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Abstract—In this paper, a uniform calculus-based approach for 

synthesizing monitors checking correctness properties specified by a 
large variety of logics at runtime is provided, including future and past 
time logics, interval logics, state machine and parameterized temporal 
logics. We present a calculus mechanism to synthesize monitors from 
the logical specification for the incremental analysis of execution 
traces during test and real run. The monitor detects both good and bad 
prefix of a particular kind, namely those that are informative for the 
property under investigation. We elaborate the procedure of calculus 
as  monitors. 
 

Keywords—calculus, eagle logic, monitor synthesis, runtime 
verification   

I. INTRODUCTION 
UNTIME verification (RV) is an emerging lightweight 
verification technique in which executions of systems 

under scrutiny are checked for satisfaction or violation of given 
correctness properties, while it complements verification 
techniques such as model checking and testing, it also paves the 
way for not-only detecting incorrect behavior of a software 
system but also for reacting and potentially healing the system 
when a correctness violation is encountered.  

Typically, monitors are generated automatically from some 
high-level specification. Runtime verification, which has its 
roots in model checking, often employs some variant of linear 
temporal logic, such as Pnueli’s LTL [2]. Meanwhile some 
more other formal methods are required to descript different 
requirement, for example, future and past time logics, interval 
logics, state machine and parameterized temporal logics. 
Accordingly, a lot of monitor construction method has been 
studied. [3] presents a rewriting algorithm for efficiently testing 
future time linear Temporal logic formulae. [4] makes use of 
the characterization that finite trace LTL can be defined 
recursively, both on the structure of the formulae and on the 
size of the executing trace, and presents that an efficient 
dynamic programming algorithms can be generated from any 
LTL formulae. The commercial tool Temporal Rover (TR) 
[5,6] supports a fixed future and past time LTL, with the 
possibility of specifying real-time and data constraints as 
annotations on the temporal operators. It implementation is 
based on alternating automata. Algorithms using alternating 
automaton to monitor LTL properties are also proposed in [7]. 
In [8], the approach consists of translating LTL formulae to 
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finite-state automaton, the translation algorithms modifies 
standard LTL to Büchi automaton conversion techniques to 
generate automata that check finite program traces.  

First, it’s clearly that above monitor construction methods 
orient to special monitor logic. Different monitor construction 
methods have been given for different specification logic. 
Second, the above methods are all based on finite trace 
semantics. The standard semantics of above specification logic 
are often based on infinite state sequences, but during the 
running, you can only see the finite prefix of the infinite run at 
any time. So it is rational for the monitor to give the verdict of 
the infinite run based on the finite prefix. But the above finite 
trace semantics are all inconsistencies. In other words, the 
monitor semantics (finite trace semantics) often are not 
consistent with the standard semantics. A logic L is called 
consistent if there exists not a model M and a formula ϕ∈L 
such that M |= ϕ and M |= ¬ϕ. For example, consider the LTL 
formulae ϕ=Xp and ϕ’=X¬p, u∈∑* be a finite trace consisting 
of only a single element, such that u=a with a={p}. 
Theoretically, in a finite trace interpretation of LTL, we could 
have both u|≠ϕ and u|≠¬ϕ, since there is no successor action 
available to satisfy either case. But sometimes the consistency 
between finite trace semantics and standard semantics of the 
specification logic is vital important. We call the consistency of 
the monitor logic as impartiality. 

How to design a unifying logic in which all these logics can 
be modeled and a unifying framework in which different 
monitor constructions are as the same way. And how to make 
the monitor satisfied the property of impartiality are two critical 
questions which will be solved in this paper. [9,10] present a 
rule-based framework, called EAGLE, that has been shown to 
be capable to defining and implementing a range of finite trace 
monitoring logics, including future and past time temporal 
logic, real-time and metric temporal logics, forms of quantified 
temporal logics, and so on. Our work is significantly influenced 
by idea and implementation of EAGLE. But the monitor 
semantics does obey impartiality and the corresponding 
monitor identifies the a particular kind of good and bad prefix, 
namely informative good/bad prefix for the property under 
investigation. 

