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Periodic solutions for a higher order nonlinear
neutral functional differential equation
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Abstract—In this paper, a higher order nonlinear neutral functional
differential equation with distributed delay is studied by using the
continuation theorem of coincidence degree theory. Some new results
on the existence of periodic solutions are obtained.
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I. INTRODUCTION

IN the last several decades, by applying the continuation
theorem of coincidence degree theory, some researchers

have studied some kinds of second order delay functional dif-
ferential equations, see [3-12] and the references therein. The
conditions imposed on g(x) are: there are two positive con-
stants A,M such that xg(x) > 0, |x| > A, and g(x) > −M,
for x < M , which are required in [5,6]; or g(x) > 0,∀x ∈ R,
limx→+∞ g(x) = +∞ and limx→−∞ g(x) = −∞ which are
required in [10]. Furthermore, the delays of these equations
are discrete. But the work to get the existence of periodic
solutions of neutral distributed delay functional differential
equations(NFDE), especially higher order nonlinear neutral
distributed functional differential equations rarely appeared.

In present paper, we discuss the existence of periodic
solutions to a kind of higher order nonlinear neutral functional
differential equation with distributed delay as follows,

(Ax)(m)(t) = f(x(t))x′(t) + g(t,
∫ 0

−r

x(t + s)dα(s)) + e(t),

(1.1)
where (Ax)(t) = x(t) − kx(t − τ), f : R → R is
continuous functions, g : R2 → R is contiunous function
which is periodic to the first argumtent with positive period
ω, e : R → R is a continuous periodic function with period
ω, r > 0,m is a positive integer, k, τ ∈ R are two constants.
α : [−r, 0] → R is a bounded variation function. It is well
known that such a kind of distributed delay NFDE has been
used for studying many problems in some fields, such as
physics, mechanics and ecology.

By employing the continuation of coincidence degree theory
developed by Mawhin, we obtain some new results on the
existence of periodic solutions of Eq.(1.1). The significance is
that even if for the case of m = 2, the conditions imposed on
g(x) and f(x), and the methods to estimate a priori bounds
are different from the corresponding ones of [3-12].
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II. LEMMAS

We firstly give some useful notations:
∨ 0

−r(α) = 1, where∨ 0
−r(α) is the total variation of α(s) over [−r, 0]. Cω =

{x|x ∈ C(R, R), x(t + ω) ≡ x(t)}, with the norm ||x||0 =
max t∈[0,ω]|x(t)|. C1

ω = {x|x ∈ C1(R, R), x(t + ω) ≡ x(t)},
with the norm ||x|| = max{||x||0, ||x′||0}. Clearly, Cω and
C1

ω are two Banach spaces. We also define operators A and
L in the following form respectively,

A : X → X, L : Dom(L) ⊂ Y → X, Lx = (Ax)(m),

where Dom(L) = {x ∈ Cm(R, R) : x(t + ω) ≡ x(t)}.

Lemma 2.1[6] If |k| < 1, then A has continuous bounded
inverse on X , and

[1] ||A−1x|| ≤ ||x||0
||k|−1| , ∀x ∈ X,

[2]
∫ ω

0
|(A−1f)(t)|dt ≤ 1

|1−|k||
∫ ω

0
|f(s)|ds, ∀f ∈ X.

By Hale’s terminology[2], a solution x(t) of Eq.(1.1) is
that x(t) ∈ C1(R, R) such that Ax ∈ Cm(R, R) and
Eq.(1.1) is satisfied on R. In general, x(t) does not belong
to Cm(R, R). But under the condition |k| 	= 1, we can
see from Lemma 2.1 that (Ax)′(t) = Ax′(t), (Ax)′′(t) =
Ax′′(t), · · · , (Ax)(m)(t) = Ax(m)(t). So a solution x(t) of
Eq.(1.1) must belong to C(m)(R, R). According to the first
part of Lemma 2.1, we can easily obtain that

KerL = R, ImL = {x|x ∈ X :
∫ ω

0

x(s)ds = 0}.
L is a Fredholm operator with index zero. Now we project
operators P and Q as follows, respectively,

P : Y → KerL, Px = (Ax)(0),

Q : X → X/ImL, Qy =
1
ω

∫ ω

0

y(s)ds.

