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A Constrained Clustering Algorithm for the
Classification of Industrial Ores

Luciano Nieddu, Giuseppe Manfredi

Abstract—In this paper a Pattern Recognition algorithm based on
a constrained version of the k-means clustering algorithm will be
presented. The proposed algorithm is a non parametric supervised
statistical pattern recognition algorithm, i.e. it works under very mild
assumptions on the dataset. The performance of the algorithm will
be tested, togheter with a feature extraction technique that captures
the information on the closed two-dimensional contour of an image,
on images of industrial mineral ores.

Keywords—K-means, Industrial ores classification, Invariant Fea-
tures, Supervised Classification.

I. INTRODUCTION

AUTOMATIC classification techniques have become a
very important and effective tool in many real industrial

and medical problems, where objects need to be classified
according to some features and an automated technique is
necessary to determine in a fast, reliable and efficient way,
to which class an object belongs [2],[3], [1].

The aim of this paper is to present a supervised statistical
pattern recognition technique [4], [5] suitable to discriminate
between objects with respect to their 2D contour.

The proposed technique will be applied on industrial ores
but is general and can be applied on various 2D objects or on
the two dimensional projection of 3D objects.

The main assumption of this paper is that the class of the
object can be determined via the pattern in the 2D contour
of the object, i.e. only the information in the 2D shape is
necessary to classify the object. This assumption is valid in a
variety of real classification problems, such as, e.g. geometrical
shapes, handwritten characters, OCR etc. [6], [7], [2], and is
particulary valid in the case of mineral ores where the contour
of each piece of mineral should be influenced by the chemical
structure of the particle itself.

In Section II the proposed algorithm will be presented. In
Section III the dataset used in the experiments and the feature
extraction technique will be discussed while in Section IV the
results of the application of the proposed technique will be
presented. Then in Section V some conclusions will be drawn.

II. THE ALGORITHM

The algorithm presented in this paper is a supervised
classification algorithm [5], i.e. a data set of elements with
known classes is supposed to be available. As any supervised
learning technique it is composed of two phases:
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1) a training phase: a training set of elements of known
classes is used to fine-tune the algorithm for the partic-
ular problem at hand.

2) a classification phase: once trained the algorithm is used
to classify elements of unknown classes. These elements
are usually referred to as query points

The performance of the algorithm is assessed via cross-
validation [5], [8], i.e. the dataset is split into two independent
subsets, both composed of elements of known classes, one
is used to train the algorithm, and the other to assess the
performance of the algorithm, comparing the real class of each
elements to the class assigned by the algorithm.

Given a data set of n pattern vectors in �p, assume a
partition defined on the dataset, i.e. each pattern vector is
assigned to one and only one of k known classes. Let assume a
Euclidean norm defined on the dataset and let ψ be a function
from �p onto the set C= {1, 2, . . . , k} which maps each
pattern vector xj , j = 1, . . . n into the class c ∈ C that it
belongs to.

The algorithm presented begins computing the barycenter of
each class, yielding an initial set of k barycenters. Then the
Euclidean distance of each pattern vector from each barycenter
is computed. If each pattern vector is closer to the barycenter
of its class the algorithm stops, otherwise there will be a non
empty set M of pattern vectors which belong to a class and
are closer to a barycenter of a different class. In M select
the pattern vector xw that is farthest from the barycenter of
its class. This pattern vector will be used as a seed for a new
barycenter for class ψ(xw).

A k-means algorithm [9] will then be performed for all the
pattern vectors in class ψ(xw) using, as starting points, the
set of barycenters for class ψ(xw) and the vector xw . Once
the k-means has been performed the set of barycenters will
be composed of k + 1 elements.

The barycenters at the new iterations need not be computed
for all classes, but only for class ψ(xw) since the barycenters
for the other classes have remained unchanged. In the fol-
lowing step the distance of each pattern vector from all the
barycenters is computed anew, and so is the set M (see figure
1).

If M is not empty then the pattern vector in M which
is farthest from a barycenter of its own class is once again
selected to serve as a seed for a new barycenter. This procedure
iterates until the set M is empty. The convergence of the
algorithm in a finite number of steps has been proved in
various ways (see [1],[10]).

