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Stability and bifurcation analysis of a discrete
Gompertz model with time delay

Yingguo Li

Abstract—In this paper, we consider a discrete Gompertz model
with time delay. Firstly, the stability of the equilibrium of the system
is investigated by analyzing the characteristic equation. By choosing
the time delay as a bifurcation parameter, we prove that Neimark-
Sacker bifurcations occur when the delay passes a sequence of
critical values. The direction and stability of the Neimark-Sacker
are determined by using normal forms and centre manifold theory.
Finally, some numerical simulations are given to verify the theoretical
analysis.
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I. INTRODUCTION

IT is well known that Gompertz equation [1] is one of the
most important models in the description of the growth law

for a single species. The model reads as

ẋ(t) = −rx(t) ln x(t)
K , (1)

where x(t) denotes the population density, r is a positive
constant called the intrinsic growth rate, the positive constant
K is usually referred to as the environment carrying capacity
or saturation level, and −r ln x(t)

K denotes relative growth
rate. Assuming that a growing population requires more food
(growth and maintenance) than a saturated one (maintenance
only), a further modification is to assume that the growth rate
is a function of some specified delayed argument t − τ (see,
e.g. [2]). The model (1) becomes

ẋ(t) = −rx(t) ln x(t−τ)
K , (2)

where τ > 0 is the time delay. System (2) is called as delayed
Gompertz model. The continuous-time system (1), (2) and
their similar systems have been extensively studied in the
literature (see e.g., [2-4]).

But considering the need of scientific computation and real-
time simulation, our interest is focused on the behaviors of
discrete dynamics system corresponding to (2). Many authors
considered the numerical approximation of a scalar delay
differential equation by using different numerical methods,
such as nonstandard finite-difference method, Euler method,
Runge-Kutta method (see [5-11]). In this paper, we use the
forward Euler scheme to make the discretization for system
(2).

Moreover, it is also of interest to find what will happen
when the system loses stability. The purpose of this paper
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is to discuss this version as a discrete dynamical system by
using Neimark-Sacker bifurcation theory of discrete systems.
We not only investigate the stability of the fixed point and
the existence of the Neimark-Sacker bifurcations, but also the
stability and direction of the Neimark-Sacker bifurcation of
the discrete system.

The paper is organized as follows: in Section 2, we analyze
the distribution of the characteristic equation associated with
the discrete model, and obtain the existence of the local
Neimark-Sacker bifurcation. In Section 3, the direction and
stability of closed invariant curve from the Neimark-Sacker
bifurcation of the discrete delay model are determined by
using the theories of discrete systems in [12]. In the final
section, some computer simulations are performed to illustrate
the analytical results found.

II. STABILITY ANALYSIS

Let y(t) = x(tτ)
K − 1. Then (2) can be rewritten as

ẏ(t) = −rτ(y(t) + 1) ln(y(t− 1) + 1). (3)

We consider step size of the form h = 1
m , where m ∈ Z+.

The Euler method applied to this equation, yields the delay
difference equation

yn+1 = yn − rhτ(yn + 1) ln(yn−m + 1). (4)

where un is an approximate value to y(nh).
It is clear that Eq. (4) has a unique zero equilibrium. By

introducing a new variable Yn = (yn, yn−1, · · · , yn−m)T , we
can rewrite (4) in the form

Yn+1 = F (Yn, τ). (5)

where F = (F0, F1, · · · , Fm)T , and

Fj =
{
yn − rhτ(yn + 1) ln(yn−m + 1), j = 0
yn−j+1, 1 ≤ j ≤ m

(6)
Clearly the origin is a fixed point of (5), and the linear part
of (5) is

Yn+1 = AYn (7)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −rhτ
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0
... 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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The characteristic equation of A is given by

a(λ) := λm+1 − λm + rhτ = 0. (8)

It is well known that the stability of the zero equilibrium
solution of (5) depends on the distribution of the zeros of
the roots of (8). In this paper, we will employ the results from
Zhang et al. [6] and He et al. [10] to analyze the distribution
of the zeros of the characteristic Eq. (8). In order to proof
the existence of the local Neimark-Sacker bifurcation at fixed
point, we need some lemmas as follows.