Then ImP = KerL, KerQ = ImL. Let L−1
p :

ImL → DomL ∩ KerP denotes the inverse of L.

Lemma 2.2[1] Let X and Y be two Banach spaces,
L : Dom(L) ⊂ Y → X be a Fredholm operator with index
zero, Ω ⊂ Y be an open bounded set, and N : Ω → X be
L− compact on Ω. If all the following conditions hold,

[A1] Lx 	= λNx, ∀x ∈ ∂Ω ∩ Dom(L),∀λ ∈ (0, 1),
[A2] Nx /∈ ImL,∀x ∈ ∂Ω ∩ KerL,
[A3] deg{JQN, Ω ∩ KerL, 0} 	= 0, J : ImQ → KerL is

an isomorphism. Then equation Lx = Nx has at least one
solution on Ω

⋂
Dom(L).
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III. MAIN RESULTS

For the sake of convenience, we denote: Z+ is a set of all
positive integers, X := Cω, Y := C1

ω and e = 1
ω

∫ ω

0
e(t)dt.

Theorem 3.1 If there exist constants M > 0 and W ≥ 0
such that

[B1] x(g(t, x) + e ) > 0 (or x(g(t, x) + e ) < 0), for t ∈
R, |x| > M,

[B2] lim
|x|→+∞

sup |F (x)
x | = W , where F (x) =

∫ x

0
f(s)ds,

[B3] e < 0, g(t, x) > 0, for t, x ∈ R.
Then Eq.(1.1) has at least one ω-periodic solution, if
|k| − 1 > Wωm−1.

Corollary 3.1 If there exist constants M > 0 and
W ≥ 0 such that

[B∗
1 ] x(g(t, x) + e ) > 0 (or x(g(t, x) + e ) < 0), for t ∈

R, |x| > M,

[B∗
2 ] lim

|x|→+∞
sup |F (x)

x | = W , where F (x) =
∫ x

0
f(s)ds,

[B∗
3 ] e > 0, g(t, x) < 0, for t, x ∈ R.

Then Eq.(1.1) has at least one ω-periodic solution, if
|k| − 1 > Wωm−1. .

Theorem 3.2 Assume n is an even integer, and if
there exist constants C ≥ 0 and M > 0 such that

[C1] xg(t, x) > 0 (or xg(t, x) < 0), for t ∈ R, |x| > M,

[C2] lim
x→+∞ sup

t∈R
| g(t, x)

x | ≤ C.

Then Eq.(1.1) has at least one ω-periodic solution, if
1 − |k| > 2Cωm.

Corollary 3.2 Assume n is an even integer, and if
there exist constants C ≥ 0 and M > 0 such that

[C∗
1 ] xg(t, x) > 0 (or xg(t, x) < 0), for t ∈ R, |x| > M,

[C∗
2 ] lim

x→−∞ sup
t∈R

| g(t, x)
x | ≤ C.

Then Eq.(1.1) has at least one ω-periodic solution, if
1 − |k| > 2Cωm.

Theorem 3.3 Assume n is an odd integer, and if there exist
constants C ≥ 0 and M > 0 such that

[H1] xg(t, x) > 0 (or xg(t, x) < 0), for t ∈ R, |x| > M,

[H2] lim
x→+∞ sup

t∈R
| g(t, x)

x | ≤ C.

[H3] sup f(y) ≤ 0, for y ∈ R.
Then Eq.(1.1) has at least one ω-periodic solution, if
1 − |k| > 2Cωm.

Corollary 3.3 Assume n is an odd integer, and if
there exist constants C ≥ 0 and M > 0 such that

[H∗
1 ] xg(t, x) > 0 (or xg(t, x) < 0), for t ∈ R, |x| > M,

[H∗
2 ] lim

x→−∞ sup
t∈R

| g(t, x)
x | ≤ C.

[H∗
3 ] sup f(y) ≤ 0, for y ∈ R.

Then Eq.(1.1) has at least one ω-periodic solution, if
1 − |k| > 2Cωm.

Remark Conditions of Theorem 3.1 and it’s corollary
are different from all those in papers[3-12]. Furthermore
Conditions [C2] and [C∗

2 ] imposed on g(x) in this paper are

the type of one sided linear growth, which are weaker than
the corresponding ones of [5,6], and also different from the
corresponding ones of [10].

