
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2477

Abstract—In this paper, a uniform calculus-based approach for

synthesizing monitors checking correctness properties specified by a
large variety of logics at runtime is provided, including future and past
time logics, interval logics, state machine and parameterized temporal
logics. We present a calculus mechanism to synthesize monitors from
the logical specification for the incremental analysis of execution
traces during test and real run. The monitor detects both good and bad
prefix of a particular kind, namely those that are informative for the
property under investigation. We elaborate the procedure of calculus
as monitors.

Keywords—calculus, eagle logic, monitor synthesis, runtime
verification

I. INTRODUCTION
UNTIME verification (RV) is an emerging lightweight
verification technique in which executions of systems

under scrutiny are checked for satisfaction or violation of given
correctness properties, while it complements verification
techniques such as model checking and testing, it also paves the
way for not-only detecting incorrect behavior of a software
system but also for reacting and potentially healing the system
when a correctness violation is encountered.

Typically, monitors are generated automatically from some
high-level specification. Runtime verification, which has its
roots in model checking, often employs some variant of linear
temporal logic, such as Pnueli’s LTL [2]. Meanwhile some
more other formal methods are required to descript different
requirement, for example, future and past time logics, interval
logics, state machine and parameterized temporal logics.
Accordingly, a lot of monitor construction method has been
studied. [3] presents a rewriting algorithm for efficiently testing
future time linear Temporal logic formulae. [4] makes use of
the characterization that finite trace LTL can be defined
recursively, both on the structure of the formulae and on the
size of the executing trace, and presents that an efficient
dynamic programming algorithms can be generated from any
LTL formulae. The commercial tool Temporal Rover (TR)
[5,6] supports a fixed future and past time LTL, with the
possibility of specifying real-time and data constraints as
annotations on the temporal operators. It implementation is
based on alternating automata. Algorithms using alternating
automaton to monitor LTL properties are also proposed in [7].
In [8], the approach consists of translating LTL formulae to

Xuan Qi is with Beijing Institude of System Engineering, P.R.China

(Beijing 9702 Box, 100101, P.R.China ; e-mail: qixuanhappy@126.com).
Changzhi Zhao is with School of Computer, National University of Defense

Technology, P.R.China .

finite-state automaton, the translation algorithms modifies
standard LTL to Büchi automaton conversion techniques to
generate automata that check finite program traces.

First, it’s clearly that above monitor construction methods
orient to special monitor logic. Different monitor construction
methods have been given for different specification logic.
Second, the above methods are all based on finite trace
semantics. The standard semantics of above specification logic
are often based on infinite state sequences, but during the
running, you can only see the finite prefix of the infinite run at
any time. So it is rational for the monitor to give the verdict of
the infinite run based on the finite prefix. But the above finite
trace semantics are all inconsistencies. In other words, the
monitor semantics (finite trace semantics) often are not
consistent with the standard semantics. A logic L is called
consistent if there exists not a model M and a formula ϕ∈L
such that M |= ϕ and M |= ¬ϕ. For example, consider the LTL
formulae ϕ=Xp and ϕ’=X¬p, u∈∑* be a finite trace consisting
of only a single element, such that u=a with a={p}.
Theoretically, in a finite trace interpretation of LTL, we could
have both u|≠ϕ and u|≠¬ϕ, since there is no successor action
available to satisfy either case. But sometimes the consistency
between finite trace semantics and standard semantics of the
specification logic is vital important. We call the consistency of
the monitor logic as impartiality.

How to design a unifying logic in which all these logics can
be modeled and a unifying framework in which different
monitor constructions are as the same way. And how to make
the monitor satisfied the property of impartiality are two critical
questions which will be solved in this paper. [9,10] present a
rule-based framework, called EAGLE, that has been shown to
be capable to defining and implementing a range of finite trace
monitoring logics, including future and past time temporal
logic, real-time and metric temporal logics, forms of quantified
temporal logics, and so on. Our work is significantly influenced
by idea and implementation of EAGLE. But the monitor
semantics does obey impartiality and the corresponding
monitor identifies the a particular kind of good and bad prefix,
namely informative good/bad prefix for the property under
investigation.

