

2
22

2
212221 )(5.0),( vxxxxvs =+=                     (A) 

Differentiating (A) and augmenting the subsystem order by 
one yield 

2323
2
11

2
23

)2(
3 xxxxv && −−= , taking 2323

)2(
3 5.0 xxu &= yields 

),()(5.0 21
2
23

2
22

2
21

2(
32 xxWxxxvV =++==  

⇒−= 2
23

2
1221 ),( xxxxW& the composite subsystem is stable. 

Since the 1x -subsystem is uniformly asymptotically stable 
in the large, and when 01 =x , the 2x -subsystem is globally 
stable with Lyapunov function 2V and because the conditions 
of theorem3 are satisfied, the overall composite system is  
stable. 

VI. CONCLUSION 
This paper has treated in a very general setting the stability 

of a large scale nonlinear dynamical system. Due to the 
functional analysis approach, the assumptions  required on the 
subsystems is minimal, that is the overall system is 
algorithmically decomposed into a hierarchy of strongly 
connected subsystems which may be complex or relatively of 
high dimension and provide computational and analytical 
difficulties. Simplified stability conditions and computational 
advantage obtained from this structural decomposition are 
presented. This novel approach establishes that the overall 
system is stable once the strongly connected subsystems are 
stable. However, it is found that the method proposed in this 
paper provides a systematic approach of Lyapunov stability 
for a large scale nonlinear system expressed as first order 
nonlinear differential equations. The method was successfully 
applied to fifth order differential equations. 
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