IV. PROOF

As the proof of corollary is similar to the corresponding
theorem, we only prove the theorems.

Firstly, we show the proof for Theorem 3.1.
Proof It is clear that Eq.(1.1) has an ω-periodic solution if
and only if the operator equation Lx = Nx has an ω-periodic
solution, where N : Y → X,

(Nx)(t) = f(x(t))x′(t) + g(t,
∫ 0

−r

x(t + s)dα(s)) + e(t).

Then N is L−compact on Ω, where Ω is any open and
bounded subset of Y , see paper [9] for more details. Take

Ω1 = {x|x ∈ Dom(L), Lx = λNx, λ ∈ (0, 1)}.
∀x ∈ Ω1, then x must satisfy the following equation,

(Ax)(m)(t) = λf(x(t))x′(t)+λg(t,
∫ 0

−r

x(t+s)dα(s))+λe(t).

(4.1)
Integrating both sides of Eq.(4.1) over [0, ω], we have∫ ω

0

(
g(t,

∫ 0

−r

x(t + s)dα(s)) + e

)
dt = 0. (4.2)

The integral mean value theorem yields there exists a constant
ξ ∈ (0, ω) such that

g(ξ,
∫ 0

−r

x(ξ + s)dα(s)) + e = 0. (4.3)

So from assumption [B1] we get | ∫ 0

−r
x(ξ+s)dα(s)| ≤ M. By

the properties of Riemann-Stieltes integral, we know that there
must exist a constant ζ ∈ (−r, 0) such that |x(ξ + ζ)| ≤ M.
Because ξ + ζ ∈ R, there is an integer k0 such that ξ + ζ =
k0ω + t∗, t∗ ∈ (0, ω], then |x(t∗)| ≤ M. Hence we have

|x(t)| ≤ M +
∫ ω

0

|x′(s)|ds

for all t ∈ [0, ω], i.e.,

||x||0 ≤ M +
∫ ω

0

|x′(t)|dt, ∀t ∈ [0, ω]. (4.4)

On the other hand, multiplying both sides of Eq.(4.1) by
x(m−2)(t − τ) and integrating them on [0, ω], we obtain

k

∫ ω

0

|x(m−1)(t − τ)|2dt

=
∫ ω

0

x(m−1)(t)x(m−1)(t − τ)dt

+ λ

∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt

+ λ

∫ ω

0

x(m−2)(t − τ)g(t,
∫ 0

−r

x(t + s)dα(s))dt

+ λ

∫ ω

0

x(m−2)(t − τ)e(t)dt.
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By Cauchy inequality, we have

|k|
∫ ω

0

|x(m−1)(t − τ)|2dt

≤
(∫ ω

0

|x(m−1)(t)|2dt

)1/2(∫ ω

0

|x(m−1)(t − τ)|2dt

)1/2

+ |
∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt|

+
∫ ω

0

|x(m−2)(t − τ)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt

+
∫ ω

0

|x(m−2)(t − τ)||e(t)|dt

=
(∫ ω

0

|x(m−1)(t)|2dt

)1/2(∫ ω−τ

−τ

|x(m−1)(t)|2dt

)1/2

+ |
∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt|

+ ||e||0
∫ ω

0

|x(m−2)(t)|dt

+
∫ ω

0

|x(m−2)(t − τ)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt

=
∫ ω

0

|x(m−1)(t)|2dt + |
∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt|

+
∫ ω

0

|x(m−2)(t − τ)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt

+ ||e||0
∫ ω

0

|x(m−2)(t)|dt,

i.e.,

(|k| − 1)
∫ ω

0

|x(m−1)(t)|2dt

≤|
∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt| + ||e||0
∫ ω

0

|x(m−2)(t)|dt

+
∫ ω

0

|x(m−2)(t − τ)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt.

(4.5)
In view of |k| − 1 > Wωm−1, there exists a small constant
ε > 0 such that

|k| − 1 > (W + ε)ωm−1. (4.6)

For the small ε, condition implies that there is a constant ρ >
0(independent of λ) such that

|F (x)| ≤ (W + ε)|x| ≤ (W + ε)||x||0, for |x| > ρ. (4.7)

Let D1 = {t ∈ [0, ω] : |x(t)| > ρ}, D2 = {t ∈ [0, ω] :
|x(t)| ≤ ρ}. Because that

|
∫ ω

0

f(x(t))x′(t)x(m−2)(t − τ)dt|

≤
∫ ω

0

|F (x(t))x(m−1)(t − τ)|dt

=
∫

D1

|F (x(t))x(m−1)(t − τ)|dt

+
∫

D2

|F (x(t))x(m−1)(t − τ)|dt.