 The remainder of this paper is organized as follows. Section
2 discuses two foundation works: informative prefix and Eagle
logic. Section 3 introduces the calculus process for varieties of
primitive operators, next-time operator (○), previous-state
operator (�), and rule definitions. Then shows the workings of
the calculus algorithm through two examples, finally gives the
concise proof of correctness. Section 4 closes the paper with
discussion and conclusion..

Calculus-based Runtime Verification
Xuan Qi, Changzhi Zhao

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2478

II. PRELIMINARIES

A. Informative prefix
Various approaches to runtime verification and reasoning

about systems based on truncated paths have been based upon a
seminal paper by Kupferman and Vardi[1]. In [1], safety
formulas are classified into three kinds, the intentionally safe
the accidentally safe and the pathologically safe, depending on
the kinds of prefixes their properties possess. A prefix σ is
called informative for a formula if it “tells the whole story”[1]
of why the formula holds for every infinite state sequence of
which σ is a prefix. Intentionally safe formulas are formulas of
which every bad prefix is informative (e.g. �p), an accidentally
safe formula is a safety formula of which all state sequences
that violate it, do have some informative bad prefix (e.g.
�(p∨(Οq∧Ο¬q, examples from [1]))) . Pathologically safe
safety formulas are formulas that have computations that
violate it without any informative bad prefix.

Formally, the definition of informative prefix can be
defined as follow:

Definition 1 Let σ= a0a1…an∈∑* be a finite state sequence,
σ is informative for ϕ iff there exists a finite sequence

 of sets of formulas, for each n≤|Tr|, such that

).1(,
)).1()(()2(

)()1(,
).()(,

.,
.),(0

,)1(
)0(

11

211

221

2121

+∈=−
+∈∈

∈=−
∈∈=−
∈−

∈≤〈
+

∈

iTrthenXif
iTrandiTr

oriTrthenif
iTropiTrthenopif

athennpropositioatomicanisif
holdfollowingtheiTrandniallfor

emptyisnTr
Tr

i

ψψψ
ψψψ

ψψψψ
ψψψψψ

ψψ
ψ

ϕ

∪
∪

We call such a sequence Tr an informative sequence. If such
an informative sequence exists, it tells us why ϕ holds for any
extension of the prefix σ. It indicates what formulas hold at
what moment of the prefix and why. Since Tr(i) is at some point
empty, this reasoning is complete and thus applies to any
extension of the prefix. For example, if ,
according to the definition, and ,
which tells us that holds for any extension of the
prefix. The informative bad prefixes can be considered as the
only proper counterexamples, since they demonstrate why the
formula does not hold or hold. So it is helpful to fault diagnosis
and fault localization. To find the informative prefix of the
property under investigation is one of the main goal for runtime
verification. [11] elaborates on the construction of the monitor
for temporal logic properties in which the automaton forms the
basis of a monitor that detects both good and bad informative
prefix for the property under investigation. In this paper, we
will give a monitor construction method based on calculus
which support much more formal property specification,
including future and past time logics, interval logics, state
machine and parameterized temporal logics.

B. Eagle
The Eagle logic is designed to support finite trace

monitoring, and contains a small set of powerful operators,
which allow on to define new logics on top. Eagle essentially
supports recursive parameterized equations, with a
minimal/maximal fix-point semantics, together with three
temporal operators: next-time, previous-time and
concatenation. The equations are also called as rules. Rules can
be parameterized with formulas, supporting the definition of
new temporal operators, and they can be parameterized with
values, thus supporting logics that can reason about data ,and as
a special case of data, real-time. Here we assume boolean
expressions over individual states as automatic propositions
which comprise the finite trace. The expressiveness of the logic
system is rich. Actually, any linear-time temporal logic, whose
temporal modalities can be recursively defined over the next,
past or concatenation modalities, can be embedded within it.
Meanwhile the logic has supported a limited form of
quantification. Interesting reader can refer to [9, 10] for details.
We present the syntax and semantics below:

Syntax the syntax of EAGLE is shown in figure 1. a
specification is consists of a declaration part D and an observer
part O. D comprises zero or more rule definitions R, and O
comprises zero or more monitor definitions M, which specify
what is to be monitored. Rules and monitors are both named
(N). Each rule definition is preceded by one of the keywords
min or max, indicating at the end of the trace how to interpret
the semantic of the rules. A parameter type can either be form,
representing formulas, or a primitive type int, long, float, etc.
The body of a rule/monitor is a Boolean valued formula of the
syntactic category Form. Any recursive call on a rule must be
strictly guarded by a temporal operator. The propositions of the
logic are Boolean expressions over an observer state. Formulas
are composed using standard proposition logic operators
together with a next-time operator (○F), a previous-state
operator (�F) and a concatenation operator .

||||||exp::
|::

::
),,(min|max::

::
::

::

2121

11

*

FFFFFfalsetrueressionF
typeprimitiveFormT

FNmonM
FxTxTNR

MO
RD

DOS

nn

∨∧¬=
=

==
==

=
=

=

"

 21 FF → |○ |F � |F in xFFNFF |),,(| 121 "•
Fig. 1 Syntax of EAGLE

Semantics The model of EAGLE logic are execution traces.
An execution trace σ is a finite sequence of program states
σ=s1s2 … sn, where |σ|=n is the length of the trace. The ith state
si is denoted by σ(i). The term σ[i,j] denotes the sub-trace of σ
from position i to position j, both position is included. The
semantics of the logic is defined in terms of a satisfaction
relation between execution traces and specifications. That is,
given a trace σ and a specification D O, satisfaction is defined
as follows: σ|= D O iff ∀(mon N = F) ∈ O, σ, 1 |=DF. That is to
say, if the trace, observed from position 1 (the first state)
satisfied each monitored formula in a specification, the trace

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2479

satisfied the specification. The definition of the satisfaction
relation |=D ⊆(Trace×nat) ×Form, for a set of rule definitions D,
is presented in Figure 2.

Fig. 2 the finite trace semantics of Eagle

From above definition, we can see that the low-level

semantics of EAGLE logic are: for safety requirement, in the
portion of the execution that we have observed, nothing bad
happens, for eventualities, they are similarly required to be
satisfied in the portion of the execution observed. Otherwise
they will have ‘not yet’ been satisfied. It is clearly that the
above definition doesn’t follow the maxim of impartiality. So
in this paper, we will modify the calculus process for EAGLE
logic such that the monitor not only can give the precise result,
i.e. if the monitor gives the positive result, the current running
satisfied with the property, if the monitor gives the negative
result, the current running didn’t satisfy with the property. But
also the calculus shows how and why the property is satisfied
with or not. i.e. the calculus process identifies the good or bad
informative prefix of the property under investigation.

III. CALCULUS PROCESS
In this section, we outline the calculus process to determine

that a given monitoring formula is satisfied, falsified or
inconclusive (?) for some given finite input sequence of events.
On the observer side a local state is maintained. The atomic
propositions are specified with respect to the variables in this
local state. Once an event is received, the observer modifies its
local state; then evaluates the formula which has been
evaluated on the prior states of that state and generates a new
set of monitored formulas. At the end of the trace, the values of
the monitored formulas are determined. If the value of a
formula is true, the formula is satisfied, if the value of a formula
is false, the formula is violated, otherwise, the value of the
formula is inconclusive(?).