Lemma 2.1.(see[6,10]) Suppose that B̂ ⊂ R is a bounded,
closed, and connected set, f(λ, τ) = λm + p1(τ)λm−1 +
p2(τ)λm−2 + · · · + pm(τ) is continuous in (λ, τ) ∈ C × B̂.
Then as τ varies, the sum of the order of the zeros of f(λ, τ)
out of the unit circle

{λ ∈ C : |λ| > 1}
can change only if a zero appears on or crosses the unit circle.

Lemma 2.2. All roots of Eq. (8) have modulus less than one
for sufficiently small positive τ > 0.

Proof. When τ = 0, (8) becomes

λm+1 − λm = 0.

The equation has, at τ = 0, an m-fold root λ = 0, and a
simple root λ = 1.

Consider the root λ(τ) such that λ(0) = 1. This root
depends continuously on τ and is a differential function of
τ . From (8), we have

dλ
dτ = rh

mλm−1−(m+1)λm (9)

and
dλ̄
dτ = rh

mλ̄m−1−(m+1)λ̄m . (10)

We have

d|λ|2
dτ |τ=0,λ=1 = [λdλ̄dτ + λ̄dλdτ ]|τ=0,λ=1 = −2rh < 0.

So with the increasing of τ > 0, λ cannot cross λ = 1.
Consequently, all roots of Eq. (8) lie in the unit circle for
sufficiently small positive τ > 0. �

A Neimark-Sacker bifurcation occurs when a complex con-
jugate pair of eigenvalues of A cross the unit circle as τ varies.
We have to find values of τ such that there are roots on the
unit circle. Denote the roots on the unit circle by eiω

∗
. Then

eiω
∗ − 1 + rhτe−imω

∗
= 0. (11)

Separating the real part and imaginary part from Eq. (11),
there are

cosω∗ + rhτ∗ cosmω∗ = 1 (12)

and
sinω∗ − rhτ∗ sinmω∗ = 0. (13)

So
cosω∗ = 1 − 1

2 (rhτ
∗)2. (14)

Summarizing the discussion above, we obtain that the roots
e±iω

∗
of Eq. (8) with modulus one satisfy⎧⎨

⎩
cosω∗ = 1 − 1

2 (rhτ
∗)2,

τ∗ = sinω∗
rh sinmω∗ ,

h = 1
m ,

(15)

It is clear that there exists an infinite sequence of values of the
time delay parameter 0 < τ0 < τ1 < · · · < τj < · · · satisfying
Eq. (15).

Lemma 2.3. Let λ(τ) = r(τ)eiω(τ) be a root of (8) near
τ = τ∗ satisfying r(τ∗) = 1 and ω(τ∗) = ω∗. Then

dr2(τ)
dτ |τ=τ∗,ω=ω∗ > 0.

Proof. From (12) and (13), we obtain that

cosmω∗ = 1−cosω∗
rhτ∗ , (16)

sinmω∗ = sinω∗
rhτ∗ , (17)

It is easy to see that

cos(m+ 1)ω∗ = cosmω∗ cosω∗ − sinmω∗ sinω∗

= cosω∗−1
rhτ∗ .

(18)
From (9), (10) and using (16) – (18), we have

dr2

dτ |τ=τ∗,ω=ω∗ = d|λ|2
dτ |τ=τ∗,ω=ω∗

= [λdλ̄dτ + λ̄dλdτ ]|τ=τ∗,ω=ω∗

= 2(2m+1)(1−cosω∗)

τ∗
∣∣mei(m−1)ω∗−(m+1)eimω∗

∣∣2 > 0

This completes the proof. �
Applying Lemmas 2.1 – 2.3, we have the following Lemma.

Lemma 2.4. Eq. (8) has a pair of simple roots e±iω
∗

on
the unit circle when τ = τj , j = 0, 1, 2, · · ·. Furthermore, if
τ ∈ [0, τ0), then all the roots of Eq. (8) have modulus less
than one; If τ > τ0, then Eq. (8) has at least a couple of roots
with modulus more than one.

Lemma 2.4 immediately lead to stability of the zero equilib-
rium of Eq. (4). So we have the following results on stability
and bifurcation in system (4).

Theorem 2.1. there exists a sequence of values of the time
delay parameter 0 < τ0 < τ1 < · · · < τj < · · · such that
the zero equilibrium of Eq. (4) is asymptotically stable for
τ ∈ [0, τ0) and unstable for τ > τ0. Eq. (4) undergoes a
Neimark-Sacker bifurcation at the zero equilibrium when τ =
τj , j = 0, 1, 2, · · ·, where τj satisfies (15).

