
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2913

Abstract—Hardware realization of a Neural Network (NN), to a

large extent depends on the efficient implementation of a single
neuron. FPGA-based reconfigurable computing architectures are
suitable for hardware implementation of neural networks. FPGA
realization of ANNs with a large number of neurons is still a
challenging task. This paper discusses the issues involved in
implementation of a multi-input neuron with linear/nonlinear
excitation functions using FPGA. Implementation method with
resource/speed tradeoff is proposed to handle signed decimal
numbers. The VHDL coding developed is tested using
Xilinx XC V50hq240 Chip. To improve the speed of operation a
lookup table method is used. The problems involved in using a
lookup table (LUT) for a nonlinear function is discussed. The
percentage saving in resource and the improvement in speed with an
LUT for a neuron is reported. An attempt is also made to derive a
generalized formula for a multi-input neuron that facilitates to
estimate approximately the total resource requirement and speed
achievable for a given multilayer neural network. This facilitates the
designer to choose the FPGA capacity for a given application. Using
the proposed method of implementation a neural network based
application, namely, a Space vector modulator for a vector-controlled
drive is presented

Keywords— FPGA Implementation, Multi-input Neuron, Neural
Network, NN based Space Vector Modulator

I. INTRODUCTION

HE aspiration to build intelligent systems complemented
with the advances in high speed computing has proved

through simulation the capability of Artificial Neural
Networks (ANN) to map, model and classify nonlinear
systems. The learning capability of the network has opened its
application to various fields of engineering, science,
economics etc. [1-4]. Real time applications are possible only
if low cost high-speed neural computation is made realizable.

Manuscript received in April, 2007. The research is supported in part by

the grants from All India Council for Technical Education (AICTE), a
statutory body of Government of India. File Number: 8020/RID/TAPTEC-
32/2001-02.

A.Muthuramalingam is an Assistant Professor in the Electrical and
Electronics Engineering Department of Pondicherry Engineering College,
Puducherry, India (email: amrlingam@hotmail.com).

S.Himavathi is an Assistant Professor in the Electrical and Electronics
Engineering Department of Pondicherry Engineering College, Puducherry,
India (phone: 91-413-2655281; fax: 91-413-2655101; e-mail:
hima_pondy@yahoo.co.in).

E.Srinivasan is an Assistant Professor in the Electronics and
Communication Engineering Department of Pondicherry Engineering College,
Puducherry, India (email: esrinivasan2004@yahoo.co.in).

Towards this goal numerous works on implementation of
Neural Networks (NN) have been proposed [5].

Neural networks can be implemented using analog or
digital systems. The digital implementation is more popular as
it has the advantage of higher accuracy, better repeatability,
lower noise sensitivity, better testability, higher flexibility,
and compatibility with other types of preprocessors. The
digital NN hardware implementations are further classified as
(i) FPGA-based implementations (ii) DSP-based
implementations (iii) ASIC-based implementations [6-7]. DSP
based implementation is sequential and hence does not
preserve the parallel architecture of the neurons in a layer.
ASIC implementations do not offer re-configurablity by the
user. FPGA is a suitable hardware for neural network
implementation as it preserves the parallel architecture of the
neurons in a layer and offers flexibility in reconfiguration.

Parallelism, modularity and dynamic adaptation are three
computational characteristics typically associated with ANNs.
FPGA-based reconfigurable computing architectures are well
suited to implement ANNs as one can exploit concurrency and
rapidly reconfigure to adapt the weights and topologies of an
ANN. FPGA realization of ANNs with a large number of
neurons is still a challenging task because ANN algorithms
are “multiplication-rich” and it is relatively expensive to
implement. Various works reported in this area includes new
multiplication algorithms for NN [8], NNs with some
constraints to achieve higher speed of operation at lower cost
[9] and multi-chip realization [10].

