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A Novel Approach to Iris Localization for Iris
Biometric Processing

Somnath Dey, and Debasis Samanta

Abstract—Iris-based biometric system is gaining its importance
in several applications. However, processing of iris biometric is a
challenging and time consuming task. Detection of iris part in an eye
image poses a number of challenges such as, inferior image quality,
occlusion of eyelids and eyelashes etc. Due to these problems it is not
possible to achieve 100% accuracy rate in any iris-based biometric
authentication systems. Further, iris detection is a computationally
intensive task in the overall iris biometric processing. In this paper,
we address these two problems and propose a technique to localize
iris part efficiently and accurately. We propose scaling and color level
transform followed by thresholding, finding pupil boundary points
for pupil boundary detection and dilation, thresholding, vertical edge
detection and removal of unnecessary edges present in the eye images
for iris boundary detection. Scaling reduces the search space signifi-
cantly and intensity level transform is helpful for image thresholding.
Experimental results show that our approach is comparable with the
existing approaches. Following our approach it is possible to detect
iris part with 95-99% accuracy as substantiated by our experiments
on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image
databases.

Keywords—Iris recognition, iris localization, biometrics, image
processing.

I. INTRODUCTION

THE recent advances in information technology and in-

creasing emphasis on security have resulted in more

attention to automatic personal identification system based on

biometrics. Biometric technology is an automated method for

recognizing an individual based on physiological or behavioral

characteristics. Among the present biometric traits, iris is

found to be the most reliable and accurate [1] due to the

rich texture of iris patterns. The human iris is an annular

part between the pupil and the white sclera (see Figure 1).

The iris has distinct charasteristics such as freckles, coronas.

stripes, furrows, crypts, and so on. Each eye cotains unique iris

pattern that is stable throughout ones life. These characteristics

make it attractive for used as a biometric feature to identify

individuals.

In iris biometric system, an important task is to extract

iris feature from a given eye image. Human iris recognition

process is basically divided into two phases. The phase, which

is dealt with the extraction of iris features from an eye

image and store them into database is called the “enrollment

process”. At the time of matching we capture the iris features

of a human and compare it with the stored features, which is

called the “matching process”. Each of the above phases are

complex and hence is divided into several sub tasks. Figure 2

S. Dey and D. Samanta are with School of Information
Technology, Indian Institute of Technology Kharagpur, India. e-
mail:somnath dey2003@yahoo.co.in and dsamanta@iitkgp.ac.in

y−axis

x−
ax

is
Sclera

Lower eyelid

Upper eyelid

Eyelash

Pupil center

Pupil radius
Pupil

Iris

Fig. 1. The typical components in an eye image.

shows the different steps involved in the two phases. First

four tasks in both the phases are common as it is evident in

Figure 2. The task namely, “matching features” is extra in the

matching process. Out of the several tasks involved in the iris

recognition process it has observed that the iris localization is

the most computationally intensive task.

In iris localization task, we try to locate iris part in an eye

image. Iris part localization is necessary to isolate the iris part

of the image in between the iris boundary (between sclera and

iris) and outside the pupil. This task mainly consists of two

sub tasks: detecting pupil boundary (between pupil and iris),

and detecting iris boundary (between iris and sclera). There are

several methods for detecting the iris part from am eye image.

Integro-differential operator is used in several work [1], [2]

for detecting pupil and iris boundary. Another method called

Hough transform [3] is adopted in some work [4], [5], [6],

[7], [8], [9]. Further, Laplacian of Gaussian (LOG) [10], active

countour model [11] and Gaussian mixture model (GMM) [12]

are also known for iris boundary detection. All these methods

use total image for locating the iris boundary, although ap-

proaches are different. Existing methods are computationally

expensive. Further, existing methods may lead to false results

when images are of inferior quality due to noise such as,

occlusion of eyelid boundaries, light reflection, non-uniform

illumination and low contrast between iris and sclera part etc.

Another drawback in the existing approaches is that pupil and

iris are assumed as concentric and circular countour of pupil

and iris, which are not true in majority cases.

In practical situations, it is observed that pupil and iris

boundary are not circle and image quality is degraded because
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Fig. 2. Two basic processes in iris recognition.

of low contrast image, iris part is occluded bye eyelashes,

improper eye open and light reflection. In such a situation

existing approaches are fail to localize iris part correctly. In

this paper, we have addressed these limitations. We also focus

on reducing the searching space while detecting pupil and iris

boundary.
In this paper, we propose a novel approach to localize

iris part from an eye image efficiently and accurately. We

propose scaling of image prior to its processing. We apply

intensity transform to threshold the image. We also develop

our own algorithm for detecting pupil boundary. For iris

boundary detection, we apply intensity transform and dilation

to threshold the image. After thresholding the image, we again

apply dilation and then find vertical edges. Before finding the

iris boundary, we eliminate the unnecessary edges and finally

detect eyelids boundary.
The rest of the paper is organized as follows. In Section 2,

we discuss the related work. Section 3 presents our proposed

approach to detect iris boundary. In Section 4, we give the

implentation of our approach and experimental results. Finally,

the paper is concluded in Section 5.

