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Dynamic optimization of industrial servomechanisms using motion laws
based on Bezier curves

Giovanni Incerti

Abstract—The motion planning procedure described in this paper
has been developed in order to eliminate or reduce the residual vibra-
tions of electromechanical positioning systems, without augmenting
the motion time (usually imposed by production requirements), nor
introducing overtime for vibration damping. The proposed technique
is based on a suitable choice of the motion law assigned to the
servomotor that drives the mechanism. The reference profile is
defined by a Bezier curve, whose shape can be easily changed by
modifying some numerical parameters. By means of an optimization
technique these parameters can be modified without altering the
continuity conditions imposed on the displacement and on its time
derivatives at the initial and final time instants.

Keywords—Servomechanism, Residual vibrations, Motion opti-
mization.

I. INTRODUCTION

THE compliance of the mechanical transmissions can
generate vibratory effects inside many electro-mechanical

systems. A particularly important problem is the one regarding
the so-called overshooting effect, that is a residual vibration
that appears at the end of a very fast motion cycle; in order to
eliminate this type of oscillatory phenomenon it is needed to
introduce supplementary stop intervals, so that the mechanical
energy can be dissipated by the natural damping of the
system. To avoid vibration, it is also possible to increase the
motion time, with consequent reduction of the velocity and the
acceleration of the moving parts of the machine. Nevertheless
this action slows down the production process and, for this
reason, it is not advantageous from the economical point of
view.

The motion planning strategy here proposed has been stu-
died to reduce the residual vibrations of an electro-mechanical
device. To implement this technique the following steps are
necessary:

• definition of a mathematical model that allows to simulate
the actual behaviour of the servomechanism with good
accuracy;

• definition of a parametric motion profile, whose shape
(i.e. the displacement, velocity and acceleration profiles)
can be easily modified by changing a set of numerical
parameters;

• definition of a performance index, that allows a simple
and practical evaluation of the mechanical energy of the
system at the end of the motion interval;

• use of a numerical algorithm which is able to solve
an optimization problem: in this way the performance
index will be minimized by changing the parameters of
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Fig. 1. a) Rotary platform driven by a servomotor through a speed reducer
and a right angle gearbox. b) Schematic representation of the mechanism.

the motion profile. When the solution corresponding to
a local minimum is reached, the procedure is stopped
and the optimal parameters are saved in the computer
memory.

In order to demonstrate the effectiveness of this approach,
this paper presents a practical example, where the previously
described technique is employed to reduce the residual vibra-
tions of a rotary platform driven by a servomotor through a
non-rigid transmission.

II. MATHEMATICAL MODELING

Let us consider the electro-mechanical device represented
in Fig. 1a, which consists of a rotary platform driven by a
servomotor through a speed reducer and a right angle gearbox
with 1:1 gear ratio. Fig. 1b shows a schematic representation
of the mechanism. The system parameters and their corre-
sponding symbols are listed in Table I. The output shaft of the
speed reducer and the input shaft of the right angle gearbox
are connected through a joint, which can be modeled by a
torsional spring and a torsional viscous damper in parallel. If
we suppose that the servomotor is able to correctly execute
the motion profile assigned by the electronic control unit (this
hypothesis is usually satisfied with good approximation, if
a position and/or a velocity feed-back loop is implemented
inside the motion controller), the rotation of the motor shaft
ϕ(t) and its time derivatives ϕ̇(t) and ϕ̈(t) are known; through
the gear ratio z it is immediate to calculate the angular
displacement α at the output of the speed reducer. The rotation
β of the platform differs from α owing to the elasticity of the
joint.
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In order to analyze the mechanical vibrations of the system,
it is necessary to determine the motion equation of the rotary
platform and to solve it for a particular motion law of the
motor. This can be achieved without difficulties through a
Lagrangian approach. Using as variable the angular rotation
β of the platform, the Lagrange equation for the system under
consideration is:

d

dt

(
∂Ek

∂β̇

)
− ∂Ek

∂β
+
∂D

∂β̇
+
∂Ep

∂β
= 0 (1)

where the symbols Ek and Ep indicate respectively the kinetic
and the potential energy of the system, whereas the symbol D
indicates the Rayleigh dissipation function, which considers
the damping effects. Since the input and output shaft of the
right-angle gearbox have the same angular velocity β̇, the total
kinetic energy is given by:

Ek =
1
2

3∑
i=1

Jiβ̇
2 (2)

The potential energy and the Rayleigh function assume the
following expressions:

Ep =
1
2
k(β − zϕ)2 D =

1
2
c(β̇ − zϕ̇)2 (3)

The substitution of Eqs. (2) and (3) into Eq. (1) gives the
following result:

Jeqβ̈ + c(β̇ − zϕ̇) + k(β − zϕ) = 0 (4)

where Jeq = J1 + J2 + J3. The rotation β(t) of the platform
can be calculated by solving Eq. (4), if the motion law ϕ(t)
of the servomotor is known.