III. DIRECTION AND STABILITY OF THE
NEIMARK-SACKER BIFURCATION IN DISCRETE MODEL

In the previous section, we obtain the conditions under
which a family of periodic solutions bifurcate from the steady
state at the critical value τ = τj , j = 0, 1, 2, · · ·. Without
loss of generality, denote the critical value τ = τj by τ∗.
In this section, following the idea of Hassard et al. [13],
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we shall study the direction, stability and the period of the
bifurcating periodic solution when τ = τ∗ in the discrete
Gompertz model. The method, we used is based on the theories
of discrete system by Kuznetsov [12].

Rewrite Eq. (4) as

yn+1 = yn − rhτyn−m + 1
2rhτ(−2ynyn−m + y2n−m)

+ 1
6rhτ(3yny

2
n−m − 2y3n−m) +O(|y2n + y2n−m|2).

So system (5) is turned into

Yn+1 = AYn + 1
2B(Yn, Yn) + 1

6C(Yn, Yn, Yn) +O(‖ Yn ‖4),
(19)

where

B(Yn, Yn) = (b0(Yn, Yn), 0, · · · , 0),
C(Yn, Yn, Yn) = (c0(Yn, Yn, Yn), 0, · · · , 0),

and

b0(φ, ψ) = rhτ(−φ0ψm − φmψ0 + φmψm),
c0(φ, ψ, η) = rhτ(φ0ψmηm + φmψ0ηm

+φmψmη0 − 2φmψmηm).
(20)

Let q ∈ C
m+1 be an eigenvector of A corresponding to eiω

∗
,

then
Aq = eiω

∗
q, Aq̄ = e−iω

∗
q̄.

We also introduce an adjoint eigenvector q∗ ∈ C
m+1 having

the properties

AT q∗ = e−iω
∗
q∗, AT q̄∗ = eiω

∗
q̄∗,

and satisfying the normalization < q∗, q >= 1, where
< q∗, q >=

∑m
j=0 q̄

∗
j qj .

Lemma 3.1. Let q = (q0, q1, · · · , qm)T be the eigenvec-
tor of A corresponding to the eigenvalue eiω

∗
and q∗ =

(q∗0 , q
∗
1 , · · · , q∗m)T be the eigenvector of AT corresponding to

the eigenvalue e−iω
∗
, then

q = (1, e−iω
∗
, · · · , e−imω∗

)T ,
q∗ = D̄(1, αeimω

∗
, · · · , αeiω∗

)T .
(21)

where α = −rhτ and D = (1 +mrhτei(m+1)ω
∗
)−1

Proof. Let q = (q0, q1, · · · , qm)T be the eigenvector of A
corresponding to the eigenvalue eiω

∗
, then

qj = eiω
∗
qm, j = 1, · · · ,m, (22)

Setting q0 = 1, we obtain that q = (q0, q1, · · · , qm)T is the
eigenvector of A corresponding to the eigenvalue eiω

∗
.

Similarly, assign q∗ satisfies AT q∗ = z̄q∗ with z̄ = e−iω0 ,
then the following identities hold{

q∗j = e−iω
∗
q∗j−1, j = 2, · · · ,m,

−rhτq∗0 = e−iω
∗
q∗m.

(23)

Let q∗m = αeiω
∗
D̄, then

q∗ = D̄(1, αeimω
∗
, αei(m−1)ω∗

, · · · , αei2ω∗
, αeiω

∗
)T .

From normalization < q∗, q >= 1 and computation, we get

D = (1 +mrhτei(m+1)ω
∗
)−1. �

Let T c denote a real eigenspace corresponding to e±iω
∗
,

which is two dimensional and is spanned by {Re(q), Im(q)}
and T s a real eigenspace corresponding to all eigenvalues of
AT other than e±iω

∗
is (m− 1) dimensional.