(4.8)

Taking (4.8) into (4.5), we obtain

(|k| − 1)
∫ ω

0

|x(m−1)(t)|2dt

≤
∫

D1

|F (x(t))x(m−1)(t − τ)|dt

+
∫

D2

|F (x(t))x(m−1)(t − τ)|dt

+
∫ ω

0

|x(m−2)(t − τ)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt

+ ||e||0
∫ ω

0

|x(m−2)(t)|dt.

(4.9)

From assumption [B3] and (4.3), we know that∫ ω

0

|g(t,
∫ 0

−r

x(t + s)dα(s))|dt

=
∫ ω

0

g(t,
∫ 0

−r

x(t + s)dα(s))dt = −eω.

(4.10)

Submitting (4.7) and (4.10) into (4.9), we get

(|k| − 1)
∫ ω

0

|x(m−1)(t)|2dt

≤(W + ε)||x||0
∫ ω

0

|x(m−1)(t − τ)|dt

+ (Fρ + ω||e||0)
∫ ω

0

|x(m−1)(t − τ)|dt

+
∫ ω

0

|x(m−2)(t)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt

≤(W + ε)||x||0
∫ ω

0

|x(m−1)(t)|dt

+ (Fρ + ω||e||0 − ω2e)
∫ ω

0

|x(m−1)(t)|dt,

(4.11)

where Fρ = maxx∈D2 |F (x)|. As x(0) = x(ω), x′(0) =
x′(ω), · · · , x(m)(0) = x(m)(ω), there exist constants ti ∈
(0, ω) such that x(i)(ti) = 0, i = 1, 2, · · · ,m, it follows from
(4.4) that

||x||0 ≤ M + ωm−2

∫ ω

0

|x(m−1)(t)|dt. (4.12)

Taking (4.12) into (4.11), we get

(|k| − 1)
∫ ω

0

|x(m−1)(t)|2dt

≤(W + ε)
(

M + ωm−2

∫ ω

0

|x(m−1)(t)|dt

) ∫ ω

0

|x(m−1)(t)|dt

+ (Fρ + ω||e||0 − eω2)
∫ ω

0

|x(m−1)(t)|dt

≤(W + ε)ωm−1

∫ ω

0

|x(m−1)(t)|2dt

+
(

(W + ε)M + Fρ + ω||e||0 − eω2

) ∫ ω

0

|x(m−1)(t)|dt,

which together with (4.6) gives∫ ω

0

|x(m−1)(t)|2dt

≤ (W + ε)M + Fρ + ω||e||0 − eω2

|k| − 1 − (W + ε)ω(m−1)

∫ ω

0

|x(m−1)(t)|dt.
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So there exists a constant M1(which independent of λ and
x), such that

∫ ω

0
|x(m−1)(t)|2dt ≤ M1, which together with

(4.12) yields there exist positive constants M2 and M3, such
that

||x||0 ≤ M + ωm−2
√

ωM1 := M2

and
||x′||0 ≤ ωm−3

√
ωM1 := M3.

Let M̃ = max{M2,M3} + 1, Ω = {x : ||x|| < M̃} and
Ω2 = {x ∈ ∂(Ω

⋂
KerL)}. Then

QNx =
1
ω

∫ ω

0

(
g(t,

∫ 0

−r

x(t + s)dα(s)) + e

)
dt.

If x = M̃ or − M̃ , then

g(t,
∫ 0

−r

x(t + s)dα(s)) + e > 0,

which yields QNx 	= 0 for all x ∈ Ω2. Thus condition [A1]
and [A2] of Lemma 2.2 are both satisfied. Next, we show that
condition [A3] of Lemma 2.2 is also satisfied. In order to do
it, define the isomorphism J : ImQ → KerL, J(x) ≡ x, and
the operator H(x, μ) as follows,

H(x, μ) = −μx − 1 − μ

T
JQNx, ∀(x, μ) ∈ Ω × [0, 1].