At this point it is convenient to introduce the variable
ψ = β − zϕ, which represents the difference between the
actual position β of the platform and its theoretical position
β∗ = zϕ, corresponding to a perfectly rigid behaviour of the
joint. Using this new variable we obtain from Eq. (4):

Jeq(ψ̈ + zϕ̈) + cψ̇ + kψ = 0 (5)

Introducing now the natural angular frequency of the sys-
tem ωn =

√
k/Jeq and the non-dimensional damping ratio

ξ = c/2Jeqωn, Eq. (5) can be rearranged as follows:

ψ̈ + 2ξωnψ̇ + ω2
nψ = −zϕ̈ (6)

Knowing the analytical expression of the motor angular ac-
celeration ϕ̈ and starting from null initial conditions (that is

TABLE I
PARAMETERS AND VARIABLES OF THE SYSTEM IN FIG. 1

Symb. Description

J1, J2, J3 Mass moments of inertia
k Torsional stiffness of the joint
c Damping constant of the joint
ϕ Motor shaft rotation
α Rotation of the output shaft of the reducer
β Rotation of the platform

z = α/ϕ Gear ratio of the speed reducer

ψ(0) = 0, ψ̇(0) = 0), the solution of the differential equation
(6) can be calculated through the convolution integral [1]. If
the system is underdamped (ξ < 1) we have:

ψ(t) = − z

ωd

∫ t

0

f(t, τ) dτ (7)

where ωd = ωn

√
1 − ξ2 is the damped natural frequency of

the system and f(t, τ) is defined as:

f(t, τ) = ϕ̈(τ)e−ξωn(t−τ) sin[ωd(t− τ)] (8)

The angular position of the rotary platform can be now easily
calculated through the following relationship:

β(t) = ψ(t) + zϕ(t) (9)

The residual vibration of the platform may be eliminated
or reduced in amplitude through a proper choice of the
acceleration profile of the motor ϕ̈(t), without changing the
motion time and the rotation to be done, that is maintaining
the same average value of angular velocity. The motion law
of the motor is generated through a Bezier curve and it is
successively optimized, in order to obtain the desired result.

Section III provides some mathematical details to define a
motion law by means of a Bezier curve, whereas Section IV
illustrates a criterion to eliminate the residual vibration.

III. MOTION LAWS BASED ON BEZIER CURVES

The Bezier curves have been widely used in many fields
of engineering; their denomination derives from the surname
of their creator, the French mathematician and engineer Pierre
Bezier, who implemented them in his software UNISURF, a
CAD system purposely developed to design the body compo-
nents of many Renault cars.

Nowadays such curves are used for computer graphics
applications [2] [3] and to design the laws of motion of cam
mechanism or servo-controlled devices [4] [5] [6].

An interesting feature of the Bezier curves is that their
shape can be easily modified by changing the values of some
numerical coefficients, which define the so called control
polygon; this feature will be here exploited to define the
reference motion profile ϕ(t) of the servomotor that drives the
mechanical system. The definition of a Bezier curve through
the use of the Bernstein polynomials is given below.

Let P0, P1, . . . Pn be (n + 1) points of the plane, defined
by their Cartesian coordinates (xi, yi). The Bezier curve Γ(λ)
corresponding to these points is defined by the following
parametric equations:

Γ(λ) =
{
x(λ)
y(λ)

}
=

n∑
i=0

{
xi

yi

}
B(n, i, λ) λ ∈ [0, 1] (10)

where
B(n, i, λ) =

(
n
i

)
λi(1 − λ)n−1 (11)

is the ith Bernstein polynomial and λ is the parameter. The
points Pi (i = 0, . . . , n) are called knots and they are used
to build up the control polygon of the curve; as an example,
Fig. 2a shows a Bezier curve and its control polygon consisting
of six points with non-uniform spacing on the abscissa.
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Fig. 2. a) An example of Bezier curve with control polygon consisting of
six points. b) Modified curve, obtained by changing the position of point P3.