Upon convergence, the algorithm yields a set of barycenters
which, in the worst case, are in a number equal to the number
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Step1 Let
– xj , j = 1, . . . , n be the pattern vectors in the training set
– B0 be the set of k initial barycenters bi, i = 1, . . . , k

Step2 Compute the distances of each xj from all the bi ∈ Bt

Let M be the set of xw that are closer to a barycenter of a
class different from their own.
t← 0

Step3 while M �= ∅
– Let xs, s ∈ M be the vector with the greatest distance from its

own barycenter.
– c← ψ(xs)
– Let Bt+1 ← Bt ∪ xs

– for all the elements of class c perform a k-means routine using as
starting points the barycenters of Bt+1 that belong to class c

– t← t+ 1
– Compute the distances of each xj from all the bi ∈ Bt

– LetM be the set of xw that are closer to a barycenter of a class
different from their own.

end

Fig. 1. : The proposed algorithm in meta-language

of elements in the dataset and which has a lower bound in the
number of classes.

The aim of this algorithm is to find subclasses in the dataset
which can be used to classify new vectors of unknown class.
It is worth noticing that if the partition defined on the dataset
is consistent with the features considered, i.e. if the pattern
vectors are linearly separable, then the algorithm generates
a number of barycenters equal to the number of classes.
On the other hand, if the dataset is not linearly separable,
then the algorithm continues splitting the classes until the
subclasses obtained are linearly separable. It is obvious that
it can continue splitting until all the subclasses are composed
of only one vector (singleton). It will not converge only if
two vectors in the dataset belong to different classes and are
represented by the same pattern vector [10], [1]. This problem
can be easily overcome increasing the dimension of the vector
space.

Once the algorithm has converged the sets of barycenters
can be used to classify new query points assigning the new
element to the class of the barycenter it is closest to. It is
worth noticing that if elements from the training set are used as
query points than the algorithm always classify them correctly
because, once converged, all pattern vectors in the training set
are closer to a centroid of their own class.

One interesting consequence of this technique is that the ap-
parent recognition rate is 100%. This is a direct consequence
of the convergence criterion, i.e. upon convergence all the
elements in the training set are closer to a barycenter of their
own class and therefore if the elements of the training set are
classified using the barycenters generated during the training
phase, then all the element are classified correctly. Therefore,
if the training set is representative of the the population under
study then the algorithm should be able to perform fairly
well on unknown query points. On the other hand if the
performance of the algorithm on a particular problem is not
satisfactory then two cases are possible:

• the pattern vector does not contain enough information
to discriminate between objects

• the training set is not representative of the population
under study.

In the first case other features need to be determined from
the objects, in the latter the size of the training set should be
increased in order to obtain a representative training set.

Therefore if the training set is large enough to represent all
the possible prototypes of the objects under consideration and
if the features considered for each object are sufficient enough
to assure coherence of the dataset, then the algorithm should
be able to correctly classify any new query points.

III. THE PATTERN VECTOR

A. Data Collection

The aim of this study is to verify if the contour of a 2D
picture of a mineral can be used to determine which class
the mineral belongs to. The external shape of the mineral is
influenced both by external factors and by its internal structure,
i.e. the arrangement of atoms that determine the internal lattice
of the mineral. To reduce the effect of external factors on the
shape of the mineral and to increase the effects of the internal
structure, the mineral have been crushed into small pieces,
assuming that the way a mineral breaks up into pieces is
influenced by the internal lattice. Three types of mineral have
been considered, namely: Chalcopyrite, Galena, Hematite.

Chalcopyrite is a copper iron sulfide. It is the most com-
monly encountered copper mineral and is the most important
ore of copper. Chalcopyrite deposits are found in hydrothermal
veins, void fillings and replacements in limestones, contact
metamorphic deposits and magmatic separations. It has the
chemical composition CuFeS2 and crystallizes in the tetrag-
onal system.

Galena is a lead sulfide mineral commonly found in hy-
drothermal veins, or as fracture fillings, cavity fillings and
replacements in limestone. Galena is the most important ore of
lead and is often mined for its silver content (silver substitutes
for lead within the galena structure). Its perfect cleavage,
silver color and very high specific gravity make it very easy
to identify. Silver is often produced as a by-product. It has
chemical composition PbS, is one of the most abundant and
widely distributed sulfide minerals and crystallizes in the cubic
crystal system often showing octahedral forms.

Hematite is a relatively hard oxide mineral, ferric oxide
(chemical composition Fe2O3), that constitutes the most
important iron ore because of its high iron content and its
abundance. Hematite crystallizes in the rhombohedral system.

Once all the speciments of the three ores have been collected
and crushed, a picture of 512x512 pixels of each piece has
been taken and then converted into a 256 gray scale image.
Only the contour of the image is of interest in this study,
therefore the image has been segmented into a black and white
image via thresholding. Of such an image only the contour has
been retained.