 The remainder of this paper is organized as follows. Section 
2 discuses two foundation works: informative prefix and Eagle 
logic. Section 3 introduces the calculus process for varieties of 
primitive operators, next-time operator (○ ), previous-state 
operator (�), and rule definitions. Then shows the workings of 
the calculus algorithm through two examples, finally gives the 
concise proof of correctness. Section 4 closes the paper with 
discussion and conclusion..  
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II. PRELIMINARIES 

A. Informative prefix 
Various approaches to runtime verification and reasoning 

about systems based on truncated paths have been based upon a 
seminal paper by Kupferman and Vardi[1]. In [1], safety 
formulas are classified into three kinds, the intentionally safe 
the accidentally safe and the pathologically safe, depending on 
the kinds of prefixes their properties possess. A prefix σ is 
called informative for a formula if it “tells the whole story”[1] 
of why the formula holds for every infinite state sequence of 
which σ is a prefix. Intentionally safe formulas are formulas of 
which every bad prefix is informative (e.g. �p), an accidentally 
safe formula is a safety formula of which all state sequences 
that violate it, do have some informative bad prefix (e.g. 
�(p∨(Οq∧Ο¬q, examples from [1]))) . Pathologically safe 
safety formulas are formulas that have computations that 
violate it without any informative bad prefix. 

Formally, the definition of informative prefix can be 
defined as follow: 

Definition 1 Let σ= a0a1…an∈∑* be a finite state sequence, 
σ is informative for ϕ iff there exists a finite sequence 
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).1(,
)).1()(()2(

)()1(,
).()(,

.,
.),(0

,)1(
)0(

11

211

221

2121

+∈=−
+∈∈

∈=−
∈∈=−
∈−

∈≤〈
+

∈

iTrthenXif
iTrandiTr

oriTrthenif
iTropiTrthenopif

athennpropositioatomicanisif
holdfollowingtheiTrandniallfor

emptyisnTr
Tr

i

ψψψ
ψψψ

ψψψψ
ψψψψψ

ψψ
ψ

ϕ

∪
∪

 

We call such a sequence Tr an informative sequence. If such 
an informative sequence exists, it tells us why ϕ holds for any 
extension of the prefix σ. It indicates what formulas hold at 
what moment of the prefix and why. Since Tr(i) is at some point 
empty, this reasoning is complete and thus applies to any 
extension of the prefix. For example, if , 
according to the definition,  and , 
which tells us that  holds for any extension of the 
prefix. The informative bad prefixes can be considered as the 
only proper counterexamples, since they demonstrate why the 
formula does not hold or hold. So it is helpful to fault diagnosis 
and fault localization. To find the informative prefix of the 
property under investigation is one of the main goal for runtime 
verification. [11] elaborates on the construction of the monitor 
for temporal logic properties in which the automaton forms the 
basis of a monitor that detects both good and bad informative 
prefix for the property under investigation. In this paper, we 
will give a monitor construction method based on calculus 
which support much more formal property specification, 
including future and past time logics, interval logics, state 
machine and parameterized temporal logics. 

B. Eagle 
The Eagle logic is designed to support finite trace 

monitoring, and contains a small set of powerful operators, 
which allow on to define new logics on top. Eagle essentially 
supports recursive parameterized equations, with a 
minimal/maximal fix-point semantics, together with three 
temporal operators: next-time, previous-time and 
concatenation. The equations are also called as rules. Rules can 
be parameterized with formulas, supporting the definition of 
new temporal operators, and they can be parameterized with 
values, thus supporting logics that can reason about data ,and as 
a special case of data, real-time. Here we assume boolean 
expressions over individual states as automatic propositions 
which comprise the finite trace. The expressiveness of the logic 
system is rich. Actually, any linear-time temporal logic, whose 
temporal modalities can be recursively defined over the next, 
past or concatenation modalities, can be embedded within it. 
Meanwhile the logic has supported a limited form of 
quantification. Interesting reader can refer to [9, 10] for details. 
We present the syntax and semantics below: 