In this paper, issues related to the FPGA implementation of
a multi-input neuron are discussed. Both the linear and
nonlinear excitation functions are considered. The related
issues such as resource requirement, speed of execution and
accuracy are addressed through computational architectural
solutions using FPGA. Section II presents the design and
implementation of computational blocks of a multi-input
neuron. Also identifies the various conflicting requirements
involved in its implementation and proposes a solution other
than tradeoff. Section III and IV deal with a real time
application of neural networks and their FPGA
implementation. Section V concludes the paper.

II. COMPUTATIONAL BLOCKS FOR A NEURON

The basic structure of a neuron with ‘n’ inputs is shown in
Fig. 1. The function of a neuron is described by the following
equations.

()y f x= , (1)

Neural Network Implementation Using FPGA:
Issues and Application
A. Muthuramalingam, S. Himavathi, E. Srinivasan

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2914

and
1

n
x p w bi ii

= +∑
=

where pi be the ith inputs of the system wi is the weight in the
ith connection and ‘b’ is the bias.

Fig. 1 Structure of a Neuron

The function f(x) is the excitation function used in the neuron.
Generally Linear, Log-sigmoid and Tan-sigmoid excitation
functions are used. They are defined as

(i) Linear
()f x x= (2)

(ii) Log-sigmoid function

1()
1

f x xe
= −+

 (3)

(iii) Tan-sigmoid function

()
x xe ef x x xe e

−−= −+
 (4)

To realize a function of a single neuron, the above expression
(1) and (2) or (3) or (4) are to be computed. So, the different
computational blocks are adder, multiplier and complex
evaluator of the nonlinear excitation function.

A. Implementation Issues of Computational Blocks
The inputs to the neural network are generally normalized

to lie within the range of –1 to +1. Hence the signed floating-
point computations are required. The implementation of
signed floating-point multipliers and computation of nonlinear
excitation function is complex and requires large resource.
The major issues in realization of the computational blocks
using FPGA are

i. Parallel/Sequential implementation
ii. Bit precision

iii. Use of look up table for nonlinear function

Parallel computations require larger resource and are
therefore costly. To reduce cost, the computations are carried
out sequentially which in turn reduces the speed of
computation. Selecting bit precision is another important
choice when implementing ANNs on FPGAs. A higher bit
precision means fewer quantization errors in the final
implementations, while a lower precision leads to simpler
designs, greater speed and reductions in area requirements and
power consumption. Lookup tables improve speed of
operation, but higher precision demands larger memory. For a
given application the speed and minimum accuracy is dictated
by the system under consideration. Hence the solution is to
minimize the cost for a given speed of operation and required
accuracy.

B. FPGA Implementation of a Multi-Input Neuron
The structure of a neuron is split into various sub blocks

and these blocks are implemented individually first and then
they are integrated to form the entire neuron. The hierarchy of
the different blocks is as shown in Fig. 2. The two major
blocks are SIGMA block and LOGSIG block. As this paper
aims to build multi-layer neural networks with minimum
resource 9-bit word length with one sign bit and 8 data bits
has been chosen for this implementation. In typical application
hardware matching the precision to the computational
accuracy of the neural network can further optimize resource.

Fig. 2 Computational Blocks of a Neuron

The result of the excitation function f(x) is obtained as a
9-bit signed number (1-bit for sign and 8-bit for data). The
precision and word length is chosen so that a single neuron
can handle a maximum of 16 inputs without the problem of
overflow. However modification to the word length could
accommodate higher number of inputs to a neuron. Generally
in real time applications (Such as vector control of motor
drives) of neural networks the number of inputs to a neuron
rarely exceeds 16. The complete structure of the neuron in
FPGA is shown in Fig. 3.