In Table I the distribution of the 2928 images by type of
mineral has been displayed. The average radius and average
perimeter (in number of pixels) for the images of each class
of mineral have also been displayed.

The average size of Hematite is significantly (α = 0.05)
different from that of Galena and Chalcopyrite, i.e. the di-
mension of the single piece of mineral could be considered
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TABLE I
NUMBER OF IMAGES FOR EACH MINERAL TOGETHER WITH AVERAGE

RADIUS AND PERIMETER (IN PIXELS)

Mineral Images Av. radius (pxs) Av. perim. (pxs)

Galena 942 60.91 437.79

Chalcopyrite 968 69.83 516.94

Hematite 1018 82.80 637.72

as a discriminating feature in determining the class the piece
belongs to. Unfortunately the dimension of each single piece
of mineral is not a characteristic feature of the mineral but
only a byproduct of the crushing process and should not be
taken into account during the classification process. Therefore
the information that will be extracted from each image should
be invariant to variations in size, to rotations of the image
and to shifting of location. In the next subsection the feature
extraction technique, based on the Discrete Fourier Transform
[11], that has been used to obtain invariant features will be
described.

B. Feature Extraction

A fundamental part of every Pattern Recognition algorithm
consists in extracting features from the pattern vector, both to
get rid of non important features and to reduce the dimension
of the vectors the algorithm has to work with [12]. In the
following the feature extraction technique used to map each
image into a pattern vector and then into a feature vector
will be described. The final mapping should result in a
feature vector which should retain as much as possible of the
information in the contour of the image and get rid of spurious
information. Assuming that only the shape of the contour is
relevant to discriminate between minerals, the feature vector
so obtained should be invariant to changes in position, size
and rotation.

Let’s consider the 2D closed contour of each image as
obtained in the previous section. Set a polar coordinate system
with pole at the barycenter of the picture. Considering a
constant increment equal to 2π/n for the angle of the polar
coordinate system, n points are sampled counterclockwise
from the contour.

Therefore the object is represented by a set of n radiuses
(pattern vector) ρ(i), i = 0, . . . , n − 1. On this sequence of
n real numbers the Discrete Fourier Transform [11] has been
applied, obtaining another sequence a(k), k = 0, . . . , n−1, of
n complex numbers describing the structure of the frequencies
that make up the contour. To speed up the process the Fast
Fourier Transform (FFT) [13] has been used requiring only
O(n log2 n) operations.

The feature vector obtained according to this procedure
is invariant to change in position because the origin of the
coordinate system located at the barycenter of the object. To
assure invariance to rotation, considering that a rotation in the
object influences only the phase of each element of the FFT
[14], only the modulus (�2[a(k)]+�2[a(k)]), k = 0, . . . , n−1
of each complex element of the FFT will be considered,
where � and � represent the immaginary and the real part

of a complex number respectively. Invariance to changes in
dimension will be attained considering the equivalent radius
req for each object [2], which is the radius of circle with the
same area of the considered object. Invariance will be attained
dividing by the equivalent radius. Therefore the new feature
vector will be:

[

a(0)
req

;
�2[a(j)] + �2[a(j)]

req
; · · · ;

�2
[

a(n
2 )
]

+ �2
[

a(n
2 )
]

req

]

.

The information in this feature vector is then transformed
using a Karhunen-Loéve [19] expansion in order to reduce the
size of the vector, retaining only the information contained in
the first few components of the expansion. This expansion is
particularly useful when the dataset is affected by noise, which
usually can be filtered out considering only the information in
the first few components.

IV. EXPERIMENTAL RESULTS

In this section the results of the application of the proposed
technique will be presented. The performance of the proposed
technique will be compared with the results of Fisher Discrim-
inant Analysis (FDA) [4], [15].

The performance of each technique has been assessed in a
cross-validation scheme [15], [1], i.e. the dataset has been split
into two subsets: 2567 images have been used for training and
320 images randomly selected from the 2887 have been used
for testing. The same test dataset has been used throughout all
the experiments to make results immediately comparable.

The FFT has been applied on the pattern vector and then
data have been made invariant to rotation and size as described
in the previous Section. The Karhunen-Loéve (KL) transform
has then been applied. For the experiments only the first 3, 5,
7, 9 e 11 elements of the KL transform have been retained.

Both the proposed algorithm and FDA have been trained on
the training set of 2567 images and then tested on the set of
320 images. It is worth noticing that, should the algorithm be
tested on the 2567 images in the training set, it would obtain
a 100% correct recognition, whereas the performance of FDA
on the training set is usually better or at least comparable to
the one obtained on the test set, but in general does not reach
100% correct recognition.