II. RELATED WORK

Daugman’s system [1], [2] uses integro-differential operator to

detect pupil and iris boundary. Integro-differential operator fits

the circular contours via gradient ascent on the parameterized

center and radius of the circular contour. This operator is sen-

sitive to the specular spot reflection of non diffused artificial

light. Daugman new system [13] uses active contour model to

detect pupil and iris boundary.
Wildes [4] and Masek [6] use binary edge map and voting

each edge points to instantiate particular contour parameter

values to detect pupil and iris boundary. The edge map is

recovered via gradient-based edge detection. Prior to fit iris

boundary contours, the derivatives are weighted to select

vertical edges.
Ma et al. [5] calculate the summation of intensity value

along each row and each column. They choose the particular

row and column along which summations are minimum.

That row and column are used as approximate x- and y-

coordinate of pupil center. Once the approximate pupil center

is chosen they apply Canny edge detection [14] and Hough

transformation [3] in a rectangular region centered at pupil

center to detect pupil and iris boundary circle.

In [10], Laplacian of Gaussian (LOG) operator is used for

edge detection and median filter is used to remove the garbage

pixels contain in the edge of iris image. This is followed

by the counting of black pixels in each row and column.

They use first pixel and last pixel positions of the row and

column which contain the maximum number of black pixels

to find out the pupil center and pupil radius. Subsequently,

they use merging of existing edge segment into boundary by

edge linking. Mid-point algorithm of circle and ellipse are used

to fit pupil boundary. Similarly, boundary fitting technique by

using a coarse scale is applied to locate iris boundary.

Tisse et al.[7] use integro-differential operator [2] with

Hough transform [3] strategy. They use gradient decomposed

Hough transform to find the pupil center and the iris center.

In [15], a linear threshold and Freemans chain code is used

to isolate the pupil region and then central moment is used to

find the pupil center. Next they create left and right vectors

using the pixel values corresponding to left and right side of

the pupil center. Left and right vectors start at left and right

fringe of the pupil and ends at left and right side of image

boundary. From these two vectors they find the iris radius.

Sung et al. [8] use Canny edge detection [14] method and

bisection method to find the pupil center and shortest distance

between the pupil center and the edges of the eyelids is set as

iris boundary. Cui et al. [9] use Hough transform [3] following

the Harr wavelet [16] transform for pupil segmentation and

differential integral operator for localize the iris. Hough trans-

form [3] followed by the edge detection is used to detect pupil

and iris boundary in [9]. Theresholding and morphological

opening is used to detect the pupil region and the center of

the pupil region is calculated for the pupil center in [11]. They

use active contour models (snakes) assuming the constraint

that there is no internal energy to detect the iris boundary.

Kim et al. [12] presents a method based on Gaussian mixture

model (GMM) for segmentation of iris from an eye image.

From the reported work we may note the following. No

work explicitly take into account the image quality and noises
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like occurences of eyelids, eyelashes etc. Further, all work

grossly assume circularness of pupil and pupil and iris are

concentric, which is not true in most of the cases.

III. PROPOSED APPROACH

In this section, we discuss our proposed approach of iris

localization. We divide our approach in three tasks: prepro-
cessing, pupil boundary detection and iris boundary detection.

In our approach, we first preprocess an eye image and then we

use that preprocessed image for the pupil and iris boundary

detection. We consider x- axis of an eye image towards vertical

and y- axis toward horizontal as shown in Fig. 1. We discuss

these three tasks in the following sub sections.

A. Preprocessing

We consider scaling of the image as a preprocessing task to

reduce the search area for the pupil centroid, pupil, and iris

boundary. This follows the intensity transform to minimize the

influence of the irrelevant edges as much as possible. In the

following sub sections, we discuss these preprocessing tasks

in details.

1) Down scaling: This is the first step in our proposed

pupil detection method. We reduce the image size, which we

refer to as down scaling. Down scaling reduces the search

region for pupil boundary. The scale operator performs a

geometric transformation, which can be used to shrink or

zooming the size of an image (or part of an image). Image

reduction, commonly known as sub sampling, is performed

by replacement (of a group of pixel values by one arbitrarily

chosen pixel value from within this group) or by interpolating

between pixel values in a local neighborhoods. Image zooming

is achieved by pixel replication or by interpolation. We use the

B-spline interpolation [17] for both shrinking (down scaling)

and zooming (up scaling). The higher order B-spline interpola-

tion losses the less edge information than the nearest neighbor

interpolation. We can commonly write scaling in homogeneous

coordinates as shown in Equation (1).(
x′

y′

)
= S ×

(
x
y

)
(1)

Scaling transformation maps the pixel intensity value located

at position (x, y) in an input image into new position (x
′
, y

′
)

in an output image by applying a linear combination. S
is the scaling transformation matrix, which is defined in

Equation (2).

S =
(

Sx 0
0 Sy

)
(2)

Here, Sx and Sy are the scaling factor in x- and y- directions,

respectively. It is observed that the scaling factors influence the

time of the pupil detection as well as the accuracy. Scaling

factor may be chosen any value between 1 and 0. We have

done experiments with scaling factors in this range of values.

Down scale factor 0.50 in both x- and y- directions means

that original image is reduced to 1
2 of the original in both the

directions. So the resultant image is 1
4 of the original image.

Table I shows the experimental results with down scale

factor 0.25, 0.50 and 0.75 in both x- and y- directions with

respect to the search area and search time. In Table I, we see

that the best result in terms of the search area and time for

detecting pupil boundary when scaling factor is 0.25 (Sx =

0.25 and Sy = 0.25).

We further analyze the scaling effect and results of which

is furnished in Table II. Table II shows the loss of pupil

information with respect to three types of error, which are

defined below.