∑

1

p1
w1

p3
w3

p2 w2

pn

wn

х
f(x) y

b

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2915

Fig. 3 Complete Structure of a Neuron Implementation using
Computation Method in FPGA

Sigma Block: This bock computes the value for

1
n
ix p w bi i=∑= +

The basic functions of the block is multiplication, addition,
subtraction and a control block to coordinate and sequence the
flow of data to the various blocks The input data p1, p2… pn are
signed numbers in the range [-1, +1]. This is represented using
a signed 9-bit number (1-bit for sign and 8-bit for data). The
weights of the network are represented with 17 bits (one bit
for sign, 8-bit for whole part and 8-bit for fraction part)
assuming that the weights lie between –256 to +256. The bias
is represented by a signed 25-bit number (one bit for sign, 8-
bit for whole part and 16-bit for fractional part). The product
of the weights and inputs are stored as 24-bit number along
with a sign bit. The output 1

n
ix p w bi i=∑= + is obtained with

29-bits (1-bit for sign + 12-bit for whole part + 16-bit for
fractional part). The different sub blocks are as follows.

MUL8: Performs 8-bit multiplication.
ADD: Performs 24-bit addition.
SUB: Performs 24-bit subtraction.

SIGMA_CTRL: It is finite state machine, which controls
the operation of ADD, MUL8, and SUB
blocks.

LOGSIG Block: The computation of f(x) = 1/(1+e-x) is done
in this block. The logic used to determine e-x is to obtain 2-x as
detailed in [11]. Then e-x is obtained using the relation
e-x =1.4426 × 2-x. The determination of f(x) is done as follows.
The value of x is split into x1 + x2 where x1 is the whole
number and x2 is the fractional part. The value 2-x2 is obtained
using the FRAC block; the value 2-x is then obtained by
WHOLE block by shifting 2-x2

 right x1 times and then converts
2-x to e-x. The DIV block obtains the value of the function
f(x) = 1/(1+e-x).

C. Hardware Implementation
The architecture of the complete neuron is shown in Fig. 3.

The same is implemented using Xilinx XC V50hq240 Chip.
The results obtained for a three input neuron with different
excitation functions is shown in Table I. From Table I the
LOGSIG block requires huge resource for implementation and
time for execution. To reduce the execution time and the cost
of implementation, a lookup table replaces the LOGSIG
block.

TABLE I
RESOURCE AND TIMING OF THREE INPUT NEURON

WITH DIFFERENT EXCITATION FUNCTIONS

Resource required in Slices Timing Required in cycles
Excitation
Function SIGMA

Block
LOGSIG

Block Total SIGMA
Block

LOGSIG
Block Total

Linear 258 - 258 23 - 23

Log sigmoid 258 705 963 23 98 121

Tan sigmoid 258 811 1069 23 126 149

The architecture of a 3-input neuron with LUT is shown in
Fig. 4. The LUT is implemented using the inbuilt RAM
available in FPGA IC. The use of LUTs reduces the resource
requirement and improves the speed. Also the implementation
of LUT needs no external RAM since the inbuilt memory is
sufficient to implement the excitation function. As the
excitation function is highly nonlinear a general procedure
adopted to obtain a LUT of minimum size for a given

resolution is detailed [12].

Fig. 4 Complete Structure of a Neuron using LUT in FPGA

A single neuron with three inputs and various excitation
functions was implemented with and without LUT in using
‘XCV400hq240’. The results are summarized in Table II.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2916

It was observed that there is 70 to 74% reduction in resource
requirement and 79 to 83% improvement in speed is obtained
by using a LUT.

Estimation of Resource and Time for a NN: The single
neuron with varying number of inputs and excitation function
is implemented in hardware. As the number of input to the
neuron increases, the resource and timing also increases. From
the results generalized formulas are derived in this section to
approximately compute the total resource and timing
requirement for any given NN.

Let n be the number of layers and let S0, S1, S2, S3…Sn be
the number of neurons in each layer. If the ith layer is a linear
function a1i=1, a2i=0, a3i=0 for a log-sigmoid function a1i=0,
a2i=1, a3i=0 and for a tan sigmoid function a1i=0, a2i=0, a3i=1.
Then the total number of slices (S), and total number of clock
cycles (T) for a neural network using computation method and
LUT method is given below.