Our calculus process is inspired by monitoring algorithm
used in EAGLE [9,10]. The calculus process is consisted of
three steps. First, a monitor formula is transformed to other
formula F’ by applying rules recursively, until that the rule
definition appears again. Second, the transformed formula is
monitored against an execution trace by application of eval.
The evaluation of a formula F on a state s=σ(i) in a trace σ
results in a another formula F’=eval(F,s), F and F’ satisfied the
property that σ ,i|=F iff σ,i+1|=F’. The definition of the
function eval: Form×State ->Form uses an auxiliary function
update: Form ×State= Form. The role of the update function is
to pre-evaluate a formula if it is guarded by the previous
operator. Formally, update function has the property that

σ,i|=ОF iff σ,i+1 |=update(F, σ(i)). If the formula does not
contain previous operator, the update function is not necessary.
We can only use the identity: σ,i|=ОF iff σ,i+1 |=F. At the end
of the trace, a special function fina-eval : Form-> {true, false ,?
} is applied. This is the key to determine which semantics the
calculus process is followed. At the end of the observed finite
trace, if the result formula is true formula, then the result of
verification is true, if the result formula is false formula, then
the result of verification is false, otherwise the result is
inconclusive (?).

A. Calculus
The transform, eval , update and final-eval functions are
defined a prior for all operators except for the rule application.
The definitions of transform, eval, update and final-eval about
rule application get generated based on the definition of rules in
the specification.

For the sake of expression, function transform and update
are expressed as Form×Form×Form->Form and
Form×State×Form×Form ->Form respectively. In other words,
we give the two functions two more parameters respectively.
The first parameter represents the formula which is before rule
application. It is used to determine termination for a recursive
rule application of transform and update on a rule, it is the head
formula of a recursive rule application; The second parameter
denotes the recursive variable that will replace any embedded
recursive call on the head formula. If the transform is not yet in
the context of a rule, its last two arguments are null. The
definitions of transform, eval, update and final-eval on the
different primitive operators are given in figure 3.

?)(
?)(

?(exp)
)(

)(
),,,(),,,(

),,,(),,,(),,,(
exp),,(exp,

),,,(
),,,(

),(),(
),(),(),(

""exp,
""',exp

)(exp,

),(
),(

),,(),,(
),,(),,(),,(

exp),(exp,
),,(

),,(

21

2121

2121

2121

=¬−
=−

=−
=−

=−
¬=¬

=
=

=
=

¬=¬
=

⎭
⎬
⎫

⎩
⎨
⎧

=

=
=

¬=¬
=

=
=

=

Fevalfinal
FopFevalfinal

evalfinal
falsefalseevalfinal

truetrueevalfinal
bZsFupdatebZsFupdate

bZsFupdateopbZsFupdatebZsFopFupdate
bZsupdate

falsebZsfalseupdate
truebZstrueupdate

sFevalsFeval
sFevalopsFevalsFopFeval

statevirtualissif
statevirtualtisnsifsinofvalue

seval

falsesfalseeval
truestrueeval

bZFtranfrombZFtransfrom
bZFtransfromopbZFtransfrombZFopFtransfrom

bZtransfrom
falsebZfalsetransfrom

truebZtruetransfrom

Fig. 3 the definitions of transform, eval, update and final-value on
primitive operator

In the above definition, op can be ∧,∨,→. Observe that for
the definitions on primitive operator, we never use the last two
arguments of transform and update. In most of the definitions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2480

we simply propagate the arguments to the subformula. The only
difference from the counterparts in the traditional EAGLE logic
[9][10] is the final-value definition on formulas except true and
false. At the end of finite trace, if the result formula is true, it
shows that the finite trace is the informative good sequence for
the property under investigation, if the result formula is false, it
shows that the finite trace is the informative bad sequence for
the property. According to the definition 1, the calculus process
identifies the informative prefix for the property under
investigation. Otherwise it shows that the property has no
informative prefix or the current finite trace is only the proper
prefix of its informative prefix. So we can not given the
monitoring result only based on the current observed finite
trace.