• Average pupil radius difference (Rdiff ) is the difference

between actual pupil radius (Rpactual) and calculated

pupil radius (Rpdetected) at a particular scale factor (i.e.

Rdiff = |Rpactual − Rpdetected |).
• Distance between pupil centroid (Dpc) represents the dis-

tance between actual pupil center (Xpactual, Ypactual) and

calculated pupil center (Xpdetected, Ypdetected) at a par-

ticular scale factor (i.e. Dpc = |Xpactual −Xpdetected|+
|Ypactual − Ypdetected|).

• % of failure to detect pupil area with a particular scale

factor (see Equation (3).

%PAfail =
|PAactual − PAdetected|

PAactual
× 100 (3)

In Equation (3), PAactual and PAdetected represent the

actual pupil area and detected pupil area, respectively. In

Table II, we see that the detection of pupil with scaling factor

0.25 (Sx = 0.25 and Sy = 0.25) produces maximum errors so

far the radius of pupil is concerned. So far the detection of

pupil center is concerned, we see that the results with scaling

factor 0.50 (Sx = 0.50 and Sy = 0.50) are more or less similar

to that of with scaling factor 0.75 (Sx = 0.75 and Sy = 0.75).

Due to the loss of more edge information at scale factor 0.25

(Sx = 0.25 and Sy = 0.25) it will not be able to map the

appropriate pupil boundary at the time of up scaling the pupil

information. On the other hand, using the scale factor 0.50 (Sx

= 0.50 and Sy = 0.50) and scale factor 0.75 (Sx = 0.75 and

Sy = 0.75) we can accurately map the pupil boundary. But,

scale factor 0.75 (Sx = 0.75 and Sy = 0.75) requires more

number of computation as well as time without considerable

improvement in pupil boundary result. Therefore, we choose

the moderate scaling factor 0.50 (Sx = 0.50 and Sy = 0.50)

to scale an eye image for the pupil boundary detection which

gives the reduced search space and hence less searching time

for the pupil detection.

2) Intensity transform: Prior to the pupil and iris detection

we perform intensity transform. The intensity value at the pupil

region is smaller than the iris region and intensity value at

the sclera part is higher than the iris part. First, we create

histogram of an eye image. Histogram of a typical eye image

is shown in Fig. 3. In Fig. 3, we see that there are several peaks

in the histogram. The peaks at lower intensity level represent

the pupil region. The next peak in the histogram represents

the iris region etc. Based on the histogram, we use contrast

stretching [18] for removing the irrelevant part from the eye

image for pupil detection. We apply Equation (4) for contrast

stretch [18] operation.

s =
smax

rmax − rmin
× (r − rmin) (4)
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Im-1 Im-2 Im-3 Im-4 Im-5
S

f=
0

.2
5

Avg. pupil radius (in pixel) 16 24 20 16 20

Pupil centroid 140, 176 112, 116 188, 120 112, 192 144, 132

Pupil area (in pixel) 1168 1936 1312 1168 1328

Search area 9 × 9 12 × 10 10 × 8 9 × 8 11 × 8

Search time (ms) 1.92 2.123 1.964 1.952 2.056

S
f=

0
.5

0

Avg. pupil radius (in pixel) 20 24 20 20 21

Pupil centroid 138, 178 112, 116 188, 120 113, 193 142, 132

Pupil area (in pixel) 1248 2020 1308 1138 1400

Search area 21 × 17 26 × 22 22 × 17 25 × 20 22 × 19

Search time (ms) 3.492 3.821 3.576 3.416 3.331

S
f=

0
.7

5

Avg. pupil radius (in pixel) 20 25 20 19 20

Pupil centroid 138, 177 112, 117 189, 120 113, 193 142, 133

Pupil area (in pixel) 1266 2067 1316 1136 1382

Search area 32 × 27 41 × 35 34 × 26 30 × 25 32 × 29

Search time (ms) 6.524 7.889 6.385 5.987 7.293

TABLE I
PUPIL CENTROID AND RADIUS SEARCH WITHIN CONNECTED COMPONENT AT DIFFERENT SCALE FACTORS.
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Fig. 3. Histogram of an eye image.

Im-1 Im-2 Im-3 Im-4 Im-5

S
f

=
0

.2
5

Rdiff (in pixel) 4 1 0 3 0

Dpc (in pixel) 3 0 0 0 0

%PAfail (in pixel) 7.66 5.28 0.30 2.46 3.90

S
f

=
0

.5
0

Rdiff (in pixel) 0 1 0 1 0

Dpc (in pixel) 1 0 0 0 0

%PAfail (in pixel) 1.34 1.17 0.60 0.17 1.28

S
f

=
0

.7
5

Rdiff (in pixel) 0 0 0 0 1

Dpc (in pixel) 0 1 1 0 1

%PAfail (in pixel) 0.08 1.12 0.00 0.35 0.00

TABLE II
ERRORS IN DIFFERENT SCALE FACTORS.

In Equation (4), rmin and rmax are the minimum and

maximum input intensity values, respectively. smax is the

maximum output intensity value. r and s are the input and

output intensity values, respectively. For pupil detection, we

use minimum mean value as rmin and add an offset (δ1) with

rmin to obtain rmax, which are obtained in the following

Equation (5).

rmin = min(
∑1

i=−1 I(x + i, y + i)) for x=1 to IH-1

and y=1 to IW-1

rmax = Rmin + δ1
(5)

I(x, y) is the intensity value at (x, y) position in the eye

image. IH and IW are the image height and image width,

respectively. We decide the value of δ1 by experiment with

training images. In our experiment, δ1 = 30 is taken empir-

ically. Figure 5(a) shows an input eye image and Fig. 5(b)

shows the eye image after the intensity transformation before

the pupil boundary detection.

