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Abstract—Hardware realization of a Neural Network (NN), to a 

large extent depends on the efficient implementation of a single 
neuron. FPGA-based reconfigurable computing architectures are 
suitable for hardware implementation of neural networks. FPGA 
realization of ANNs with a large number of neurons is still a 
challenging task. This paper discusses the issues involved in 
implementation of a multi-input neuron with linear/nonlinear 
excitation functions using FPGA. Implementation method with 
resource/speed tradeoff is proposed to handle signed decimal 
numbers. The VHDL coding developed is tested using 
Xilinx XC V50hq240 Chip. To improve the speed of operation a 
lookup table method is used. The problems involved in using a 
lookup table (LUT) for a nonlinear function is discussed. The 
percentage saving in resource and the improvement in speed with an 
LUT for a neuron is reported. An attempt is also made to derive a 
generalized formula for a multi-input neuron that facilitates to 
estimate approximately the total resource requirement and speed 
achievable for a given multilayer neural network. This facilitates the 
designer to choose the FPGA capacity for a given application. Using 
the proposed method of implementation a neural network based 
application, namely, a Space vector modulator for a vector-controlled 
drive is presented 

Keywords— FPGA Implementation, Multi-input Neuron, Neural 
Network, NN based Space Vector Modulator 

I. INTRODUCTION 

HE aspiration to build intelligent systems complemented 
with the advances in high speed computing has proved 

through simulation the capability of Artificial Neural 
Networks (ANN) to map, model and classify nonlinear 
systems. The learning capability of the network has opened its 
application to various fields of engineering, science, 
economics etc. [1-4]. Real time applications are possible only 
if low cost high-speed neural computation is made realizable. 
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Towards this goal numerous works on implementation of 
Neural Networks (NN) have been proposed [5].  

Neural networks can be implemented using analog or 
digital systems. The digital implementation is more popular as 
it has the advantage of higher accuracy, better repeatability, 
lower noise sensitivity, better testability, higher flexibility, 
and compatibility with other types of preprocessors. The 
digital NN hardware implementations are further classified as  
(i) FPGA-based implementations (ii) DSP-based 
implementations (iii) ASIC-based implementations [6-7]. DSP 
based implementation is sequential and hence does not 
preserve the parallel architecture of the neurons in a layer. 
ASIC implementations do not offer re-configurablity by the 
user. FPGA is a suitable hardware for neural network 
implementation as it preserves the parallel architecture of the 
neurons in a layer and offers flexibility in reconfiguration. 

Parallelism, modularity and dynamic adaptation are three 
computational characteristics typically associated with ANNs. 
FPGA-based reconfigurable computing architectures are well 
suited to implement ANNs as one can exploit concurrency and 
rapidly reconfigure to adapt the weights and topologies of an 
ANN. FPGA realization of ANNs with a large number of 
neurons is still a challenging task because ANN algorithms 
are “multiplication-rich” and it is relatively expensive to 
implement. Various works reported in this area includes new 
multiplication algorithms for NN [8], NNs with some 
constraints to achieve higher speed of operation at lower cost 
[9] and multi-chip realization [10]. 

In this paper, issues related to the FPGA implementation of 
a multi-input neuron are discussed. Both the linear and 
nonlinear excitation functions are considered. The related 
issues such as resource requirement, speed of execution and 
accuracy are addressed through computational architectural 
solutions using FPGA. Section II presents the design and 
implementation of computational blocks of a multi-input 
neuron. Also identifies the various conflicting requirements 
involved in its implementation and proposes a solution other 
than tradeoff. Section III and IV deal with a real time 
application of neural networks and their FPGA 
implementation. Section V concludes the paper. 

 
II. COMPUTATIONAL BLOCKS FOR A NEURON 

The basic structure of a neuron with ‘n’ inputs is shown in 
Fig. 1. The function of a neuron is described by the following 
equations. 