For Computation Method:
1 1

1 2
1 1

1
3

1

(250 6) (950 6)

 (1050 6)

n n
i i i i

i i
i i

n
i i

i
i

S a S S a S S

a S S

− −

= =

−

=

≈ + + + +

+ +

∑ ∑

∑
 (5)

1 1
1 2

1 1

1
1

1

5 { (1.6) (21.2)

 (26.8)}

n n
i i

i i
i i

n
i

i
i

T a S a S

a S

− −

= =

−

=

≈ × + + + +∑ ∑

+ +∑
 (6)

For LUT Method:
1

1
(255 6)

n
i i

i
S S S −

=
≈ +∑ (7)

1 1
1 2

1 1

1
3

1

10 { (5 5 3) (7 5 3)

 (7 5 3)}

n n
i i i i

i i
i i

n
i i

i
i

T a S S a S S

a S S

− −

= =

−

=

≈ + + + + + +∑ ∑

+ + +∑
 (8)

Choice of Optimal Architecture: The choice of architecture
of NN is more an art than a science. The results obtained will
aid the designer to choose an optimal architecture of NN for
the given application. The architecture of NN comprises of
determining the following.

i. Number of input neurons
ii. Number of layers

iii. Number of neurons in each layer
iv. Type of activation function for each layer
v. Number of output neurons

i and v are dictated by the problem. The type of excitation for
the output layer depends on the range of output. The
maximum sampling interval ts for a given system can be
obtained from the time constant of the system. From ts the
maximum number of layers (ii) can be determined using any
one of these equations (5)&(6) or (7)&(8). Let the number of
layers be ‘L’. Using more number of layers will help the
network learn faster. Place 2 neurons in each layer and train
the network and test for the performance. Increase the number
of neurons in a layer and train the network again till
satisfactory performance. This systematic procedure helps to
obtain an optimal NN architecture.

III. SVM DRIVEN VOLTAGE SOURCE INVERTER

Space Vector Modulation (SVM) is an optimum Pulse Width
Modulation (PWM) technique for an inverter used in a
variable frequency drive applications. It is computationally
rigorous and requires high computation time and hence limits
the inverter switching frequency. Increase in switching
frequency can be achieved using Neural Network (NN) based
SVM. This section discusses a neural network based SVM
technique for a Voltage Source Inverter (VSI). The three
phase two level inverter with an active load is shown in Fig. 5.

Fig. 5 Three Phase Voltage Source Inverter

Its switching operation is controlled using Space Vector
Modulation (SVM). The SVM is characterized by eight switch
states Si = (SWa, SWb, SWc), i= 0, 1,.…, 7. Where, SWa
represents the switching status of inverter Leg-A. It is “1”,
when switch Q1 is ON & Q4 is OFF and ZERO, when switch
Q1 is OFF & Q4 is ON. Similarly SWb & SWc is defined for
inverter Leg-B and Leg-C. The output voltages of the inverter
are controlled by these eight switching states. Let the inverter
voltage vectors V0(000), …, …, V7(000), correspond to the
eight switching states[13]. These vectors form the voltage
vector space as shown in the Fig. 6. The three-phase reference
voltage decides the inverter switching and is represented as
space vector V* with the magnitude V* and phase angle θ* as
shown in the Fig. 6.

In a sampling/switching interval, the inverter output voltage
vector V is expressed in terms of space vectors and switching
on time.

(9)

TABLE II
RESOURCE AND TIMING REQUIREMENT OF A NEURON

WITH AND WITHOUT LUT
Resource required in Slices Timing Required in cycles

Excitation
Function LUT COMPUTATION

%
Saving

LUT COMPUTATION
%

Saving
Log

Sigmoid 281 953 70.5 25 121 79.33

Tan
Sigmoid 282 1096 74.27 25 149 83.22

INVERTER

LOAD

0 71
0 1 7

s s s

V V V V
t tt
T T T

= + +⋅⋅⋅+

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2917

Fig. 6 Voltage Vector Space

where t0, t1,…t7 are the turn on time of the vectors
V0, V1,…..V7 respectively and Ts is the sampling/switching
time period. From the above equation the vector V* can be
decomposed into two nearest adjacent vectors (Va , Vb) and
zero vectors in an arbitrary sector. The equations of the
effective time of the inverter switching states is given as