B. Pupil boundary detection

We use the preprocessed image obtained as discussed in

the last section for pupil boundary detection. We divide the

pupil boundary detection task into several sub tasks which are

shown in Fig. 4. All the tasks as shown in Fig. 4 are discussed

in the following.

1) Creating binary image: This is the first step in our pupil

detection approach. We eliminate the high intensity region

from the eye image because the pupil region consists of low
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Fig. 4. Tasks in pupil detection.

intensity value. We use Equation (6) to create binary image

from the intensity transformed image. The pixels intensity

values in an eye image are set to 0 in the binary image if

intensity values are less than 128 and otherwise 255, as shown

in Equation (6).

I
′
(x, y) =

{
0 ifI(x, y) ≤ 127
255 otherwise

(6)

I
′
(x, y) and I(x, y) are the intensity value at (x, y) position

in the binary image and intensity transformed eye image,

respectively. Figure 5(c) shows one result obtained in our

experiment.

2) Finding all connected components: After creating the

binary image, we find out all connected components by

checking the neighborhood of each pixel in a binary image.

We put all detected connected components in a list. Each

connected component is defined with Len, L, R, T , B, x-span,

y-span. These parameters are defined bellow for a connected

component Ci, say.
Leni = Total no of connected points in Ci.

Li = The point on Ci with minimum y-coordinate value.

Ri = The point on Ci with maximum y-coordinate value.

Ti = The point on Ci with minimum x-coordinate value.

Bi = The point on Ci with maximum x-coordinate value.

x-spani = |x-coordinate of Bi − x-coordinate of Ti|
y-spani = |y-coordinate of Ri − y-coordinate of Li|.

Figure 5(d) illustrates the above definition. Figure 5(d)

shows an example of connected components C1 and C2, which

are obtained for an input image and followed by the previously

stated operations.

3) Removing small connected components: Irrelevant

connected elements occur due to eyelids, eyelashes, light

reflection and non uniform illumination. We try to remove

the irrelevant components as much as possible from the eye

image before choosing the pupil component. As a process

of finding all connected components, we already identified a

set of all connected components C, say. From this set C, we

identify another set of connected components C
′

such that

Leni ≥ 0.2 ∗MaxLength && (xspani ≤ 1.5 ∗ yspani) &&

(yspani
≤ 1.5 ∗ xspani

) && (xspani
�= 0) && (yspani

�= 0) ,

for any i-th component ∈ C.

Here, MaxLenght is the maximum length of the con-

nected component among all connected components. Now, it

is obvious that C
′ ⊆ C. It is also experimentally observed

that the connected components in C
′
, form an rectangular

block around that connected component. The height-width or

width-height ratio of the rectangular block is less than 1.5. In

our subsequent task, we consider all connected components

(a) Input eye image (b) Image after intensity

transform

(c) Binary image

(e) After removing all small

connected components

x
-a

x
is

y-axis

L

R
T

B
C2

L R

T

B

C1

(d) Defining connected component

C1 and C2

Fig. 5. Eye image on different steps.

in C
′

only. Figure 5(e) shows the connected components

after removing small connected components in our running

example.

4) Selecting pupil component and finding edges:
After eliminating the small components from an image there

further may present extra connected components which are

actually not related to pupil. So, our next task is to choose the

pupil component only from C
′
. To do this, we first calculate

the centroid and the average radius for each component C
′
i ∈

C
′

. We use Equation (7) to calculate the centroid and average

radius for the ith component.

xci =
∑

xi

Ni
and yci =

∑
yi

Ni

Rci
=

∑√
(xi−xci

)2+(yi−yci
)2

Ni

(7)

where xci and yci is the x- and y- coordinates of centroid, re-

spectively and Rci is the average radius of the ith component.

(xi, yi) is the pixel position of the ith component.

After calculating the centroid and average radius, we fit the

circle of radius Rci at (xci , yci ) and count the pixels say, Pbi

which belongs to the ith component and the number of pixels

say, Pni
which does not belong to the ith component within

that circular region fitted with Rci at (xci , yci). We then select

the component as pupil component using Equation (8).

p = max
i
{ Pbi

Pbi + Pni

} for all i (8)

5) Finding pupil boundary and pupil centroid: Now, we

fill the small white region within pupil component, which
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occur due to the light reflections with black pixels and then

find the edge point of the pupil component. All edge points

which we have obtained from the previous step may not be

connected. There may be broken edge due to light reflection

at the pupil border or wrong edge points due to eye lashes. So,

our next task is to construct the actual pupil boundary edge. We

bounded the pupil edge points by a rectangular block which

again divides into four quadrants as shown in Fig. 6.