( )y f x= ,            (1) 
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where pi be the ith inputs of the system wi is the weight in the 
ith connection and ‘b’ is the bias. 

 
Fig. 1 Structure of a Neuron 

 
The function f(x) is the excitation function used in the neuron. 
Generally Linear, Log-sigmoid and Tan-sigmoid excitation 
functions are used. They are defined as 

(i) Linear 
( )f x x=             (2) 

 
(ii) Log-sigmoid function 

1( )
1

f x xe
= −+

         (3) 

 
(iii) Tan-sigmoid function 

( )
x xe ef x x xe e

−−= −+
         (4) 

To realize a function of a single neuron, the above expression 
(1) and (2) or (3) or (4) are to be computed. So, the different 
computational blocks are adder, multiplier and complex 
evaluator of the nonlinear excitation function. 

A. Implementation Issues of Computational Blocks  
The inputs to the neural network are generally normalized 

to lie within the range of –1 to +1. Hence the signed floating-
point computations are required. The implementation of 
signed floating-point multipliers and computation of nonlinear 
excitation function is complex and requires large resource. 
The major issues in realization of the computational blocks 
using FPGA are 

i. Parallel/Sequential implementation 
ii. Bit precision 

iii. Use of look up table for nonlinear function 

Parallel computations require larger resource and are 
therefore costly. To reduce cost, the computations are carried 
out sequentially which in turn reduces the speed of 
computation. Selecting bit precision is another important 
choice when implementing ANNs on FPGAs. A higher bit 
precision means fewer quantization errors in the final 
implementations, while a lower precision leads to simpler 
designs, greater speed and reductions in area requirements and 
power consumption. Lookup tables improve speed of 
operation, but higher precision demands larger memory. For a 
given application the speed and minimum accuracy is dictated 
by the system under consideration. Hence the solution is to 
minimize the cost for a given speed of operation and required 
accuracy. 

B. FPGA Implementation of a Multi-Input Neuron  
The structure of a neuron is split into various sub blocks 

and these blocks are implemented individually first and then 
they are integrated to form the entire neuron. The hierarchy of 
the different blocks is as shown in Fig. 2. The two major 
blocks are SIGMA block and LOGSIG block. As this paper 
aims to build multi-layer neural networks with minimum 
resource 9-bit word length with one sign bit and 8 data bits 
has been chosen for this implementation. In typical application 
hardware matching the precision to the computational 
accuracy of the neural network can further optimize resource. 

 

 
Fig. 2 Computational Blocks of a Neuron 

The result of the excitation function f(x) is obtained as a 
9-bit signed number (1-bit for sign and 8-bit for data). The 
precision and word length is chosen so that a single neuron 
can handle a maximum of 16 inputs without the problem of 
overflow. However modification to the word length could 
accommodate higher number of inputs to a neuron. Generally 
in real time applications (Such as vector control of motor 
drives) of neural networks the number of inputs to a neuron 
rarely exceeds 16. The complete structure of the neuron in 
FPGA is shown in Fig. 3. 
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Fig. 3 Complete Structure of a Neuron Implementation using 
Computation Method in FPGA 

Sigma Block: This bock computes the value for 

1
n
ix p w bi i=∑= +  

The basic functions of the block is multiplication, addition, 
subtraction and a control block to coordinate and sequence the 
flow of data to the various blocks The input data p1, p2… pn are 
signed numbers in the range [-1, +1]. This is represented using 
a signed 9-bit number (1-bit for sign and 8-bit for data). The 
weights of the network are represented with 17 bits (one bit 
for sign, 8-bit for whole part and 8-bit for fraction part) 
assuming that the weights lie between –256 to +256. The bias 
is represented by a signed 25-bit number (one bit for sign, 8-
bit for whole part and 16-bit for fractional part). The product 
of the weights and inputs are stored as 24-bit number along 
with a sign bit. The output 1

n
ix p w bi i=∑= + is obtained with 

29-bits (1-bit for sign + 12-bit for whole part + 16-bit for 
fractional part). The different sub blocks are as follows. 