The performance has been analyzed considering the confu-
sion matrix

PREDICTED

TRUE Galena Chalcopyrite Hematite Tot
Galena n11 n12 n13 n1.

Chalcopyrite n21 n22 n23 n2.

Hematite n31 n32 n33 n3.

Tot n.1 n.2 n.3 n

where the quantity nij , i, j = 1, 2, 3 represents the number of
element of class i in the test set that have been classified as
belonging to class j.

The structure of a confusion matrix can be studied using
the cross-product ratios or odd-ratios [16],[17] defined as

q(ii′),(jj′) =
mijmi′j′

mij′mi′j
i, i′, j, j′ = 1, 2, 3
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TABLE II
PERFORMANCE OF THE PROPOSED ALGORITHM ON INVARIANT FEATURES

Feat. Recg. τ̂(13)(13) τ̂(23)(13) τ̂(13)(23) τ̂(23)(23)
Vect. Rate

3 37.5 -0.26(0.31) -0.05(0.33) -0.62(0.42) 0.76(0.37)

5 37.8 -0.24(0.31) -0.12(0.33) -0.69(0.43) 0.76(0.37)

7 39.1 -0.16(0.31) -0.29(0.33) -0.39(0.41) 0.77(0.36)

9 38.1 -0.30(0.32) -0.25(0.33) -0.48(0.41) 0.78(0.37)

11 41.6 0.06(0.31) -0.08(0.33) -0.36(0.42) 1.02(0.36)

TABLE III
PERFORMANCE OF FDA ON INVARIANT FEATURES

Feat. Recg. τ̂(13)(13) τ̂(23)(13) τ̂(13)(23) τ̂(23)(23)
Vect. Rate

32 39.7 -0.09(0.31) 0.20(0.34) -0.45(0.42) 1.09(0.38)

where mij is the expected value of element of class i that is
classified in class j. The quantity

τ(ii′),(jj′) = ln q(ii′),(jj′)

is known as log-cross-product ratio and can be estimated [16]
using the quantity

τ̂(ii′),(jj′) = lnnij − lnnij′ − lnni′j + lnni′j′

which has an asymptotically normal distribution with
mean τ(ii′),(jj′) and standard deviation equal to
(

1
mij

+ 1
mi′j

+ 1
mij′

+ 1
mi′j′

)1/2

that can be estimated

by
(

1
nij

+ 1
ni′j

+ 1
nij′

+ 1
ni′j′

)1/2

.
In a r × s contingency table, as suggested by Agresti [18],

only (r− 1)(s− 1) cross-products out of the total
((

r
2

)) ((

s
2

))

cross-products are independent. Therefore in a 3×3 table only
4 cross products are necessary.

On each cross-product-ratio the null hypothesis H0 : τ = 0
will be tested at an α = 5% significance level, i.e. the null
hypothesis of independence will be statistically tested.

In Table II the performance of the proposed techinque on
invariant feature vectors of 3, 5, 7, 9 and 11 elements, together
with the estimated log-cross-product ratios and standard devi-
ations (in brackets), has been reported.

All the log-cross-products, except for τ(23)(23) are not sig-
nificantly different from zero (α = 5%), meaning that, except
for the way that chalcopyrite and hematite have been classified
as chalcopyrite and hematite, there is not significant difference
from a random allocation for the other cell of the confusion
matrix. Anyhow, the hypothesis of random allocation for all
the minerals must be rejected because at least one log-cross-
product is significantly different from zero, although the level
of correct classification is close to the random recognition level
equal to 33.3%.

In Table III the results of FDA applied on the invariant
feature vector have been reported. FDA has been applied
on the feature vector of 32 element without applying KL
dimensional reduction because FDA itself is based on an
optimal dimensionality reduction technique [15].

TABLE IV
PERFORMANCE OF THE PROPOSED ALGORITHM ON NON INVARIANT DATA

(COMPLEX DATA)

Feat. Recg. τ̂(13)(13) τ̂(23)(13) τ̂(13)(23) τ̂(23)(23)
Vect. Rate

3 52.2 3.13(0.44) 1.36(0.39) 1.92(0.40) 1.06(0.31)

5 53.4 2.90(0.40) 1.33(0.38) 1.02(0.40) 0.87(0.31)

7 54.4 2.40(0.37) 1.36(0.38) 0.50(0.39) 1.21(0.31)

9 53.4 2.95(0.40) 1.45(0.39) 0.50(0.41) 0.70(0.31)