A Bezier curve satisfies the following properties:

• the first point P0 and the last point Pn of the control
polygon belong to the curve, whereas the intermediate
points act as attractors and generally they do not belong
to the curve;

• the first and the last side of the polygon are tangent to
the curve, at the initial and final point respectively;

• it can be shown that the curvature at point P0 depends
on the first three points of the control polygon and the
curvature at point Pn depends on the last three points of
the polygon;

• the curve can be locally deformed by changing the
position of a point of the control polygon; the shape mo-
dification is evident only in the region near the modified
point (see Fig. 2b).

If the operations of derivation and integration are carried
out on a Bezier curve (with respect to the coordinate x), the
derivative and integral curves are generally not Bezier curves.
However it is still possible to obtain a Bezier curve if the
points Pi are equally spaced along the abscissa; in this case
the mathematical relationship between the abscissa x and the
parameter λ is:

x(λ) = x0 + λ(xn − x0) (12)

where x0 and xn are respectively the abscissas of the points
P0 and Pn.

We report here some useful properties, which can be used
to calculate the derivative and the integral curve.

1) The x-derivative of a Bezier curve defined by a control
polygon with (n + 1) equally spaced knots is again a
Bezier curve and its polygon has n equally spaced knots;
the ordinates y∗i of these knots are given by:

y∗i =
n

xn − x0
(yi+1 − yi) i = 0, . . . , n− 1 (13)

2) The integral (with respect to the x variable) of a Bezier
curve defined by a control polygon with (n+1) equally
spaced knots is again a Bezier curve and its polygon has
(n + 2) equally spaced knots; the ordinates ỹi of these
knots are given by:

ỹi =
xn − x0

n+ 1
yi + ỹi−1 + ỹ0 i = 1, . . . , n+ 1 (14)

3) If F(x) is a Bezier curve defined by a control poly-
gon having (n + 1) knots, its definite integral on the
interval [x0 xn] can be calculated through the following
relationship:∫ xn

x0

F(x)dx =
xn − x0

n+ 1

n∑
i=0

yi (15)

We now apply this procedure to define the displacement
profile ϕ(t) for the motor that drives the system. This function
is defined in the time interval [0, T ], where T is the motion
time: therefore we have t0 = 0 and tn = T .

To determine the number of points of the control polygon, it
is necessary to know: 1) the maximum order of the derivative
on which we must guarantee the continuity; 2) the number of
interior points of the control polygon, whose ordinates can be
modified in order to perform the optimization.

Indeed it can be shown [7] that if we use a control polygon
(for the displacement function) similar to the one depicted
in Fig. 3, the resulting Bezier function satisfies the following
properties:

ϕ(0) = 0 ϕ(T ) = Φ
ϕ̇(0) = 0 ϕ̇(T ) = 0

...
...

ϕ(m)(0) = 0 ϕ(m)(T ) = 0

(16)

where Φ is the maximum rotation of the motor (final value).
The particularity of this polygon is to have its first (m + 1)
points with null ordinate and its final (m + 1) points with
ordinate equal to Φ. Inserting additional p internal points,
we obtain a polygon with 2(m + 1) + p points; through an
automatic procedure, the ordinates of these internal points can
be modified in order to optimize the motion profile, following
the criteria described in Section IV. As an example, Fig. 4
shows the displacement, velocity and acceleration profiles ob-
tained by imposing the continuity condition on the acceleration
(m = 2) and inserting three internal points (p = 3), whose
ordinates are fixed by the user. The final result is a control
polygon (for the displacement curve) consisting of 9 equally
spaced points (Fig. 4a); the corresponding polygons for the
velocity and acceleration curves have respectively 8 and 7
equally spaced points (see Figs. 4b and c).
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Fig. 3. Control polygon for the displacement function ϕ(t).