Syntax the syntax of EAGLE is shown in figure 1. a 
specification is consists of a declaration part D and an observer 
part O. D comprises zero or more rule definitions R, and O 
comprises zero or more monitor definitions M, which specify 
what is to be monitored. Rules and monitors are both named 
(N). Each rule definition is preceded by one of the keywords 
min or max, indicating at the end of the trace how to interpret 
the semantic of the rules. A parameter type can either be form, 
representing formulas, or a primitive type int, long, float, etc. 
The body of a rule/monitor is a Boolean valued formula of the 
syntactic category Form. Any recursive call on a rule must be 
strictly guarded by a temporal operator. The propositions of the 
logic are Boolean expressions over an observer state. Formulas 
are composed using standard proposition logic operators 
together with a next-time operator (○F), a previous-state 
operator (�F) and a concatenation operator . 
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Fig. 1 Syntax of EAGLE 

Semantics The model of EAGLE logic are execution traces. 
An execution trace σ is a finite sequence of program states 
σ=s1s2 … sn, where |σ|=n is the length of the trace. The ith state 
si is denoted by σ(i). The term σ[i,j] denotes the sub-trace of σ 
from position i to position j, both position is included. The 
semantics of the logic is defined in terms of a satisfaction 
relation between execution traces and specifications. That is, 
given a trace σ and a specification D O, satisfaction is defined 
as follows: σ|= D O iff ∀(mon N = F) ∈ O, σ, 1 |=DF. That is to 
say, if the trace, observed from position 1 ( the first state) 
satisfied each monitored formula in a specification, the trace 
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satisfied the specification. The definition of the satisfaction 
relation |=D ⊆(Trace×nat) ×Form, for a set of rule definitions D, 
is presented in Figure 2. 

 

Fig. 2 the finite trace semantics of Eagle 
 
From above definition, we can see that the low-level 

semantics of EAGLE logic are: for safety requirement, in the 
portion of the execution that we have observed, nothing bad 
happens, for eventualities, they are similarly required to be 
satisfied in the portion of the execution observed. Otherwise 
they will have ‘not yet’ been satisfied. It is clearly that the 
above definition doesn’t follow the maxim of impartiality. So 
in this paper, we will modify the calculus process for EAGLE 
logic such that the monitor not only can give the precise result, 
i.e. if the monitor gives the positive result, the current running 
satisfied with the property, if the monitor gives the negative 
result, the current running didn’t satisfy with the property. But 
also the calculus shows how and why the property is satisfied 
with or not. i.e. the calculus process identifies the good or bad 
informative prefix of the property under investigation.  

III. CALCULUS PROCESS 
In this section, we outline the calculus process to determine 

that a given monitoring formula is satisfied, falsified or 
inconclusive (?) for some given finite input sequence of events. 
On the observer side a local state is maintained. The atomic 
propositions are specified with respect to the variables in this 
local state. Once an event is received, the observer modifies its 
local state; then evaluates the formula which has been 
evaluated on the prior states of that state and generates a new 
set of monitored formulas. At the end of the trace, the values of 
the monitored formulas are determined. If the value of a 
formula is true, the formula is satisfied, if the value of a formula 
is false, the formula is violated, otherwise, the value of the 
formula is inconclusive(?). 