MUL8:     Performs 8-bit multiplication. 
ADD:      Performs 24-bit addition. 
SUB:      Performs 24-bit subtraction. 

SIGMA_CTRL:  It is finite state machine, which controls 
the operation of ADD, MUL8, and SUB 
blocks. 

LOGSIG Block: The computation of f(x) = 1/(1+e-x) is done 
in this block. The logic used to determine e-x is to obtain 2-x as 
detailed in [11]. Then e-x is obtained using the relation  
e-x =1.4426 × 2-x. The determination of f(x) is done as follows. 
The value of x is split into x1 + x2 where x1 is the whole 
number and x2 is the fractional part. The value 2-x2 is obtained 
using the FRAC block; the value 2-x is then obtained by 
WHOLE block by shifting 2-x2

 right x1 times and then converts 
2-x to e-x. The DIV block obtains the value of the function 
f(x) = 1/(1+e-x).  

C. Hardware Implementation 
The architecture of the complete neuron is shown in Fig. 3. 

The same is implemented using Xilinx XC V50hq240 Chip. 
The results obtained for a three input neuron with different 
excitation functions is shown in Table I. From Table I the 
LOGSIG block requires huge resource for implementation and 
time for execution. To reduce the execution time and the cost 
of implementation, a lookup table replaces the LOGSIG 
block. 

 

TABLE I 
RESOURCE AND TIMING OF THREE INPUT NEURON 

WITH DIFFERENT EXCITATION FUNCTIONS 

Resource required in Slices Timing Required in cycles 
Excitation 
Function SIGMA 

Block 
LOGSIG

Block Total SIGMA 
Block 

LOGSIG
Block Total 

Linear 258 - 258 23 - 23 

Log sigmoid 258 705 963 23 98 121 

Tan sigmoid 258 811 1069 23 126 149 

The architecture of a 3-input neuron with LUT is shown in 
Fig. 4. The LUT is implemented using the inbuilt RAM 
available in FPGA IC. The use of LUTs reduces the resource 
requirement and improves the speed. Also the implementation 
of LUT needs no external RAM since the inbuilt memory is 
sufficient to implement the excitation function. As the 
excitation function is highly nonlinear a general procedure 
adopted to obtain a LUT of minimum size for a given 

resolution is detailed [12]. 

Fig. 4 Complete Structure of a Neuron using LUT in FPGA 

A single neuron with three inputs and various excitation 
functions was implemented with and without LUT in using 
‘XCV400hq240’. The results are summarized in Table II.
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It was observed that there is 70 to 74% reduction in resource 
requirement and 79 to 83% improvement in speed is obtained 
by using a LUT. 
 

Estimation of Resource and Time for a NN: The single 
neuron with varying number of inputs and excitation function 
is implemented in hardware. As the number of input to the 
neuron increases, the resource and timing also increases. From 
the results generalized formulas are derived in this section to 
approximately compute the total resource and timing 
requirement for any given NN. 

Let n be the number of layers and let S0, S1, S2, S3…Sn be 
the number of neurons in each layer. If the ith layer is a linear 
function a1i=1, a2i=0, a3i=0 for a log-sigmoid function a1i=0, 
a2i=1, a3i=0 and for a tan sigmoid function a1i=0, a2i=0, a3i=1. 
Then the total number of slices (S), and total number of clock 
cycles (T) for a neural network using computation method and 
LUT method is given below. 