Let us denote with the symbol Si the ordinates of the control
polygon for the displacement function ϕ(t) (motor rotation);
the corresponding Bezier curve, obtained from Eq. (10), is:

ϕ(t) =
ns∑
i=0

SiB(ns, i,
t

T
) (17)

where ns = 2m + p + 1 and B is the Bernstein polyno-
mial, defined as function of the normalized time λ = t/T
(see Eq. (11)). Through a double application of Eq. (13)
we can calculate the ordinates Vi of the control polygon
for the velocity function ϕ̇(t) and the ordinates Ai of the
control polygon for the acceleration function ϕ̈(t): defining
for simplicity nv = ns − 1 and na = nv − 1, we obtain:

Vi =
ns

T
(Si+1 − Si) i = 0, . . . , nv (18)

Ai =
nv

T
(Vi+1 − Vi) i = 0, . . . , na (19)

The corresponding Bezier curves are:

ϕ̇(t) =
nv∑
i=0

ViB(nv, i,
t

T
) (20)

ϕ̈(t) =
na∑
i=0

AiB(na, i,
t

T
) (21)

IV. ELIMINATION OF THE OVERSHOOTING EFFECT

As mentioned above, the overshooting effect is a free
vibration that appears at the end of the motion interval, that
is for t > T ; in this situation the shaft of the servomotor is
kept locked on the final position, whereas the rotary platform
oscillates due to the elasticity of the transmission joint. The
vibration is possible because some energy is still present in the
mechanical device at the final time instant t = T ; therefore, to
eliminate the vibration of the platform, it is necessary to set at
zero the mechanical energy of the system, corresponding to the
final time instant. If this is not possible, we can impose that the
value of this energy is reduced to a minimum; in this case the
residual oscillations will be in any case strongly reduced, even
if they will not be completely eliminated. To achieve these
results an accurate motion planning of the mechanical system
is necessary. Using the Bezier curves described in Section
III, this can be implemented without difficulties, because the
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Fig. 4. Displacement, velocity and acceleration profiles obtained for m = 2
and p = 3.

reference profiles can be quickly modified by changing the
ordinates of the intermediate points of the control polygon.
Since this procedure can not be manually carried out (for
example through a trial and error approach), we must use an
automatic procedure, that can determine the optimal motion
profile.

Starting from these preliminary remarks, the problem under
consideration can be studied as an optimization problem,
where we must seek the conditions for which the mechanical
energy of the system at the time instant t = T is minimum.
Therefore this energy plays the role of a target function, whose
value can be set to zero (or minimized), simply acting on
the intermediate points of the control polygon. In particular,
we can consider the ordinates of the intermediate points as
variables of the optimization process.

For the 1-DOF system described by Eq. (4) the total
mechanical energy Etot, at the generic time instant t, can be
easily calculated by adding the kinetic energy of the system
to the potential energy due to the deformation of the elastic
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joint; using the expressions of Ek and Ep given in Section II,
we have:

Etot = Ek + Ep =
1
2
[Jeqβ̇

2 + k(β − zϕ)2] (22)

If we introduce the variable ψ, Eq. (22) can be rewritten as:

Etot =
1
2
Jeq[(ψ̇ + zϕ̇)2 + ω2

nψ
2] (23)

where ω2
n = k/Jeq. At the final time instant t = T the angular

velocity of the motor is null (ϕ̇(T ) = 0), as stated by Eq. (16)
(2nd row, right column); therefore we obtain from Eq. (23):

Etot(T ) =
1
2
Jeq[ψ̇2(T ) + ω2

nψ
2(T )] (24)

The terms ψ(T ) and ψ̇(T ) that appear at the right-hand side
of Eq. (24) can be calculated through Eq. (7); in particular,
the velocity term (for a generic time instant t) is given by the
following relationship:

ψ̇(t) = − z

ωd

d

dt

∫ t

0

f(t, τ) dτ (25)

which requires differentiation under the integral sign1. Since
f(t, τ)|τ=t = 0, the formula indicated in the footnote gives
the following result:

ψ̇(t) = − z

ωd

∫ t

0

g(t, τ) dτ (26)

where g(t, τ) = ∂
∂tf(t, τ). From Eq. (8) we obtain the

analytical expression of the g function:

g(t, τ) = ωnϕ̈(τ)e−ξωn(t−τ) cos[ωd(t− τ) + δ] (27)

where tan δ = ξ/
√

1 − ξ2. If now we introduce the following
definitions:

F =
∫ T

0

f(T, τ) dτ G =
∫ T

0

g(T, τ) dτ (28)

Eq. (24) assume the form:

Etot(T ) =
1
2
Jeq

(
z

ωd

)2

[G2 + ω2
nF

2] = ηQ (29)

where η = 1
2Jeq

(
z

ωd

)2

and Q = G2 + ω2
nF

2.
For the mechanical system under consideration, the coeffi-

cient η is a constant, whereas Q is a function depending on
the motor acceleration ϕ̈, through the functions f(T, τ) and
g(T, τ) and therefore it depends on the values assigned to the
ordinates of the intermediate points of the control polygon.