11 53.6 2.91(0.41) 1.14(0.39) 0.85(0.39) 0.78(0.30)

TABLE V
PERFORMANCE OF FDA ON NON INVARIANT FEATURES (COMPLEX DATA)

Feat. Recg. τ̂(13)(13) τ̂(23)(13) τ̂(13)(23) τ̂(23)(23)
Vect. Rate

32 56.2 3.09(0.40) 1.44(0.36) 1.26(0.43) 1.19(0.32)

The results of FDA confirm what has already been obtained
with the proposed technique, i.e. the minerals have been classi-
fied with a performance significantly different from the random
recognition rate and the only log-cross-product significantly
different from zero is again τ(23)(23). The performances of
the two algorithms are comparable and, being the test set
always the same in all the experiments, the performance of
the proposed technique is significantly better than FDA when
feature vectors of 11 elements are used.

In Table IV the result of the proposed algorithm on the
FFT complex coefficients have been reported, i.e. the data
are now invariant only to position, but not to rotation and
size. Almost all cross-products are now significantly different
from zero except for τ(13)(23) with feature vectors of 7 and
9 elements. This implies that galena and hematite are equally
likely to be classified as chalcopyrite and hematite. Contrary
to what happened on invariant features, τ(13)(13) is now always
significanlty different from zero.

In Table V the analogous results using FDA have been
reported. All cross-products are significantly different from
zero, indicating a non random allocation of the vectors.

The performance of the proposed algorithm on non invariant
features is worse than that obtained with FDA. This could be
ascribed to the fact that maybe the information retained with
feature vectors of 11 elements is not sufficient when dealing
with non invariant features. Therefore the experiments have
been extended considering feature vectors of 15, 20, 25, 30 and
32 elements and the performance of the proposed algorithm,
together with the log-cross-products, have been displayed in
Table VI

With feature vectors of 32 elements the proposed technique
performs better than FDA. The performance obtained with non
invariant features is always better than the one obtained with
invariant features. This could be ascribed to the fact that some
features, such as dimension of the various pieces, can influence
the recognition process, i.e. once taken into consideration
could improve the recognition rate. It has been already pointed
out (see Table I) that the pieces of hematite are significantly
larger than galena and chalcopyrite, but unfortunately that
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TABLE VI
PERFORMANCE OF THE PROPOSED ALGORITHM ON NON INVARIANT DATA

AND EXTENDED FEATURE VECTOR DIMENSION (COMPLEX DATA)

Feat. Recog. τ̂(13)(13) τ̂(23)(13) τ̂(13)(23) τ̂(23)(23)
Vect. Rate

15 57.2 3.36(0.44) 1.66(0.43) 0.80(0.41) 1.04(0.30)

20 53.4 3.05(0.42) 1.38(0.40) 0.94(0.40) 0.78(0.30)

25 54.1 3.16(0.43) 1.38(0.41) 0.83(0.39) 0.73(0.30)

30 56.6 3.41(0.46) 1.43(0.41) 1.65(0.41) 1.19(0.31)

32 58.1 3.43(0.44) 1.26(0.41) 1.15(0.42) 1.05(0.30)

should be considered only a confounding factor because the
size is not an intrinsic characteristic of the class the mineral
belongs to, but only of the crushing process and therefore
should not be considered in the classification process.

Nonetheless the recognition rate on invariant features is sig-
nificantly different from the random recognition rate, implying
that there is a “signature” in the profile of the image that can
be used to classify each element into one of 3 classes.

V. CONCLUSIONS

In this paper a non parametric statistical patter recognition
algorithm has been presented together with a technique to ob-
tain invariant features from the 2D contour of mineral images.
The proposed algorithm, when compared with FDA, more
than holds its own. The experiments have been carried out on
invariant and non invariant features to ascertain the effect of
size on the classification process. On this regard: τ(13)(13) on
non invariant features is always different from zero, implying
that it is possible to discriminate between galena and hematite.
In the experiments on non invariant features, on the other
hand, τ(13)(13) is always non significantly different from zero,
indicating that, using invariant features, such a discrimination
is not obtainable. Using invariant features galena and hematite
tend to be misclassified and therefore have a negative effect
on the performance of the algorithm. The use of non invariant
features reduces this effect but this can be ascribed to the use
of the size of each image in the classification and, once again,
the size of the pieces is a non characteristic element that can
be used to classify this type of minerals. As future agenda
the use of other features (e.g. color), will be considered in the
recognition process to increase the separation of the classes
and to obtain a more coherent dataset.
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