For Computation Method: 
1 1
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For LUT Method: 
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Choice of Optimal Architecture: The choice of architecture 
of NN is more an art than a science. The results obtained will 
aid the designer to choose an optimal architecture of NN for 
the given application. The architecture of NN comprises of 
determining the following. 

i. Number of input neurons 
ii. Number of layers  

iii. Number of neurons in each layer 
iv. Type of activation function for each layer 
v. Number of output neurons 

i and v are dictated by the problem. The type of excitation for 
the output layer depends on the range of output. The 
maximum sampling interval ts for a given system can be 
obtained from the time constant of the system. From ts the 
maximum number of layers (ii) can be determined using any 
one of these equations (5)&(6) or (7)&(8). Let the number of 
layers be ‘L’. Using more number of layers will help the 
network learn faster. Place 2 neurons in each layer and train 
the network and test for the performance. Increase the number 
of neurons in a layer and train the network again till 
satisfactory performance. This systematic procedure helps to 
obtain an optimal NN architecture. 

III. SVM DRIVEN VOLTAGE SOURCE INVERTER 

Space Vector Modulation (SVM) is an optimum Pulse Width 
Modulation (PWM) technique for an inverter used in a 
variable frequency drive applications. It is computationally 
rigorous and requires high computation time and hence limits 
the inverter switching frequency. Increase in switching 
frequency can be achieved using Neural Network (NN) based 
SVM. This section discusses a neural network based SVM 
technique for a Voltage Source Inverter (VSI). The three 
phase two level inverter with an active load is shown in Fig. 5. 

 

 
Fig. 5 Three Phase Voltage Source Inverter 

Its switching operation is controlled using Space Vector 
Modulation (SVM). The SVM is characterized by eight switch 
states Si = (SWa, SWb, SWc), i= 0, 1,.…, 7. Where, SWa 
represents the switching status of inverter Leg-A. It is “1”, 
when switch Q1 is ON & Q4 is OFF and ZERO, when switch 
Q1 is OFF & Q4 is ON. Similarly SWb & SWc is defined for 
inverter Leg-B and Leg-C. The output voltages of the inverter 
are controlled by these eight switching states. Let the inverter 
voltage vectors V0(000), …, …, V7(000), correspond to the 
eight switching states[13]. These vectors form the voltage 
vector space as shown in the Fig. 6. The three-phase reference 
voltage decides the inverter switching and is represented as 
space vector V* with the magnitude V* and phase angle θ* as 
shown in the Fig. 6. 

In a sampling/switching interval, the inverter output voltage 
vector V is expressed in terms of space vectors and switching 
on time.  

 
(9) 

TABLE II 
RESOURCE AND TIMING REQUIREMENT OF A NEURON 

WITH AND WITHOUT LUT 
Resource required in Slices Timing Required in cycles 

Excitation 
Function LUT COMPUTATION 

% 
Saving 

LUT COMPUTATION 
% 

Saving
Log 

Sigmoid 281 953 70.5 25 121 79.33

Tan 
Sigmoid 282 1096 74.27 25 149 83.22

INVERTER 

LOAD

0 71
0 1 7

s s s

V V V V
t tt
T T T

= + +⋅⋅⋅+
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Fig. 6 Voltage Vector Space  

where t0, t1,…t7 are the turn on time of the vectors 
V0, V1,…..V7 respectively and Ts is the sampling/switching 
time period. From the above equation the vector V* can be 
decomposed into two nearest adjacent vectors (Va , Vb) and 
zero vectors in an arbitrary sector. The equations of the 
effective time of the inverter switching states is given as 

 

(10) 

 
(11) 

 
 

(12) 
 

where 
V* - Magnitude of command or reference voltage vector 
ta  - Time period of switching vector (Va = V1) that lags V* 
tb  - Time period of switching vector(Vb = V2)  that leads V* 
tc  - Time period of switching the zero voltage vector 
Ts = (1/fs) - Sampling/Switching time period 
α* - Angle of V* in a 60◦ sector 
fs  -  Switching frequency 
Vd  - DC link voltage and ( )S dK 3T 4V=  

The switching time (ta, tb, and tc) need to be distributed such 
that symmetrical PWM pulses are produced. To produce such 
pulses, the instant of switching on for each phase and each 
sector is calculated. The generalized equation for turn on time 
(TA-ON), turn off time (TA-OFF) and pulse width function ga(α*) 
are given below and shown for Phase A. For phases B and C, 
the switching instants are same but phase shifted appropriately 
by 120◦. 