1We report here the general formula for differentiation under the integral
sign:

d

dt

∫ b(t)

a(t)
f(t, τ)dτ =

=

∫ b(t)

a(t)

∂

∂t
f(t, τ)dτ + f(t, b(t))b′(t) − f(t, a(t))a′(t)

If a(t) = 0 e b(t) = t the above-mentioned formula can be simplified as
follows:

d

dt

∫ t

0
f(t, τ)dτ =

∫ t

0

∂

∂t
f(t, τ)dτ + f(t, τ)|τ=t

It follows that Q is a function of p variables, where p is the
number of the intermediate points, as described in Section III.
Hence, with mathematical formalism, we can write:

Etot(T )
η

= Q(γ) (30)

where γ = {γ1, γ2, . . . , γp}T is a p-dimensional vector,
containing the numerical values of the ordinates of the in-
termediate points.

The values γi (i = 1, . . . , p) can be automatically selected
by a numerical procedure, (see [8] for details) in order to
optimize the target function Q. Using this approach, it is also
possible to introduce of some algebraic constraints, to reduce
the computational time and to drive the optimization process
towards a satisfactory solution.

V. MOTION OPTIMIZATION: A NUMERICAL EXAMPLE

This paragraph presents a numerical example which illus-
trates the results of the motion optimization procedure based
on the Bezier curves. The calculation have been performed for
the mechanical device represented in Fig. 1, whose parameters
are listed in Table II. Using these data, the resulting natural
frequency and damping factor are ωn = 53.3 rad/s and
ξ = 11.7% respectively.

The angular displacement of the motor was set to 20 revolu-
tions, corresponding to a single revolution of the platform; the
total motion time was set to T = 1 s. The motion command
for the servomotor was generated by means of Eqs. (17), (20)
and (21).

In Figs. 5 and 6 we can see the results obtained by computer
simulation before and after the optimization process. The
motion commands (position, velocity and acceleration) used
to drive the rotary platform are shown on the left columns
together with their control polygons; the right columns show
the motion of the platform, which is evidently influenced by
the elastic behaviour of the transmission joint.

The comparison between the acceleration diagrams in
Fig. 5f and 6f shows that the residual vibration disappears,
when an optimized motion profile is used to drive the system.

VI. CONCLUSIONS

A method for reducing the overshooting effect of electrome-
chanical systems has been presented in the paper. The calcula-
tion procedure employs a mathematical model of the system,
a class of parametric functions and an optimization algorithm,
that minimizes the total mechanical energy of the system at the
final time instant. Through computer simulation, the technique
has been successfully tested on a 1-DOF vibrating system,

TABLE II
NUMERICAL VALUES OF THE SYSTEM PARAMETERS

Symb. Val. Unit Symb. Val. Unit

J1 5 × 10−3 kg m2 k 8000 Nm/rad
J2 5 × 10−3 kg m2 c 35 Nms/rad
J3 2.8 kg m2 z 1/20 -
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Fig. 5. Motion simulation for a non-optimized motion command: a) position command α(t); b) rotation of the platform β(t); c) velocity command α̇(t);
d) angular velocity of the platform β̇(t); e) acceleration command α̈(t); f) angular acceleration of the platform β̈(t).
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Fig. 6. Motion simulation for an optimized motion command: a) position command α(t); b) rotation of the platform β(t); c) velocity command α̇(t); d)
angular velocity of the platform β̇(t); e) acceleration command α̈(t); f) angular acceleration of the platform β̈(t).
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consisting of a rotary platform driven by an electric servomotor
coupled with an elastic transmission. The numerical results
indicate that the proposed approach seems to be able to reduce
the residual vibrations, without changing the motion time, nor
altering the boundary conditions of the motion command.

The proposed method does not require complex control
algorithms for the servomotor or additional feedback sensors
to measure the vibration amplitude and, for these reasons,
it can be implemented on an actual machine with very low
costs: in fact it is just sufficient a modification of the reference
motion profile memorized in the motion controller.

Since a mathematical model of the actual device is em-
ployed for motion optimization, it is necessary an accurate
identification of the mechanical parameters, in particular as
regards the equivalent damping coefficient. For this reason,
in the future the technique will be implemented on an experi-
mental test-bed, in order to validate the theoretical results here
presented.
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