Our calculus process is inspired by monitoring algorithm 
used in EAGLE [9,10]. The calculus process is consisted of 
three steps. First, a monitor formula is transformed to other 
formula F’ by applying rules recursively, until that the rule 
definition appears again. Second, the transformed formula is 
monitored against an execution trace by application of eval. 
The evaluation of a formula F on a state s=σ(i) in a trace σ 
results in a another formula F’=eval(F,s), F and F’ satisfied the 
property that σ ,i|=F iff σ,i+1|=F’. The definition of the 
function eval: Form×State ->Form uses an auxiliary function 
update: Form ×State= Form. The role of the update function is 
to pre-evaluate a formula if it is guarded by the previous 
operator. Formally, update function has the property that 

σ,i|=ОF iff σ,i+1 |=update(F, σ(i)). If the formula does not 
contain previous operator, the update function is not necessary. 
We can only use the identity: σ,i|=ОF iff σ,i+1 |=F. At the end 
of the trace, a special function fina-eval : Form-> {true, false ,? 
} is applied. This is the key to determine which semantics the 
calculus process is followed. At the end of the observed finite 
trace, if the result formula is true formula, then the result of 
verification is true, if the result formula is false formula, then 
the result of verification is false, otherwise the result is 
inconclusive (?).  

A. Calculus 
The transform, eval , update and final-eval functions are 
defined a prior for all operators except for the rule application. 
The definitions of transform, eval, update and final-eval about 
rule application get generated based on the definition of rules in 
the specification. 

For the sake of expression, function transform and update 
are expressed as Form×Form×Form->Form and 
Form×State×Form×Form ->Form respectively. In other words, 
we give the two functions two more parameters respectively. 
The first parameter represents the formula which is before rule 
application. It is used to determine termination for a recursive 
rule application of transform and update on a rule, it is the head 
formula of a recursive rule application; The second parameter 
denotes the recursive variable that will replace any embedded 
recursive call on the head formula. If the transform is not yet in 
the context of a rule, its last two arguments are null. The 
definitions of transform, eval, update and final-eval on the 
different primitive operators are given in figure 3. 
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Fig. 3 the definitions of transform, eval, update and final-value on 
primitive operator 

In the above definition, op can be ∧,∨,→. Observe that for 
the definitions on primitive operator, we never use the last two 
arguments of transform and update. In most of the definitions 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2480

 

 

we simply propagate the arguments to the subformula. The only 
difference from the counterparts in the traditional EAGLE logic 
[9][10] is the final-value definition on formulas except true and 
false. At the end of finite trace, if the result formula is true, it 
shows that the finite trace is the informative good sequence for 
the property under investigation, if the result formula is false, it 
shows that the finite trace is the informative bad sequence for 
the property. According to the definition 1, the calculus process 
identifies the informative prefix for the property under 
investigation. Otherwise it shows that the property has no 
informative prefix or the current finite trace is only the proper 
prefix of its informative prefix. So we can not given the 
monitoring result only based on the current observed finite 
trace. 

The functions transform, eval, update are defined in a 
special way for operators ○and �. For the operator ○we 
introduce the operator Next: Form ->Form. Then we define 
transform, eval, update as follows: 

(transform ○ )),,((),, bZFtransformNextbZF =  

)),,,((),,),((
),,,()),((

bZsFupdateNextbZsFNextupdate
nullnullsFupdatesFNexteval

=
=

 

The operator � requires special attention. If a formula F is 
guarded by a previous operator then we evaluate F at every 
event and use the result of this evaluation in the next state. 
Thus, the result of evaluating F is required to be stored in some 
temporary placeholder so that it can be used in the next state. 
To allocate a placeholder for a � operator, we introduce the 
operator Previous: Form×Form->Form. We define transform, 
eval, update for � as follows: 

(transform � ))(,(Pr),, YevalYeviousbZF =  

)),(
),,,,((Pr),,),,((Pr

),()),,((Pr
),,(

sFeval
bZsFupdateeviousbZspastFeviousupdate

spastevalspastFeviouseval
bZFtransformYwhere
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  Here, the definitions of the three functions on operator � 
are as same as the two-valued EAGLE logic. In update function 
we not only update the first argument F but also evaluate F and 
pass is as the second argument of Previous. Note that the 
final-eval function only is used at the end of the finite trace, it 
only concerns whether the result formula is true/false or not. So 
it does not need to be defined on ○ and � any more. The reason 
is same for rule application below. 