For any x ∈ R
m+1, we have its decomposition

x = zq + z̄q̄ + y,

where z ∈ C, zq + z̄q̄ ∈ T c, y ∈ T s. The complex variable
z can be viewed as a new coordinate on T c. Now we adopt
the computation process introduced by Kuznetsov ([12], pp.
184-186), we have that the restriction of the Eq. (19) to the
centre manifold, up to cubic term is given by

z → eiω
∗
z + g20

2 z
2 + g11zz̄ + g02

2 z̄
2 + g21

2 z
2z̄ + · · · ,

where
g20 = < q∗, B(q, q) >,
g11 = < q∗, B(q, q̄) >,
g02 = < q∗, B(q̄, q̄) >,
g21 = < q∗, C(q, q, q̄) >

−2 < q∗, B(q, (I −A−1)B(q, q̄)) >
+ < q∗, B(q̄, (λ2I −A)−1B(q, q)) >
− 1−2λ
λ2−λ < q∗, B(q, q) > × < q∗, B(q, q̄) >

− 2
1−λ̄ | < q∗, B(q̄, q̄) > |2

− 1
λ2−λ̄ | < q∗, B(q̄, q̄) > |2.

(24)
Define

c1(τ) = g20g11(2λ+λ̄−3)
2(λ̄−1)(λ2−λ) + |g11|2

1−λ̄ + |g02|2
2(λ2−λ̄) + g21

2 , (25)

Substituting λ = e−iω
∗

into (24) and (25), we can obtain
c1(τ∗).

Lemma 3.2. (See [14].) Given the map (5) and assume
(1) λ(τ) = r(τ)eiω(τ), where r(τ∗) = 1, r′(τ∗) �= 0 and
ω(τ∗) = ω∗;
(2) eikω

∗ �= 1 for k = 1, 2, 3, 4;
(3) Re[e−iω

∗
c1(τ∗)] �= 0.

Then an invariant closed curve, topologically equivalent
to a circle, for map (5) exists for τ in a one side
neighborhood of τ∗. The radius of the invariant curve
grows like O(

√|τ − τ∗|). One of the four cases below
applies:

(1) r′(τ∗) > 0, Re[e−iω
∗
c1(τ∗)] < 0. The origin is

asymptotically stable for τ < τ∗ and unstable for τ > τ∗. An
attracting invariant closed curve exists for τ > τ∗.
(2) r′(τ∗) > 0, Re[e−iω

∗
c1(τ∗)] > 0. The origin is

asymptotically stable for τ < τ∗ and unstable for τ > τ∗. An
repelling invariant closed curve exists for τ < τ∗.
(3) r′(τ∗) < 0, Re[e−iω

∗
c1(τ∗)] < 0. The origin is

asymptotically stable for τ > τ∗ and unstable for τ < τ∗. An
attracting invariant closed curve exists for τ < τ∗.
(4) r′(τ∗) < 0, Re[e−iω

∗
c1(τ∗)] > 0. The origin is

asymptotically stable for τ > τ∗ and unstable for τ < τ∗. An
repelling invariant closed curve exists for τ > τ∗.
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From the discussion in Section 2, we know that r′(τ∗) > 0,
therefore, by Lemma 3.2 we have the following result.

Theorem 3.1. For Eq. (4), the zero equilibrium is asymp-
totically stable for τ < τ∗, and unstable for τ > τ∗. An
attracting (repelling) invariant closed curve exists for τ > τ∗

if Re[e−iω
∗
c1(τ∗)] < 0(> 0).

IV. COMPUTER SIMULATION

In this section, we will confirm our theoretical analysis by
numerical simulation. We give an example of system (4) with
r = 1,m = 20, h = 0.05. Then Eq. (4) becomes

yn+1 = yn − 0.05τ(yn + 1) ln(yn−20 + 1). (26)

From Eq. (15), it follows that τ0 = 1.5321 is the Neimark-
Sacker bifurcation value.

In Fig. 1, we show the waveform plot and phase plot for
(26) with initial values yj = 0.1 (j = 0, 1, · · · , 20) for
τ = 1.5 < τ0 = 1.5321. The zero equilibrium of Eq. (26) is
asymptotically stable. In Fig. 2, we show the waveform plot for
(26) with initial values yj = 0.1 (j = 0, 1, · · · , 20). The zero
equilibrium of (26) is unstable for τ = 1.533 > τ0 = 1.5321.
When τ varies and passes through τ0 = 1.5321, the equi-
librium loses its stability and a periodic solution bifurcates
from the equilibrium for τ = 1.533 > τ0 = 1.5321. That
is the delay difference Eq. (26) which has a Neimark-Sacker
bifurcation at τ0.

0 2000 4000 6000 8000 10000 12000
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0
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0.1
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Fig.1. The equilibrium u∗ of (26) is asymptotically stable for
τ = 1.5 < τ0 = 1.5321.
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