(10)

(11)

(12)

where
V* - Magnitude of command or reference voltage vector
ta - Time period of switching vector (Va = V1) that lags V*
tb - Time period of switching vector(Vb = V2) that leads V*
tc - Time period of switching the zero voltage vector
Ts = (1/fs) - Sampling/Switching time period
α* - Angle of V* in a 60◦ sector
fs - Switching frequency
Vd - DC link voltage and ()S dK 3T 4V=

The switching time (ta, tb, and tc) need to be distributed such
that symmetrical PWM pulses are produced. To produce such
pulses, the instant of switching on for each phase and each
sector is calculated. The generalized equation for turn on time
(TA-ON), turn off time (TA-OFF) and pulse width function ga(α*)
are given below and shown for Phase A. For phases B and C,
the switching instants are same but phase shifted appropriately
by 120◦.

IV. NEURAL BASED SVM

The inverter output voltage is controlled by a reference
vector V*, which used to compute the switching function such
as turn on time (TA-ON), turn off time (TA-OFF) and pulse width
function ga(α*). The equation (14) is nonlinear and complex,
hence requires high computation time. This limits the
sampling frequency, switching frequency and performance of
the inverter. To increase switching frequency, Multilayer Feed
Forward NN is proposed to reduce the time of evaluation the
pulse width function ga(α*)and increase the inverter switching
frequency.

SVM technique is implemented using multilayer NN. The
input to the neural network is the phase angle (θ*) of the
reference voltage vector, the outputs are the turn-on pulse
width functions ga(α*), gb(α*), gc(α*) for the phases A, B, and
C. Using the procedure proposed in this paper, the NN
architecture for this application is identified as 1-6-6-6-3
structure and shown in Fig. 7.

Fig. 7 Proposed NN Architecture for SVM (1-6-6-6-3)

A Performance of NN Based SVM
The neural network shown above is trained using back

propagation algorithm with 360 input –output target pairs. The
intermediate layer use log-sigmoid activation function and the
output layer uses linear activation function. The choice of
activation function is based on the non-linearity and output
range of the system under consideration. The mean square
error obtained for the proposed networks after one-lakh
epochs is 3.48e-6. The performance of the inverter with
proposed architectures is evaluated using MATLAB-Tools.
The schematic of the ANN based space vector modulated
voltage source inverter is shown in the Fig. 8. The inverter
and load parameters are given in Table III.

b
* *t 2.K.V sin= α

() ()0 s a bt T / 2 t t= − +

()a
* *t 2.K.V sin / 3= π − α

() ()**
A ON s asT T / 4 V T g− = + ⋅ ⋅ α (13)

* *

d

* *

d*
a

* *

d

* *

d

()

)

)

3 sin(/3) sin ,S 1,64 V
3 sin(/3) sin ,S 24 Vg
3 sin(/3 sin ,S 3,44 V
3 sin(/3 sin ,S 54 V

⎧
⎡ ⎤⎪
⎣ ⎦⎪

⎪
⎪ ⎡ ⎤⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤⎪ ⎣ ⎦
⎪
⎪
⎪ ⎡ ⎤⎣ ⎦⎪⎩

− π −α − α =⋅

− π −α + α =⋅α =
+ π −α + α =⋅

+ π −α − α =⋅

(14)

A _ OFF s A ONT T T −= − (15)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2918

Fig. 8 Schematic of ANN based SVM Inverter

The load is an active load with a back emf of 100V/phase.

Total Harmonic Distortion (THD) is chosen as the index to
evaluate the inverter performance. The low THD/Index
indicates the higher inverter performance. To make a general
purpose NN based SVM, the proposed NN architectures is
trained independent of switching frequency. The inverter is
operated NN based SVM for typical switching frequencies;
THD of line current is given in Table IV. The results
demonstrate that the neural network based SVM, which is
trained independent of frequency, operates well for various
switching frequencies of the inverter. The inverter
performance improves with switching frequencies. Higher
switching frequency is made possible with proposed SVM.