We started the pupil edge point finding from that edge point

where the y-axis intersect the pupil boundary. From that point

we check the 1, 2, 3 pixel positions (see Fig. 6) in the image

to find the next edge point. If edge points occur at 1 or 2

position for first 45 degree from the starting point we left that

point as original edge point. Similarly, we left the edge point

as actual edge point if edge point occurs at position 2 or 3

for the next 45 degree. If edge point occurs at both 1 and 3

positions we choose the position 2 as the next actual pupil

edge point. For the first 45 degree if the next edge points

occurs at position 3, we back trace the previously determined

actual edge point, if there exist an edge point which has an

edge point in horizontal position, then we assign the position

2 as new pupil edge point, otherwise we choose position 3

as new edge point. For the next 45 degree, if the next edge

points occurs at position 1, then we back trace the previously

determined actual edge point upto 45 degree form the upper x

axis and if we find a point which has an edge point in vertical

position we assign the position 2 as new pupil edge point,

otherwise we choose position 1 as new point.

We apply the similar approach for other three quadrants to

find the actual pupil boundary. After completion of finding

actual pupil boundary we fill inside the pupil boundary with

black pixel and recalculate the pupil centroid (xdp, ydp) and

average pupil radius (Rdpavg).

6) Resizing pupil information: We get the pupil centroid,

radius and boundary points for down scale image. So, we

need to up scale these information to get pupil information

for original eye image. We multiply the average radius and

centroid by two to up scale. We up scale the pupil boundary

image with scale factor 2 using Equation (1).

x

1 2

3

x

y−axis
A B

C

D

E

O

x−
axis

Fig. 6. Pupil boundary finding.

C. Iris boundary detection

We consider down scaled [18] input eye image with scale

factor 0.50 which we obtain as discussed in Sec 3.1.1. We

also use the pupil information, which we obtain following the

approach discussed in Sec 3.2. In our approach of the iris

boundary detection, we divide this step into several sub tasks.

An overview of our iris detection approach is shown in Fig. 7.

All the tasks mentioned in Fig. 7 are discussed in the following

sub sections.

1) Intensity transformation: Prior to the pupil and iris

detection we perform intensity transform [18]. This operation

is already discussed in Section 3.1.2. Based on the histogram

properties we use contrast stretching [18] to increase the

contrast between iris and sclera part. We divide the eye image

into left and right sub images at pupil centroid. We apply

contrast stretch [18] on the left and right images separately

because illumination in the both sides of iris are not necessarily

same.

We divide the eye image into two sub images, left and right

sub images at the y- coordinate of pupil centroid (ypc). Then

we apply Equation (9) for contrast stretch [18] in the both sub

images.

s =
smax

rmax − rmin
× (r − rmin) (9)

In Equation (9), rmin and rmax are the minimum and

maximum input intensity values, respectively. smax is the

maximum output intensity value. r and s are the input and

output intensity values at each pixel position in the eye image,

respectively. For iris detection, the values of rmin and rmax

are determined using Equation (10).

rmin =
1
64

xmax∑
x=xmin

ymax∑
y=ymin

I(x, y)

(10)

rmax = rmin + δ

where, xmin = xpc − 8 and xmax = xpc + 8. ymin = ypc −
Rpavg and ymax = ypc − Rpavg − 15 for left sub image and

ymin = ypc+Rpavg and ymax = ypc+Rpavg+15 for right sub

image. Rpavg and (xpc, ypc) are the average pupil radius and

pupil centroid, respectively. δ is an offset value. We decide

the value of δ by experiment with training images. In our

experiment, δ = 50. Fig. 8(b) shows the result after applying

intensity transformation with rmin and rmax to image shown

in Figure 8(a).

2) Dilation: The dilation [18] is an morphological oper-

ation in image processing. We apply dilation preprocessing

operation on the intensity transformed image. This reduces

the intensity value within the iris region and increase the

contrast between iris and sclera region. We consider a 3 × 3
block centred at each pixel in the intensity transformed image.

Dilation is done by replacing the intensity value at each pixel

with the minimum intensity value of that 3×3 block. We apply

this operation on the whole image obtained in the previous step

(intensity transformation). Figure 8(c) shows the dilated image

corresponding to the image shown in Fig. 8(b).

3) Thresholding image: In this step, we threshold the image

based on some threshold value. We divide the eye image into
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Fig. 7. Tasks in the proposed iris detection technique.

a) Input eye image b) Intensity transformed

image

c) Image after dilation of 

intensity transformed image

d) Image after threshold

f) Image after vertical

edge detection

e) Image after dilation of 

threshold image

g) Image after removing

unnecessary edges

Fig. 8. Eye images at different steps.

two sub images, left and right sub images at the y- coordinate

of pupil centroid (ypc). We apply Equation (11) to threshold

left and right sub images.

I
′
(x, y) =

{
255 ifI(x, y) ≥ Th
0 Otherwise

(11)

where, Th is the threshold value. We calculate the separate
threshold values ThL and ThR for the left and right sub
images, respectively. To calculate these threshold values, we
use Equation (12).

ThL =

IH−1∑
x=0

ypc−1∑
y=0

I(x, y)

IH × ypc − N255
if I(x, y) �= 255

ThR =

IH−1∑
x=0

IW−1∑
y=ypc

I(x, y)

IH × (IW − ypc) − N255
if I(x, y) �= 255

(12)

where, IH and IW represents the height and width of the

image, respectively. In Equation (12), ypc is the pupil centroid

and N255 is the number of pixel with intensity value 255.

Figure 8(d) shows the threshold image obtained from the

image shown in Fig. 8(c).