IV. NEURAL BASED SVM 

The inverter output voltage is controlled by a reference 
vector V*, which used to compute the switching function such 
as turn on time (TA-ON), turn off time (TA-OFF) and pulse width 
function ga(α*). The equation (14) is nonlinear and complex, 
hence requires high computation time. This limits the 
sampling frequency, switching frequency and performance of 
the inverter. To increase switching frequency, Multilayer Feed 
Forward NN is proposed to reduce the time of evaluation the 
pulse width function ga(α*)and increase the inverter switching 
frequency. 

SVM technique is implemented using multilayer NN. The 
input to the neural network is the phase angle (θ*) of the 
reference voltage vector, the outputs are the turn-on pulse 
width functions ga(α*), gb(α*), gc(α*) for the phases A, B, and 
C. Using the procedure proposed in this paper, the NN 
architecture for this application is identified as 1-6-6-6-3 
structure and shown in Fig. 7. 

Fig. 7 Proposed NN Architecture for SVM (1-6-6-6-3) 
 

A Performance of NN Based SVM 
The neural network shown above is trained using back 

propagation algorithm with 360 input –output target pairs. The 
intermediate layer use log-sigmoid activation function and the 
output layer uses linear activation function. The choice of 
activation function is based on the non-linearity and output 
range of the system under consideration. The mean square 
error obtained for the proposed networks after one-lakh 
epochs is 3.48e-6. The performance of the inverter with 
proposed architectures is evaluated using MATLAB-Tools. 
The schematic of the ANN based space vector modulated 
voltage source inverter is shown in the Fig. 8. The inverter 
and load parameters are given in Table III. 

b
* *t 2.K.V sin= α

( ) ( )0 s a bt T / 2 t t= − +

( )a
* *t 2.K.V sin / 3= π − α

( ) ( )**
A ON s asT T / 4 V T g− = + ⋅ ⋅ α (13)
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Fig. 8 Schematic of ANN based SVM Inverter  

 
 

 
The load is an active load with a back emf of 100V/phase. 

Total Harmonic Distortion (THD) is chosen as the index to 
evaluate the inverter performance. The low THD/Index 
indicates the higher inverter performance. To make a general 
purpose NN based SVM, the proposed NN architectures is 
trained independent of switching frequency. The inverter is 
operated NN based SVM for typical switching frequencies; 
THD of line current is given in Table IV. The results 
demonstrate that the neural network based SVM, which is 
trained independent of frequency, operates well for various 
switching frequencies of the inverter. The inverter 
performance improves with switching frequencies. Higher 
switching frequency is made possible with proposed SVM. 

 

 

B  FPGA Implementation of NN based SVM. 
NN based SVM is implemented in FPGA using LUT described 
in this paper. The NN with 8-bit precision has been 
implemented using Xilinx 6.1i, simulated with ModelSim XE II 
5.7c, and downloaded and tested in the IC ‘XCV400hq240’ 
using Mechatronics test equipment-model: MXUK-SMD-001. 
The resource requirement in terms of slices is found to be 6132. 
The approximate total number obtained using the proposed 
generalized formula is 5931. The approximate and actual slices 
for this application validate the proposed/derived formula. The 
outputs of the network are tested with the outputs simulated 
using the same precision and shown in Fig. 9. 

 
Fig. 9 Line currents of the inverter with the ANN having 8-bit 

precision for fs=2kHz 

The effect of the bit precision is also demonstrated with this 
application. Bit precision is used to trade-off the capabilities of 
the realized ANNs against the implementation cost. The 
minimum precision is found through simulation before 
implementation [13]. The MSE of the network with different 
input–output (I/O) bit precisions are tabulated in Table V. The 
MSE is the sum of squared error between the actual targets of 
the network and the outputs obtained practically due to bit 
truncation for the given inputs divided by the total number of 
patterns. From the Table V, it is seen that as the bit precision is 
increased, the mean square error is reduced. 