B FPGA Implementation of NN based SVM.
NN based SVM is implemented in FPGA using LUT described
in this paper. The NN with 8-bit precision has been
implemented using Xilinx 6.1i, simulated with ModelSim XE II
5.7c, and downloaded and tested in the IC ‘XCV400hq240’
using Mechatronics test equipment-model: MXUK-SMD-001.
The resource requirement in terms of slices is found to be 6132.
The approximate total number obtained using the proposed
generalized formula is 5931. The approximate and actual slices
for this application validate the proposed/derived formula. The
outputs of the network are tested with the outputs simulated
using the same precision and shown in Fig. 9.

Fig. 9 Line currents of the inverter with the ANN having 8-bit

precision for fs=2kHz

The effect of the bit precision is also demonstrated with this
application. Bit precision is used to trade-off the capabilities of
the realized ANNs against the implementation cost. The
minimum precision is found through simulation before
implementation [13]. The MSE of the network with different
input–output (I/O) bit precisions are tabulated in Table V. The
MSE is the sum of squared error between the actual targets of
the network and the outputs obtained practically due to bit
truncation for the given inputs divided by the total number of
patterns. From the Table V, it is seen that as the bit precision is
increased, the mean square error is reduced.

In order to study the effect of the bit truncation and

consequently the MSE, on the inverter performance, the THD
of the inverter line currents with the ANN implemented with
different bit precisions is determined and is tabulated in
Table VI.

TABLE III
PARAMETERS OF THE LOAD AND INVERTER DRIVEN BY NN

BASED SVM
DC-link voltage: 300 V
Frequency: 50 Hz
Load resistance/phase: 0.817 Ω
Load inductance/phase: 2.38 mH
Back emf/phase: 100 V

TABLE IV
INVERTER PERFORMANCE WITH NN BASED SVM

Switching Frequency Line Current (ia) THD

20 kHz 0.1340%

10 kHz 0.2673%

2 kHz 1.347%

TABLE V
 MSE ACHIEVED WITH VARIOUS BIT PRECISIONS
Bit Precision MSE

8-bit 78.23 e-2
10-bit 4.89 e-2
12-bit 2.50 e-3
16-bit 3.3312 e-5

TABLE VI
THD OF THE LINE CURRENTS WITH DIFFERENT BIT PRECISIONS

% THD for fs=2kHz %THD for fs=20kHz Bit
Precision ia ib ic ia ib ic

 8 9.634 6.946 7.797 8.607 5.88 5.821
10 1.549 1.867 2.093 0.8038 0.8547 1.553
12 1.363 1.383 1.406 0.3129 0.199 0.441
16 1.347 1.348 1.348 0.1336 0.1312 0.1312
32 1.347 1.347 1.348 0.1296 0.13 0.1299

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2919

As the network is independent of switching frequency, the
performance of the inverter is studied with the switching
frequencies of 2kHz and 20kHz. It can be seen from Table VI
that the inverter performance improves with bit precision and
satisfactory performance is obtained with 16-bit precision and
shown in Fig. 10.

Fig. 10 Line Currents of the Inverter with the ANN having 16-Bit

Precision for fs=2kHz

In this section NN based SVM is designed to be
independent of inverter switching frequency. The inverter
performance for the architecture 1-6-6-3, the NN based SVM
with different bit precision is studied and reported. The
hardware implementation results validate the proposed
generalized formula. To decide the optimal bit precision of the
NN based SVM the performance of inverter is studied for
different bit precisions. The NN based SVM with 16-bit
precision is concluded to be optimum in terms of
implementation and inverter performance.

V. CONCLUSION

The issues involved with the implementation of a single
neuron in FPGA are discussed in this paper. The best possible
implementation with resource /speed trade off involves
aspects like Serial/parallel implementation of computational
blocks, Bit precision and use of LUT. These aspects are
discussed in detail and the procedure to arrive at an optimal
solution for a given problem is presented. A single neuron is
implemented using the computational method and LUT
method and the hardware results are presented. The hardware
implementation is carried out for a neuron with various inputs
and excitation functions. From the results obtained
generalized formulae to approximately determine the resource
in slices and speed in cycles of a neural network is derived.