Then we have, for all (x, μ) ∈ Ω2 × [0, 1],

H(x, μ) = −μx− 1 − μ

ω

∫ ω

0

(
g(t,

∫ 0

−r

x(t+s)dα(s))+e

)
dt.

Similar to the above proof, we can prove H(x, μ) 	= 0. Hence

deg{JQN,Ω∩KerL, 0} = deg{H(x, 1),Ω∩KerL, 0} 	= 0.

So condition [A3] of Lemma 2.2 is also satisfied. By applying
Lemma 2.2, we know that the operator equation Lx = Nx
has at least one solution x(t) in Ω ∩ D(L), i.e., Eq.(1.1) has
at least one ω−periodic solution x(t).

Secondly, we prove Theorem 3.2.
proof As m is even, there must be an integer z(z ∈ Z+)
such that m = 2z, then multiplying both sides of Eq.(3.2) by
x(t) and integrating them on interval [0, ω], we obtain∫ ω

0

|x(z)(t)|2dt

=k

∫ ω

0

x(z)(t)x(z)(t − τ)dt

+ (−1)zλ

∫ ω

0

x(t)g(t,
∫ 0

−r

x(t + s)dα(s))dt

+ (−1)zλ

∫ ω

0

x(t)e(t)dt

≤|k|
∫ ω

0

|x(z)(t)||x(z)(t − τ)|dt

+
∫ ω

0

|x(t)| |g(t,
∫ 0

−r

x(t + s)dα(s))|dt

+
∫ ω

0

|x(t)||e(t)|dt.

By Cauchy inequality, we have∫ ω

0

|x(z)(t)|2dt

≤|k|
(∫ ω

0

|x(z)(t)|2dt

)1/2(∫ ω

0

|x(z)(t − τ)|2dt

)1/2

+
∫ ω

0

|x(t)||g(
∫ 0

−r

x(t + s)dα(s))dt +
∫ ω

0

|x(t)||e(t)|dt

≤ 1
1 − |k| ||x||0(

∫ ω

0

|g(t,
∫ 0

−r

x(t + s)dα(s))|dt + ω||e||0).
(4.13)

Note that 1 − |k| > 2Cωm, so there exists a small constant
ε > 0 such that 1 − |k| > 2(C + ε)ωm. From condition [C2],
and the properties of bounded variation function, we get that
there exists a constant ρ > M such that

|g(t,
∫ 0

−r

x(t + s)dα(s))|

≤ (C + ε)|
∫ 0

−r

x(t + s)dα(s)|

≤ (C + ε)||x||0, ∀ t ∈ R,

∫ 0

−r

x(t + s)dα(s) > ρ.

(4.14)

Let X(t) =
∫ 0

−r
x(t + s)dα(s), we set E1 = {t ∈ [0, ω] :

X(t) > ρ}, E2 = {t ∈ [0, ω] : |X(t)| ≤ ρ}, E3 = {t ∈
[0, ω] : X(t) < −ρ}. It is easy to see from (4.2) that(∫

E1

+
∫

E2

+
∫

E3

)
g(t,

∫ 0

−r

x(t + s)dα(s))dt = −ωe,

which together with assumption [C1] leads to that∫
E3

|g(t,
∫ 0

−r

(x(t + s)dα(s))|dt

≤
(∫

E1

+
∫

E2

)
|g(t,

∫ 0

−r

x(t + s)dα(s))|dt + ωe.

(4.15)

Combination of (4.14) and (4.15) gives∫ ω

0

|g(t,
∫ 0

−r

x(t + s)dα(s))|dt

≤ 2
(∫

E1

+
∫

E2

)
|g(t,

∫ 0

−r

x(t + s)dα(s))|dt + ωe

≤ 2ω(C + ε)||x||0 + 2g̃ρω + ωe,

(4.16)

where g̃ρ = max
t∈E2

|g(
∫ 0

−r
x(t + s)dα(s))|. From (4.12) and

(4.16), we have∫ ω

0

|x(z)(t)|2dt ≤ 2ω(C + ε)
1 − |k| ||x||20+

(2g̃ρ + e + ||e||0)ω
1 − |k| ||x||0.