The functions transform, eval, update are defined in a
special way for operators ○and �. For the operator ○we
introduce the operator Next: Form ->Form. Then we define
transform, eval, update as follows:

(transform ○)),,((),, bZFtransformNextbZF =

)),,,((),,),((
),,,()),((

bZsFupdateNextbZsFNextupdate
nullnullsFupdatesFNexteval

=
=

The operator � requires special attention. If a formula F is
guarded by a previous operator then we evaluate F at every
event and use the result of this evaluation in the next state.
Thus, the result of evaluating F is required to be stored in some
temporary placeholder so that it can be used in the next state.
To allocate a placeholder for a � operator, we introduce the
operator Previous: Form×Form->Form. We define transform,
eval, update for � as follows:

(transform �))(,(Pr),, YevalYeviousbZF =

)),(
),,,,((Pr),,),,((Pr

),()),,((Pr
),,(

sFeval
bZsFupdateeviousbZspastFeviousupdate

spastevalspastFeviouseval
bZFtransformYwhere

=
=

=

 Here, the definitions of the three functions on operator �
are as same as the two-valued EAGLE logic. In update function
we not only update the first argument F but also evaluate F and
pass is as the second argument of Previous. Note that the
final-eval function only is used at the end of the finite trace, it
only concerns whether the result formula is true/false or not. So
it does not need to be defined on ○ and � any more. The reason
is same for rule application below.

B. Monitor Synthesis for Rules
In this paper, we will give different forms of rule definitions.

In traditional Eagle logic [9][10], without loss of generality, the
standard form of a rule is {max/min} R (Form f1, … , Form fm,
T1 p1, …, Tn pn)=B where f1, … , fm are arguments of type Form
and p1, …, pn are arguments of primitive type. There the rule
definition is divided into two styles: max rules and min rules.
But in this paper, it is not needed any more, because final-eval
function is not dependent on the rule types.

Without loss of generality, in this paper, the standard form of
a rule is R (Form f1, … , Form fm, T1 p1, …, Tn pn)=B where f1,
… , fm are arguments of type Form and p1, …, pn are arguments
of primitive type. Such a rule can be written in short as:

Where and represent tuples of type and

respectively. For such a rule we intro- duce an operator
. Informally, the first argument of

 represents the transformed right hand side of the rule.
For the rule , the definitions of

transform, eval, update are synthesized as follows:

))],,())[(.(()),),(.((

?)),(.((

))),),(.(,)),(.((.(),,),),(.((

),()),),(.(,),),(.((

?),(),,(

)),),,(],[(.(),),,((

),()),,(),,((

'''

'''

''

'

ssPevalpbHbHevalsPbHbReval

bHbRmatchnotZwhere

PPbHbRsbHbHupdatebRbZsPbHbRupdate

PbRbPbHbRsPbHbRupdate

FRmatchnotZandbZFtransformYwhere

PbPFRYfFtransformbRbZPFRtransform

PbRbPFRPFRtransform

6

6

ρρ

ρ

ρρρρ

ρρ

ρ

=

=

=

=

=

=

Note that the result of eval(P ,s), where P is an expression,
may be a partially evaluated expression if some of the variables
referred to by the expressions are partially evaluated. The
expression gets fully evaluated once all the variables referred to
by the expressions are fully evaluated. The reader can refer to
[9][10] for the detail.

C. Examples
We provide one example to show the workings of above

calculus process which identifies the informative prefix for the
property under investigation. In order to compare with
traditional EAGLE logic, we use the example in [9] , but
different result will give.

Example the property under investigation which is in
modified Eagle form is:

∨= ffFormEp)(�)(fEp
=Mmon ○)(qEp

The finite trace is σ={q}{}.
First, transform function is applied:

(transform ○ ==),),(nullnullqEp

))))),((Pr.(((falsebEpeviousqbEpNext ∨ρ
Second, eval function is applied on state :

((transformeval ○ ==)),,),(1σnullnullqEp

)))))),((Pr.(('' truebEpeviousqbEp ∨ρ
Third, eval function is applied again on state :

truetrueq
trueevalq

truetruebEpevious

qbEpeviousevalqeval

truetruebEpevious

qbEpeviousqeval

truebEpeviousqbEpeval

=∨=
∨=

∨∨=

∨∨=

∨

.4
),(.3

)),))),),((Pr

.((((Pr),(.2

)),))),),((Pr

.(((Pr(.1

))))),,((Pr(((

2

2
'