To demonstrate and validate the hardware implementation
issues proposed in this paper, an application, namely, a NN
based SVM technique for a Voltage Source Inverter is
presented. A 1-6-6-6-3 architecture is chosen. The NN based
SVM is designed to be independent of inverter switching
frequency. The performance of the NN based SVM for
different bit-precisions is investigated and the results are
reported. The hardware implementation is carried out using
IC ‘XCV400hq240’ and verified. The generalized formula

obtained is also validated. The performance of the Inverter
driven by NN based SVM with different bit precisions is
discussed. It is identified that 16-bit precision is optimum in
terms of implementation and inverter performance. The
methodology proposed and results presented in this paper will
aid neural network design and implementation.

ACKNOWLEDGMENT

The research is supported by the grants from the All India
Council for Technical Education (AICTE), a statutory body of
Government of India. File Number: 8020/RID/TAPTEC-
32/2001-02.

REFERENCES
[1] B.Widrow and R.Winter, “Neural nets for adaptive filtering and adaptive

pattern recognition ”, IEEE Computer magazine,
pp. 25-39, March 1988.

[2] K.Fukushima, S.Miyake and T.Ito, “Neocognitron: A neural network
model for a mechanism of visual pattern recognition”, IEEE transactions
on systems, Man and Cybernetics, vol.13, no.5, pp. 826-834, 1983.

[3] M.Cristea, A.Dinu, “A New Neural Network Approach to Induction
Motor Speed Control”, IEEE power electronics specialist conference,
vol. 2, pp. 784-788, 2001

[4] S.Grossberg, E.Mingolla and D.Todorovic, “A neural network
architecture for pre-attentive vision”, IEEE Transactions on Biomedical
Engineering, vol.36, no.1, pp. 65-84, Jan 1989.

[5] Leonardo Maria Reyneri “Implementation Issues of Neuro-Fuzzy
Hardware: Going Towards HW/SW Codesign” IEEE Transactions on
Neural Networks, vol.14, no.1, pp. 176-194, 2003.

[6] Y.J.Chen, Du Plessis, “Neural Network Implementation on a FPGA ”,
Proceedings of IEEE Africon, vol.1, pp. 337-342, 2002.

[7] Sund Su Kim, Seul Jung, “Hardware Implementation of Real Time
Neural Network Controller with a DSP and an FPGA ”, IEEE
International Conference on Robotics and Automation,
vol. 5, pp. 3161-3165, April 2004.

[8] Turner.R.H, Woods.R.F, “Highly Efficient Limited Range Multipliers
For LUT-based FPGA Architectures”, IEEE Transactions on Very Large
Scale Integration Systems, Vol.15, no.10, pp. 1113-1117, Oct 2004.

[9] Marchesi.M, Orlandi.G, Piazza.F, Uncini.A, ”Fast Neural Networks
Without Multipliers”, IEEE Transactions on Neural Networks, vol. 4,
no.1, Jan 1993.

[10] Babak Noory, Voicu Groza, “A Reconfigurable Approach to Hardware
Implementation Of Neural Networks”, Canadian Conference on
Electrical and Computer Engineering, IEEE CCGEI 2003, pp. 1861-
1863, 2003.

[11] S.Himavathi, B.Umamaheswari “New Membership functions for
effective Design and Implementation of Fuzzy Systems”, IEEE
Transactions on Systems, Man, Cybernetics, Part A, vol. 31, no.6, Nov
2001.

[12] Anitha “ FPGA Implementation of Estimators for sensorless control of
DTC Drives”, M.Tech Thesis, Pondicherry Engg College, India, June
2005.

[13] B.K.Bose, Modern Power Electronics and ac drives, Pearson Education
(Singapore) Pvt. Ltd., India, 2003.