4) Dilate the threshold image: After thresholding the im-

age, there may present white region inside the iris region due

to high intensity value in iris texture pattern. We try to fill the

white spot with black pixel within the iris region as much as

possible so that no irrelevant edges are created within the iris

region. We then apply the dilation [18] operation. We consider

5×5 block around each pixel in the image and count the black

pixel. We replace the pixel with minimum intensity value if

count is greater than the half of the block size. We choose 5×5
block so that it preserves the white region between iris and

sclera region. Figure 8(e) shows the dilated image as obtained

starting with the the threshold image in Fig. 8(d).

5) Finding vertical edges: Iris boundary mainly formed by

vertical edges between iris and sclera region, as maximum

time upper and lower parts of images are occluded by eyelids.

In this step, we find the vertical edges. We find the vertical

edge by traversing each row of the image. We consider a point

as a vertical edge point if intensity value change from white

to black up to y-coordinate of the pupil center and black to

white if y- coordinate of the pixel is within y- coordinate of

pupil centroid to image width. Figure 8(f) shows the result of

detection of vertical edges of the eye image in Fig. 8(e).

6) Removing unnecessary edges: The resultant image as

obtained in the last step usually contains many edges which

are not due to iris boundary. So, in this step, we eliminate

the unnecessary vertical edges which are not relevant to iris

boundary. We try to select edge pixels present in the image

which is mainly for the iris boundary. We calculate the distance

of each edge points from the pupil centroid for left and right

sub image. Then create two distance histogram for two sub

image. Distance histogram represents the number of pixels in

each distance. We normalize the distance histogram dividing

the number of pixels by corresponding distance. For left sub

image we select those connected component which has any

pixel with distance corresponding to the maximum normalize

value in the distance histogram of the left sub image. We apply

similar approach for the right sub image. Figure 8(g) shows the

edge corresponding to the iris boundary following the image
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in Fig. 8(f).

D. Finding iris boundary

Now we check the connectivity of the iris boundary in this

step. We divide the edge image into four quadrants namely,

LT, RT, LB and RB (see Figure 9(a)). Then we fit the edge

points in each quadrant. For LT and LB quadrants, we start

searching from the intersection point of y- axis and iris edge

point in the left sub image. Suppose, x is the current point at

LT shown in Figure 9(a). We search the position 1, 2, 3 with

respect to x in edge image and also check a 5 × 3 block at

left top of position 1 in the dilated image (see Figure 9(b) and

(c)). If in the dilated image, density of black pixel is greater

than 10 ( i.e. ≥ 5×2) in the 5×3 block, then we terminate the

search and choose this point as starting eyelids points in LT
quadrant because after that position iris boundary is occluded

by eyelids. If no pixel is found in 1, 2 or 3 position then

we search the next point along the each upper row for LT
quadrant. At a point when it finds an edge point, we connect

these two points with a line for iris boundary. In the similar

way, just changing the direction of search points and block we

find the starting point of eyelids in RT, LB and RB quadrants.

After finding the starting points of eyelids in each quadrant we

detect the eyelids. Eyelids detection is discussed in the next

sub section.

E. Detecting eyelids

We have already got the starting points of eyelids from the

previous section. Using those points we draw some line in

particular angular direction to detect eyelids if any. Algo-

rithm 1 describes the upper eyelid detection using LT and RT
quadrants. For detecting lower eyelid we apply same algorithm

in LB and RB quadrants but in opposite direction. Figure 9(d)

illustrate the eyelids detection procedure. Figure 9(e) shows

the detected iris and eyelids from eye image.

F. Resizing iris information

We get the iris boundary points for down scale image. So, we

need to up scale this information to get iris information for

the original eye image. We up scale the iris boundary image

with scale factor 2 using Equation (1). After getting the iris

boundary for original image we remove the outside of the iris

boundary.

IV. EXPERIMENTAL RESULTS

We have implemented our proposed iris localization approach

using C programming language in Fedora Core 5 operating

system environment. We use GNU compiler GCC version

4.1.0 for compiling and executing our program. For plotting

graph we use GNU plot version 4.0. Our approach has been

tested with 1000 images of [19], 1800 images of UBIRIS [20],

450 images of [21], 22,000 images of CASIA ver-3.0 [22]

and 2900 images of ICE 2005 [23] iris image databases. We

compare our approach with some best known algorithms [2],

[13], [4], [6], [24]. There are some reported results of these

x1 and x6 are starting point in LT and RT quadrant,1

respectively;

AB and CD are y- and x- axis, respectively;2

∠AOE = ∠BOH = 45◦ ;3

∠DOF = ∠DOG = 15◦ ;4

if ∠AOx1 < 45◦ then5

draw line from x1 to OE with ∠Ox1x2 = 45◦;6

draw line from x2 to OF with ∠Ox2x3 = 60◦;7

else8

if ∠AOx1 < 75◦ then9

draw line from x1 to OF with10

∠Ox1x3 = 60◦;
else11

if ∠AOx1 <= 90◦ then12

assign x3 = x1;13

end14

end15

end16

if ∠BOx6 < 45◦ then17

draw line from x6 to OH with ∠Ox6x5 = 45◦;18

draw line from x5 to OG with ∠Ox5x4 = 60◦;19

else20

if ∠HOx6 < 75◦ then21

draw line from x6 to OG with22

∠Ox6x4 = 60◦;
else23

if ∠AOE <= 90◦ then24

assign x4 = x6;25

end26

end27

end28

draw line from x3 to x4 ;29

Algorithm 1: Algorithm for detecting upper eyelid

approaches; however, those results are with CASIA [22] ver-

1.0 iris database. CASIA ver-1.0 database is now obsolete

because data are hand-edited by painting the entire pupil with

a circular disk of uniformly dark pixels and hence making

the database trivial. To compare our approach with others

we implement their iris localization approaches in the same

experimental setup as our approach.