 
In order to study the effect of the bit truncation and 

consequently the MSE, on the inverter performance, the THD 
of the inverter line currents with the ANN implemented with 
different bit precisions is determined and is tabulated in 
Table VI.  

 
 

 

TABLE III 
PARAMETERS OF THE LOAD AND INVERTER DRIVEN BY NN 

BASED SVM 
DC-link voltage: 300 V 
Frequency: 50 Hz 
Load resistance/phase: 0.817 Ω 
Load inductance/phase: 2.38 mH 
Back emf/phase: 100 V 

TABLE IV 
INVERTER PERFORMANCE WITH NN BASED SVM 

Switching Frequency Line Current (ia) THD 

20 kHz 0.1340% 

10 kHz 0.2673% 

2 kHz 1.347% 

TABLE V 
 MSE ACHIEVED WITH VARIOUS BIT PRECISIONS 
Bit Precision MSE 

8-bit 78.23     e-2 
10-bit 4.89     e-2 
12-bit 2.50     e-3 
16-bit 3.3312 e-5 

TABLE VI 
THD OF THE LINE CURRENTS WITH DIFFERENT BIT  PRECISIONS

% THD for fs=2kHz %THD for fs=20kHz Bit 
Precision ia ib ic ia ib ic 

  8 9.634 6.946 7.797 8.607 5.88 5.821 
10 1.549 1.867 2.093 0.8038 0.8547 1.553 
12 1.363 1.383 1.406 0.3129 0.199 0.441 
16 1.347 1.348 1.348 0.1336 0.1312 0.1312 
32 1.347 1.347 1.348 0.1296 0.13 0.1299
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As the network is independent of switching frequency, the 
performance of the inverter is studied with the switching 
frequencies of 2kHz and 20kHz. It can be seen from Table VI 
that the inverter performance improves with bit precision and 
satisfactory performance is obtained with 16-bit precision and 
shown in Fig. 10. 

 
Fig. 10 Line Currents of the Inverter with the ANN having 16-Bit 

Precision for fs=2kHz 
 

In this section NN based SVM is designed to be 
independent of inverter switching frequency. The inverter 
performance for the architecture 1-6-6-3, the NN based SVM 
with different bit precision is studied and reported. The 
hardware implementation results validate the proposed 
generalized formula. To decide the optimal bit precision of the 
NN based SVM the performance of inverter is studied for 
different bit precisions. The NN based SVM with 16-bit 
precision is concluded to be optimum in terms of 
implementation and inverter performance. 

V. CONCLUSION 

The issues involved with the implementation of a single 
neuron in FPGA are discussed in this paper. The best possible 
implementation with resource /speed trade off involves 
aspects like Serial/parallel implementation of computational 
blocks, Bit precision and use of LUT. These aspects are 
discussed in detail and the procedure to arrive at an optimal 
solution for a given problem is presented. A single neuron is 
implemented using the computational method and LUT 
method and the hardware results are presented. The hardware 
implementation is carried out for a neuron with various inputs 
and excitation functions. From the results obtained 
generalized formulae to approximately determine the resource 
in slices and speed in cycles of a neural network is derived. 

To demonstrate and validate the hardware implementation 
issues proposed in this paper, an application, namely, a NN 
based SVM technique for a Voltage Source Inverter is 
presented. A 1-6-6-6-3 architecture is chosen. The NN based 
SVM is designed to be independent of inverter switching 
frequency. The performance of the NN based SVM for 
different bit-precisions is investigated and the results are 
reported. The hardware implementation is carried out using 
IC ‘XCV400hq240’ and verified. The generalized formula 

obtained is also validated. The performance of the Inverter 
driven by NN based SVM with different bit precisions is 
discussed. It is identified that 16-bit precision is optimum in 
terms of implementation and inverter performance. The 
methodology proposed and results presented in this paper will 
aid neural network design and implementation. 
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