From x(0) = x(ω), x′(0) = x′(ω), · · · , x(z−1)(0) =
x(z−1)(ω), we know that there exist ξi ∈ (0, ω), i =
1, 2, · · · , z, such that x′(ξ1) = x′′(ξ2) = · · · = x(z)(ξz) = 0.
Hence we get

||x||0 ≤ M + ωz−1

∫ ω

0

|x(z)(t)|dt, (4.17)

and
||x′||0 ≤ ωz−2

∫ ω

0

|x(z)(t)|dt. (4.18)
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So it follows from (4.17) and (4.18) that

∫ ω

0

|x(z)(t)|2dt

≤2ω(C + ε)
1 − |k| ||x||20 +

(2g̃ρ + e + ||e||0)ω
1 − |k| ||x||0

≤2ω(C + ε)
1 − |k|

(
M + ωz−1

∫ ω

0

|x(z)(t)|dt

)2

+
(2g̃ρ + e + ||e||0)ω

1 − |k|
(

M + ωz−1

∫ ω

0

|x(z)(t)|dt

)

≤2ωm(C + ε)
1 − |k|

∫ ω

0

|x(z)(t)|2dt + d1

∫ ω

0

|x(z)(t)|dt + d2,

where d1 = (4ωM(C + ε) + 2g̃ρ + e + ||e||0)ωz−1/1 − |k|,
d2 = (2ωM(C + ε) + (2g̃ρ + e + ||e||0))M/1 − |k|. As
1 − |k| > 2(C + ε)ωm, there is a constant M2 > 0 such that∫ ω

0
|x(z)(t)|2dt < M2. The remainder can be proved in the

same way as that in theorem 3.1.

Now, we give the proof of Theorem 3.3 briefly.
Proof Note that m is an odd number, so there exists a
constant z(z ∈ Z+) such that m = 2z − 1. Multiplying both
sides of Eq.(4.2) by x′(t), and integrating them on interval
[0, ω], from assumption [H3], we have

∫ ω

0

|x(z)(t)|2dt

=k

∫ ω

0

x(z)(t − τ) x(z)(t)dt

+ (−1)z−1λ

∫ ω

0

f(x(t))[x′(t)]2dt

+ (−1)z−1λ

∫ ω

0

x′(t)g(t,
∫ 0

−r

x(t + s)dα(s))dt

+ (−1)z−1λ

∫ ω

0

x′(t)e(t)dt

≤|k|
∫ ω

0

|x(z)(t − τ)| |x(z)(t)|dt

+
∫ ω

0

|x′(t)| |g(t,
∫ 0

−r

x(t + s)dα(s))|dt

+ ω||x′||0||e||0.

(4.19)

Since ||x||0 ≤ M +
∫ ω

0
|x′(t)|dt ≤ M + ω||x′||0, then by

Cauchy inequality and (4.19), we obtain

∫ ω

0

|x(z)(t)|2dt

≤ |k|
(∫ ω

0

|x(z)(t)|2dt

)1/2(∫ ω−τ

−τ

|x(z)(t)|2dt

)1/2

+
∫ ω

0

|x′(t)||g(t,
∫ 0

−r

x(t + s)dα(s))|dt + ω||x′||0||e||0

≤ 2ω2(C + ε)
1 − |k| ||x′||20 + d1||x′||0,

(4.20)
where d1 = (2M(C + ε) + 2g̃ρ + e + ||e||0)ω/1 − |k|.

Thus, from (4.18) and (4.20), we get∫ ω

0

|x(z)(t)|2dt ≤2ω2z−2(C + ε)
1 − |k|

(∫ ω

0

|x(z)(t)|dt

)2

+ d1ω
z−2

∫ ω

0

|x(z)(t)|dt.

≤2ωm(C + ε)
1 − |k|

∫ ω

0

|x(z)(t)|2dt

+ d1ω
z−2

∫ ω

0

|x(z)(t)|dt.

(4.21)
Assumption 1 − |k| > 2Cωm implies that there exists a
constant ε > 0 such that 1 − |k| > 2(C +ε)ωm. Hence (4.21)
yields that there is a constant M2(independent of λ and x)
such that

∫ ω

0
|x(z)(t)|2dt ≤ M2. In the same way as that in

theorem 3.1, we can easily prove Theorem 3.3.
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