Table III shows the errors on average pupil radius, distortion

of pupil center and detected pupil area according to our

approach and existing approaches [2], [13], [4], [6], [24]. In

Table III, we see that our approach takes minimum time than

the other approaches as well as with higher accuracy rate of

the iris localization.

We measure the Accuracy rate (ACrate) based on the Accu-
racy error (Errir). Accuracy error is defined in Equation (13).

Errir =
|Niact −Nidet|

Niact
× 100 (13)

where, Niact and Nidet are the number of actual and detected

iris pixels, respectively. We calculate the actual iris pixels

(Niact) manually using GIMP image processing tool. The

detected iris pixels (Nidet) are counted from the detected iris

part with a simple row-major scanning method. If Errir is
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Fig. 9. Iris boundary finding.

less than 10% then we consider the iris part is successfully

detected. Accuracy rate is defined in Equation (14).

ACrate =
Ns

Nt
× 100 (14)

where, Ns is the number of eye images in which iris part is

successfully detected and Nt is total number of eye images.

In Table IV, we show the error rate to localize iris part

for the five benchmark images which are selected randomly

from the three different image databases using Equation (13).

Here, Niact and Nidet are the number of actual and detected

iris pixels, respectively. If Errir is less than 10% then we

consider the iris part is successfully detected. Accuracy rate
is defined in Equation (14). We see that average error rate is

less 10% irrespective of the type of databases according to our

approach.

We compare the accuracy rate of our approach with others.

Accuracy rate is measured using Equation (14). The result

of comparisons is shown in Table V. From Table V, we see

that the proposed approach has the best performance. The

accuracy rate is up to 94.51% for CASIA, 95.49% for ICE

2005, 98.58% for Bath, 94.26% for UBIRIS and 98.47% for

MMU iris database. We also show that our approach requires

less time than the others.

A few sample runs of iris detections on some iris images

Daugman [2] Daugman New [13] Masek [6] Wildes [4] Ma et. al. [24] Proposed

C
A

S
IA

V
er

-3
.0

Mean errors in Rdiff (in pixel) 4.39 3.02 5.15 6.12 5.39 1.14

Mean errors in Dpc (in pixel) 2.15 1.19 3.67 5.37 4.79 1.89

% ofPAfail 6.71 4.56 6.59 7.77 7.34 4.12

Average time (ms) 523.14 29.17 97.52 379.61 363.64 28.57

Accuracy (%) 97.12 97.78 91.12 89.32 87.57 97.63

IC
E

2
0

0
5

Mean errors in Rdiff (in pixel) 3.53 3.11 7.23 7.51 7.38 2.95

Mean errors in Dpc (in pixel) 2.13 1.79 5.59 6.37 5.92 1.95

% ofPAfail 5.02 4.93 7.67 7.89 8.57 4.41

Average time (ms) 498.21 27.61 112.25 407.51 378.87 25.33

Accuracy (%) 96.21 97.05 89.41 87.11 85.29 96.79

U
B

IR
IS

Mean errors in Rdiff (in pixel) 2.23 2.21 4.65 2.96 3.68 0.32

Mean errors in Dpc (in pixel) 1.97 1.82 3.24 2.15 2.97 0.97

% ofPAfail 3.95 3.33 8.46 5.46 7.19 1.82

Average time (ms) 305.76 20.23 85.34 276.16 256.39 19.45

Accuracy (%) 95.78 96.91 91.67 94.45 93.66 96.67

B
at

h

Mean errors in Rdiff (in pixel) 4.54 3.19 6.72 4.38 4.65 0.56

Mean errors in Dpc (in pixel) 3.73 3.27 5.32 3.44 4.29 1.53

% ofPAfail 4.89 3.62 8.96 8.46 7.81 1.67

Average time (ms) 478.47 26.55 108.26 394.16 376.83 24.89

Accuracy (%) 99.2 99.3 94.5 98.9 98.1 100

M
M

U

Mean errors in Rdiff (in pixel) 4.18 3.76 5.78 3.96 4.67 0.41

Mean errors in Dpc (in pixel) 2.61 1.14 4.98 3.15 3.92 1.02

% ofPAfail 4.65 2.39 8.49 7.89 8.14 1.16

Average time (ms) 398.98 25.47 99.78 354.55 317.18 24.95

Accuracy (%) 98.89 99.13 93.33 98.22 97.87 99.11

TABLE III
COMPARISON OF ACCURACY RESULTS ON PUPIL DETECTION.
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Images