B. Monitor Synthesis for Rules 
In this paper, we will give different forms of rule definitions. 

In traditional Eagle logic [9][10], without loss of generality, the 
standard form of a rule is {max/min} R (Form f1, … , Form fm, 
T1 p1, …, Tn pn)=B where f1, … , fm are arguments of type Form 
and p1, …, pn are arguments of primitive type. There the rule 
definition is divided into two styles: max rules and min rules. 
But in this paper, it is not needed any more, because final-eval 
function is not dependent on the rule types. 

Without loss of generality, in this paper, the standard form of 
a rule is R (Form f1, … , Form fm, T1 p1, …, Tn pn)=B where f1, 
… , fm are arguments of type Form and p1, …, pn are arguments 
of primitive type. Such a rule can be written in short as: 

 
Where and  represent tuples of type  and  

respectively. For such a rule we intro- duce an operator 
. Informally, the first argument of 

 represents the transformed right hand side of the rule. 
For the rule , the definitions of 

transform, eval, update are synthesized as follows: 
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Note that the result of eval(P ,s), where P is an expression, 
may be a partially evaluated expression if some of the variables 
referred to by the expressions are partially evaluated. The 
expression gets fully evaluated once all the variables referred to 
by the expressions are fully evaluated. The reader can refer to 
[9][10] for the detail. 

C. Examples 
We provide one example to show the workings of above 

calculus process which identifies the informative prefix for the 
property under investigation. In order to compare with 
traditional EAGLE logic, we use the example in [9] , but 
different result will give. 

Example the property under investigation which is in 
modified Eagle form is: 

∨= ffFormEp )( � )( fEp  
=Mmon ○ )(qEp  

The finite trace is σ={q}{}. 
First, transform function is applied: 

(transform ○ ==),),( nullnullqEp  

))))),((Pr.((( falsebEpeviousqbEpNext ∨ρ  
Second, eval function is applied on state : 

((transformeval ○ ==)),,),( 1σnullnullqEp  

)))))),((Pr.(( '' truebEpeviousqbEp ∨ρ  
Third, eval function is applied again on state : 
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trueevalq

truetruebEpevious

qbEpeviousevalqeval

truetruebEpevious

qbEpeviousqeval

truebEpeviousqbEpeval

=∨=
∨=

∨∨=

∨∨=

∨

.4
),(.3

)),))),),((Pr

.((((Pr),(.2

)),))),),((Pr

.(((Pr(.1

))))),,((Pr(((

2

2
'

'
2

2
'

'
2

''

σ
σ

ρσ

σ

ρ

σρ

 

Finally, at the end of the trace, the final-eval function is applied 
on the result formula: 

truetrueevalfinal =− )(  
It is easy to see that σ={q}{} is the informative good prefix 

of the property and the calculus process identifies the 
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informative prefix and gives the verdict result: true. If σ={q}, 
in traditional Eagle logic, the result of calculus will be false, 
because in [9], at the end of the trace, if the result formula is 
min rule, the verdict is false, if the result formula is max rule, 
the verdict is true. There the definition of Ep rule will be:  

∨= ffForm )min( � )( fEp  
Which is min rule, So at the end of the trace (second step), 

the calculus process of traditional Eagle will give the verdict: 
false. But based on our calculus, the calculus process will give 
verdict: ?. it shows that the current trace {q} is only the proper 
prefix of informative prefix {p}{}. 

IV. CONCLUSION 

In this paper, a calculus-based approach for synthesizing 
monitors checking correctness properties specified in multiple 
kinds of logic which can be represented by modified Eagle 
logic. Different from the traditional Eagle logic, the rule 
definition in modified Eagle logic does not distinguish with the 
max and min rule. So at the end of the trace, the verdict result is 
not dependent on the rule type, but only concerns with whether 
the result formula is true, false or otherwise. Indeed the calculus 
process provides a informative sequence for the property under 
investigation. So the calculus process identifies the informative 
good or bad prefix for the property under investigation. 
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