'
2

2
'

'
2

''

σ
σ

ρσ

σ

ρ

σρ

Finally, at the end of the trace, the final-eval function is applied
on the result formula:

truetrueevalfinal =−)(
It is easy to see that σ={q}{} is the informative good prefix

of the property and the calculus process identifies the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2481

informative prefix and gives the verdict result: true. If σ={q},
in traditional Eagle logic, the result of calculus will be false,
because in [9], at the end of the trace, if the result formula is
min rule, the verdict is false, if the result formula is max rule,
the verdict is true. There the definition of Ep rule will be:

∨= ffForm)min(�)(fEp
Which is min rule, So at the end of the trace (second step),

the calculus process of traditional Eagle will give the verdict:
false. But based on our calculus, the calculus process will give
verdict: ?. it shows that the current trace {q} is only the proper
prefix of informative prefix {p}{}.

IV. CONCLUSION

In this paper, a calculus-based approach for synthesizing
monitors checking correctness properties specified in multiple
kinds of logic which can be represented by modified Eagle
logic. Different from the traditional Eagle logic, the rule
definition in modified Eagle logic does not distinguish with the
max and min rule. So at the end of the trace, the verdict result is
not dependent on the rule type, but only concerns with whether
the result formula is true, false or otherwise. Indeed the calculus
process provides a informative sequence for the property under
investigation. So the calculus process identifies the informative
good or bad prefix for the property under investigation.

REFERENCES
[1] Kupferman, O. and M. Y. Vardi, “Model checking of safety properties,”

in: N. Halbwachs and D. Peled, editors, Computer Aided Verification:
11th International Conference Proceedings, CAV’99, Trento, Italy, July
6-10, 1999 (LNCS 1633) (1999), pp.172-183.

[2] Pnueli, A. “The temporal logic of programs.” In: Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS), 1977,
pp.46-57.

[3] Havelund, K., Rosu, G. “Monitoring Programs using rewriting.” In
proceedings of Inter- national Conference on Automated Software
Engineering (ASE’01), 2001, pp.135-143.

[4] Havelun, K., Rosu, G. “Synthesizing monitors for Safety Properties.” In
Tools and Algorithms for Construction and Analysis of Systems
(TACAS’02), 2002, pp.342-356.

[5] Drusinsky, D. “The Temporal Rover and the ATG Rover.” In SPIN Model
Checking and Software Verification, volume 1885 of LNCS, 2000,
pp.323-330.

[6] Drusinsky, D. “Monitoring Temporal Rules Combined with Time Series.”
In CAV’03, volume 2725 of LNCS, 2003, pp.114-118.

[7] Finkbeiner, B., Sipma, H. “Checking Finite Traces using Alternating
Automata.” In Proceedings of the 1st International Workshop on Runtime
Verification(RV’01), 2001, pp.44-60.

[8] Giannakopoulou, D., Havelund, K. “Automata-Based Verification of
Temporal Properties on Running Programs.” In Proceedings of
International Conference on Automated Software Engineering(ASE’01),
2001, pp. 412-416.

[9] Barringer, H., Goldberg, A., Havelund, K., and Sen, K. “Eagle Monitors
by Collecting Facts and Generating Obligations.” Pre-Print CSPP-26,
University of Manchester, Department of Computer Science, 2003.

[10] Barringer, H., Goldberg, A., Havelund, K., and Sen, K. “Rule-Based
Runtime Verification.” In Proceedings of Fifth International Conference
on Verification, Model Checking and Abstract Interpretation
(VMCAI’04), 2004.

[11] Geilen, M. “On the construction of monitors for temporal logic
properties.” In Electronic Notes in Theoretical Computer Science, 55,
2001.