Errir

Daugman [2] Daugman New [13] Masek [6] Wildes [4] Ma et. al. [24] Proposed

C
A

S
IA

V
er

-3
.0

S1009L01 7.12 4.21 8.25 5.31 7.19 3.56

S1025L04 7.90 5.61 9.10 6.45 8.20 4.18

S1095R03 9.61 8.29 10.22 8.03 8.76 7.55

S1090R02 8.22 10.51 13.52 11.12 9.12 10.12

S1137L04 3.15 2.12 5.21 2.89 4.91 3.61

IC
E

2
0

0
5

239766 7.91 6.21 8.88 13.21 12.59 4.49

254451 8.12 11.51 9.85 12.67 9.18 9.97

236657 11.12 10.25 14.67 8.12 14.52 12.33

227542 12.56 9.59 12.12 7.61 9.83 8.27

215461 4.51 5.23 6.22 8.23 3.12 4.19

U
B

IR
IS

Img 2 1 3 5.67 4.51 7.63 8.98 6.21 4.56

Img 9 1 2 7.55 6.23 8.07 9.34 8.73 6.29

Img 216 1 5 9.98 8.12 11.92 12.59 12.88 9.36

Img 130 2 4 9.27 8.32 10.07 11.08 13.32 8.26

Img 201 2 2 10.12 8.99 13.17 14.11 16.71 9.47

B
at

h

0001-L-0005 11.57 7.52 17.89 20.56 19.21 9.34

0004-R-0015 8.76 6.21 9.85 10.06 8.75 4.27

0008-R-0007 19.97 7.89 17.99 18.96 12.35 7.12

0014-L-0020 5.45 5.12 8.7 9.87 4.62 3.18

0025-L-0014 5.01 4.91 10.03 11.05 9.25 5.22

M
M

U

aeval3 4.67 5.61 8.77 9.16 7.62 2.94

chingycl3 9.36 8.91 15.12 17.31 12.13 6.51

chongpkr4 4.43 3.12 6.83 8.72 2.25 2.79

fatmal1 4.26 3.97 7.98 8.99 4.62 4.73

mimil1 10.07 11.41 17.17 11.22 13.55 7.23

TABLE IV
COMPARISON OF ERROR RATES RESULTS ON IRIS DETECTION.

Daugman [2] Daugman New [13] Masek [6] Wildes [4] Ma et. al. [24] Proposed

A
C

r
a

t
e

CASIA Ver-3 96.21 96.12 81.55 91.41 94.11 94.51

ICE 2005 92.15 97.52 79.51 82.12 87.55 95.49

UBIRIS 90.27 89.21 82.65 87.24 86.22 94.26

Bath 91.2 98.1 82.5 89.6 87.5 98.5

MMU 85.64 98.23 83.92 2.48 91.02 98.41

A
v
er

ag
e

ti
m

e
(m

s)

CASIA Ver-3 923.7 35.6 685.2 935.7 679.5 24.1

ICE 2005 870.5 30.2 623.2 828.4 612.2 22.1

UBIRIS 674.4 23.2 412.4 537.3 491.5 16.9

Bath 889.6 33.7 647.7 789.5 589.6 23.8

MMU 823.1 29.6 587.1 694.8 552.4 20.3

TABLE V
COMPARISION OF ACCURACY RATES ON OUR IRIS LOCALIZATION.



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:5, 2007

346

(h) I 5 (Img_3_1_2) (i) I6 (Img_15_2_2)

(a ) I1(0008-L-0007) (b) I2 (0025-L-0002)

(k)

(d ) (e )

( l)

( f)

(c ) I3 (bryanr2)

(g) I4  ( liujwr2)

(j)

Fig. 10. Iris boundary detection on different iris images.

following our approach is shown in Figure 10. Eye images I1

(Figure 10(a)) and I2 (Figure 10(b)) chosen from the Bath

iris database where pupils are not circular. For these two

images, our iris detection approach successfully able to detect

iris parts, which are shown in Figure 10(d) and Figure 10(e)

(corresponding to the eye images I1 (Figure 10a) and I2 (Fig-

ure 10(b)), respectively). Figure 10(c) and Figure 10(g) show

two iris images I3 and I4, respectively chosen from the MMU

iris database. We see that these two images are highly occluded

with eyelashes. Our iris detection approach also able to detect

iris part successfully for these two images, which are shown in

Figure 10(f) and Figure 10(j) (corresponding to the eye images

I3 (Figure 10(c) ) and I4 (Figure 10(g)), respectively). Two

eye images I5 (Figure 10(h)) and I6 (Figure 10(i)) are chosen

from the UBIRIS database, which are of low quality images.

For these images too our iris detection approach successfully

detects the iris parts which are shown in Figure 10(k) and

Figure 10(l) corresponding to the images I5 (Figure 10(h))

and I6 (Figure 10(i)), respectively.

V. CONCLUSION

Iris localization is the beginning task in any iris-based biomet-

ric authentication system and if the iris part of an eye image

is not detected accurately then it leads to errors in overall

identification method. In this work, we focus on efficient and

accurate iris localization method for developing better bio-

metric identification system in widespread application areas.

Our approach is able to isolate iris part from iris images with

inferior image quality, occlusion of eye-lashes. Our approach

also addresses the issue of processing iris images where pupil

and iris boundaries are not necessarily perfect circular. To

deal with these problems we consider different operations

such as, binary image creation, finding all connected compo-

nent, removal of small connected component, selecting pupil

component and finding pupil component for pupil boundary

detection and intensity level transformation, dilation, image

thresholding, removal of irrelevant edges and eyelid detection

for iris boundary. These sub tasks, nevertheless, without much

computational overhead compared to the existing approaches

of iris detection. Experimental results reveal that our approach

is approximately 75% faster than the existing approaches.
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More significantly, accuracy rate in iris detection according

to our approach is comparable to that of all the reported

work. With our approach, we achieve two objectives: speed

and accuracy in iris localization, which are important to realize

high speed and more reliable biometric authentication systems

based on iris.With the encouraging results as substantiated by

our thorough experiment we may claim that our approach

increases the potentiality of iris biometric to be applied in

real-life applications.
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